macro arguments.
Previously, these warnings skipped any code in a macro expansion. Preform an
additional check and warn when the expression and context locations are both
in the macro argument.
The most obvious case not caught is passing a pointer directly to a macro,
i.e 'assert(&array)' but 'assert(&array && "valid array")' is caught. This is
because macro arguments are not typed and the conversion happens inside the
macro.
llvm-svn: 215251
question mark instead of the context of the conditional operator. The
condition does not need the context of the conditional operator at all.
llvm-svn: 215048
The main subtlety here is that the Darwin tools still need to be given "-arch
arm64" rather than "-arch aarch64". Fortunately this already goes via a custom
function to handle weird edge-cases in other architectures, and it tested.
I removed a few arm64_be tests because that really isn't an interesting thing
to worry about. No-one using big-endian is also referring to the target as
arm64 (at least as far as toolchains go). Mostly they date from when arm64 was
a separate target and we *did* need a parallel name simply to test it at all.
Now aarch64_be is sufficient.
llvm-svn: 213744
Windows ARM indicates __va_start as a variadic function. However, the function
itself is treated as having 4 formal arguments:
- (out) pointer to the va_list
- (in) address of the last named argument
- (in) slot size for the type of the last argument
- address of the last named argument
The last argument does not seem to have any bearing on codegen, and thus is not
explicitly type checked at this point.
Unlike the previous handling for __va_start, it does not currently validate if
the parameter is the last named parameter (it seems that MSVC currently accepts
this).
llvm-svn: 213595
This fixes a couple of asserts when analyzing comparisons involving
C11 atomics that were uncovered by r205608 when we extended the
applicability of -Wtautological-constant-out-of-range-compare.
llvm-svn: 213573
In MS-compatibility mode, we support the __assume builtin. The __assume builtin
does not evaluate its arguments, and we should issue a warning if __assume is
provided with an argument with side effects (because these effects will be
discarded).
This is similar in spirit to the warnings issued by other compilers (Intel
Diagnostic 2261, MS Compiler Warning C4557).
llvm-svn: 213266
Memory barrier __builtin_arm_[dmb, dsb, isb] intrinsics are required to
implement their corresponding ACLE and MSVC intrinsics.
This patch ports ARM dmb, dsb, isb intrinsic to AArch64.
Requires LLVM r213247.
Differential Revision: http://reviews.llvm.org/D4521
llvm-svn: 213250
ARMv8 adds (to both AArch32 and AArch64) acquiring and releasing
variants of the exclusive operations, in line with the C++11 memory
model.
This adds support for two new intrinsics to expose them to C & C++
developers directly: __builtin_arm_ldaex and __builtin_arm_stlex, in
direct analogy with the versions with no implicit barrier.
rdar://problem/15885451
llvm-svn: 212175
Fixes PR20110, where Clang hits an assertion failure when it expects that the
sub-expression of a bit cast to pointer to also be a pointer, but gets a value
instead.
Differential Revision: http://reviews.llvm.org/D4280
llvm-svn: 212160
The compilation pipeline doesn't actually need to know about the high-level
concept of diagnostic mappings, and hiding the final computed level presents
several simplifications and other potential benefits.
The only exceptions are opportunistic checks to see whether expensive code
paths can be avoided for diagnostics that are guaranteed to be ignored at a
certain SourceLocation.
This commit formalizes that invariant by introducing and using
DiagnosticsEngine::isIgnored() in place of individual level checks throughout
lex, parse and sema.
llvm-svn: 211005
to call themselves will get the warning:
"Capturing <itself> strongly in this block is likely to
lead to a retain cycle". Cut down on the amount of noise
by noticing that user at some point sets the captured variable
to null in order to release it (and break the cycle).
// rdar://16944538
llvm-svn: 210823
will never be true in a well-defined context. The checking for null pointers
has been moved into the caller logic so it does not rely on undefined behavior.
llvm-svn: 210498
to the normal non-placement ::operator new and ::operator delete, but allow
optimizations like new-expressions and delete-expressions do.
llvm-svn: 210137
This allows us to be more careful when dealing with enums whose fixed
underlying type requires special handling in a format string, like
NSInteger.
A refinement of r163266 from a year and a half ago, which added the
special handling for NSInteger and friends in the first place.
<rdar://problem/16616623>
llvm-svn: 209966
A few (mostly CodeGen) parts of Clang were tightly coupled to the
AArch64 backend. Now that it's gone, they will not even compile.
I've also deduplicated RUN lines in many of the AArch64 tests. This
might improve "make check-all" time noticably: some of those NEON
tests were monsters.
llvm-svn: 209578
The conventional form is '<action> to silence this warning'.
Also call the diagnostic an 'issue' rather than a 'message' because the latter
term is more widely used with reference to message expressions.
llvm-svn: 209052
Warn on std::abs() with unsigned argument.
Suggest std::abs as replacement for the C absolute value functions.
Suggest C++ headers if the specific std::abs overload is not found.
llvm-svn: 206340
better. This warning will now trigger on the following conditionals:
bool b;
int i;
if (b > 1) {} // always false
if (0 <= (i > 5)) {} // always true
if (-1 > b) {} // always false
Patch by Per Viberg.
llvm-svn: 205608
This adds Clang support for the ARM64 backend. There are definitely
still some rough edges, so please bring up any issues you see with
this patch.
As with the LLVM commit though, we think it'll be more useful for
merging with AArch64 from within the tree.
llvm-svn: 205100
The main difference between __va_start and __builtin_va_start is that
the address of the va_list has already been taken, and the va_list is
always a char*.
__va_end and __va_arg are not needed.
llvm-svn: 204821
Someone could write:
if (0) {
__c11_atomic_load(ptr, memory_order_release);
}
or the equivalent, which is perfectly valid, so we shouldn't outright reject
invalid orderings on purely static grounds.
rdar://problem/16242991
llvm-svn: 203564
This is a conservative check, because it's valid for the expression to be
non-constant, and in cases like that we just don't know whether it's valid.
rdar://problem/16242991
llvm-svn: 203561
const char *format = "%s";
std::experimental::string_view view = "foo";
printf(format, view);
In this case, not only warn about a class type being used here, but also suggest that calling c_str() might be a good idea.
llvm-svn: 202461
null comparison when the pointer is known to be non-null.
This catches the array to pointer decay, function to pointer decay and
address of variables. This does not catch address of function since this
has been previously used to silence a warning.
Pointer to bool conversion is under -Wbool-conversion.
Pointer to null comparison is under -Wtautological-pointer-compare, a sub-group
of -Wtautological-compare.
void foo() {
int arr[5];
int x;
// warn on these conditionals
if (foo);
if (arr);
if (&x);
if (foo == null);
if (arr == null);
if (&x == null);
if (&foo); // no warning
}
llvm-svn: 202216
The warnings fall into three groups.
1) Using an absolute value function of the wrong type, for instance, using the
int absolute value function when the argument is a floating point type.
2) Using the improper sized absolute value function, for instance, using abs
when the argument is a long long. llabs should be used instead.
From these two cases, an implicit conversion will occur which may cause
unexpected behavior. Where possible, suggest the proper absolute value
function to use, and which header to include if the function is not available.
3) Taking the absolute value of an unsigned value. In addition to this warning,
suggest to remove the function call. This usually indicates a logic error
since the programmer assumed negative values would have been possible.
llvm-svn: 202211
Most 64-bit targets define int64_t as long int, and AArch64 should
make same definition to follow LP64 model. In GNU tool chain, int64_t
is defined as long int for 64-bit target. So to get consistent with GNU,
it's better Changing int64_t from 'long long int' to 'long int',
otherwise clang will get different name mangling suffix compared with g++.
llvm-svn: 202004
Because GCC incorrectly defines _mm_prefetch to take anything that casts
to void*, people have started using that behavior. The previous patch
that made _mm_prefetch actually take a const char * broke compatibility
with existing code. This update to the patch leaves the macro that
defines _mm_prefetch with the (void*) cast when _MSC_VER is not defined.
llvm-svn: 201901
This breaks backwards compatibility with existing code. Previously, this
was defined as
#define _mm_prefetch(a, sel) (__builtin_prefetch((void *)(a), 0, (sel)))
Which basically accepts any pointer. Changing this to char* simply
breaks a lot of existing code. I have tried changing char* to
"const void*", which seems to be the right thing as per Intel
specification this should work on basically any pointer. However,
apparently this breaks windows compatibility (because of a conflicting
declaration in windows.h).
So, we probably need to #ifdef this based on whether clang is compiling
for windows. According to Chandler, this might be done by introducing an
additional symbol to a fake type in BuiltinsX86.def and then condition
the type expansion on the platform.
llvm-svn: 201775
This patch adds several built-ins that are required for ms
compatibility. _mm_prefetch must be a built-in because it takes a
compile-time constant argument and our prior approach of using a #define
to the current built-in doesn't work in the presence of re-declaration
of _mm_prefetch. The others can be obtained by including the windows
system headers. If a user includes the windows system headers but not
intrin.h they still need to work and therefore must be built-in because
we don't get a chance to implement them in intrin.h in this case.
llvm-svn: 201734
There are two kinds of automatically generated tests for NEON intrinsics, both
of which can be merged without adversely affecting users.
1. We check that a valid kind of __builtin_neon_XYZ overload is requested (e.g.
we're not asking for a float32x4_t version when it only accepts integers. Since
the __builtin_neon_XYZ intrinsics should only be used in arm_neon.h, relaxing
this test and permitting AArch64 types for AArch32 should not cause a problem.
The extra arm_neon.h definitions should be #ifdefed out anyway.
2. We check that intrinsics which take immediates are actually given
compile-time constants within range. Since all NEON intrinsics should be
backwards compatible, these tests should be identical on AArch64 and AArch32
anyway.
This patch, therefore, merges the separate AArch64 and 32-bit checks.
rdar://problem/16035743
llvm-svn: 201659
Previously, range checking on the __builtin_neon_XYZ_v Clang intrinsics didn't
take account of the type actually passed to the call, which meant a request
like "vext_s16(a, b, 7)" was allowed through (TableGen was conservative and
allowed 0-7 for all types). This caused an assert in the backend because the
lane doesn't make sense.
llvm-svn: 201232
A return type is the declared or deduced part of the function type specified in
the declaration.
A result type is the (potentially adjusted) type of the value of an expression
that calls the function.
Rule of thumb:
* Declarations have return types and parameters.
* Expressions have result types and arguments.
llvm-svn: 200082
Previously, string literals were ignored in all logical expressions. This
reduces it to only ignore in logical and expressions.
assert(0 && "error"); // No warning
assert(0 || "error"); // Warn
Fixes PR17565
llvm-svn: 200056
This involved making CheckReturnStackAddr into a static function, which
is now called by a top-level return value checking routine called
CheckReturnValExpr.
llvm-svn: 199790
Fix a perennial source of confusion in the clang type system: Declarations and
function prototypes have parameters to which arguments are supplied, so calling
these 'arguments' was a stretch even in C mode, let alone C++ where default
arguments, templates and overloading make the distinction important to get
right.
Readability win across the board, especially in the casting, ADL and
overloading implementations which make a lot more sense at a glance now.
Will keep an eye on the builders and update dependent projects shortly.
No functional change.
llvm-svn: 199686
This allows the following syntax:
void baz(__attribute__((nonnull)) const char *str);
instead of:
void baz(const char *str) __attribute__((nonnull(1)));
This also extends to Objective-C methods.
The checking logic in Sema is not as clean as I would like. Effectively
now we need to check both the FunctionDecl/ObjCMethodDecl and the parameters,
so the point of truth is spread in two places, but the logic isn't that
cumbersome.
Implements <rdar://problem/14691443>.
llvm-svn: 199467
The ABI requires the destructor to be invoked in the callee, but the
standard does not require access checks here so we avoid doing direct
access checks on the destructor.
If we end up needing to define an implicit destructor, we don't skip
access checks for the base class, etc. Those checks are effectively part
of generating the destructor definition, and aren't affected by which TU
the check is performed in.
Differential Revision: http://llvm-reviews.chandlerc.com/D2409
llvm-svn: 199120
encodes the canonical rules for LLVM's style. I noticed this had drifted
quite a bit when cleaning up LLVM, so wanted to clean up Clang as well.
llvm-svn: 198686
Thisadds a new warning that warns on code like this:
if (memcmp(a, b, sizeof(a) != 0))
The warning looks like:
test4.cc:5:30: warning: size argument in 'memcmp' call is a comparison [-Wmemsize-comparison]
if (memcmp(a, b, sizeof(a) != 0))
~~~~~~~~~~^~~~
test4.cc:5:7: note: did you mean to compare the result of 'memcmp' instead?
if (memcmp(a, b, sizeof(a) != 0))
^ ~
)
test4.cc:5:20: note: explicitly cast the argument to size_t to silence this warning
if (memcmp(a, b, sizeof(a) != 0))
^
(size_t)( )
1 warning generated.
This found 2 bugs in chromium and has 0 false positives on both chromium and
llvm.
The idea of triggering this warning on a binop in the size argument is due to
rnk.
llvm-svn: 198063
Summary:
MSVC destroys arguments in the callee from left to right. Because C++
objects have to be destroyed in the reverse order of construction, Clang
has to construct arguments from right to left and destroy arguments from
left to right.
This patch fixes the ordering by reversing the order of evaluation of
all call arguments under the MS C++ ABI.
Fixes PR18035.
Reviewers: rsmith
Differential Revision: http://llvm-reviews.chandlerc.com/D2275
llvm-svn: 196402
The AST was constructed so that this builtin returned the default BoolTy and
since I'd opted for custom SemaChecking, I should have set it properly at that
point.
This caused an assertion failure when the types didn't match up with what we
generated. This makes it return an IntTy, which is as good as anything.
llvm-svn: 193606
_Bool in C, if the macro is defined. Also teach FixItUtils to look at whether
the macro was defined at the source location for which it is creating a fixit,
rather than looking at whether it's defined *now*. This is especially relevant
for analysis-based warnings which are delayed until end of TU.
llvm-svn: 191057
LLVM supports applying conversion instructions to vectors of the same number of
elements (fptrunc, fptosi, etc.) but there had been no way for a Clang user to
cause such instructions to be generated when using builtin vector types.
C-style casting on vectors is already defined in terms of bitcasts, and so
cannot be used for these conversions as well (without leading to a very
confusing set of semantics). As a result, this adds a __builtin_convertvector
intrinsic (patterned after the OpenCL __builtin_astype intrinsic). This is
intended to aid the creation of vector intrinsic headers that create generic IR
instead of target-dependent intrinsics (in other words, this is a generic
_mm_cvtepi32_ps). As noted in the documentation, the action of
__builtin_convertvector is defined in terms of the action of a C-style cast on
each vector element.
llvm-svn: 190915
I changed the diagnostic printing code because it's probably better
to cut off a digit from DBL_MAX than to print something like
1.300000001 when the user wrote 1.3.
llvm-svn: 189625
Basically, isInMainFile considers line markers, and isWrittenInMainFile
doesn't. Distinguishing between the two is useful when dealing with
files which are preprocessed files or rewritten with -frewrite-includes
(so we don't, for example, print useless warnings).
llvm-svn: 188968
function: it can't be 'void' and it can't be an initializer list. We give a
hard error for these rather than treating them as undefined behavior (we can
and probably should do the same for non-POD types in C++11, but as of this
change we don't).
Slightly rework the checking of variadic arguments in a function with a format
attribute to ensure that certain kinds of format string problem (non-literal
string, too many/too few arguments, ...) don't suppress this error.
llvm-svn: 187735
Patch by Ana Pazos
- Completed implementation of instruction formats:
AdvSIMD three same
AdvSIMD modified immediate
AdvSIMD scalar pairwise
- Completed implementation of instruction classes
(some of the instructions in these classes
belong to yet unfinished instruction formats):
Vector Arithmetic
Vector Immediate
Vector Pairwise Arithmetic
- Initial implementation of instruction formats:
AdvSIMD scalar two-reg misc
AdvSIMD scalar three same
- Intial implementation of instruction class:
Scalar Arithmetic
- Initial clang changes to support arm v8 intrinsics.
Note: no clang changes for scalar intrinsics function name mangling yet.
- Comprehensive test cases for added instructions
To verify auto codegen, encoding, decoding, diagnosis, intrinsics.
llvm-svn: 187568
Previously a diagnostic was issued, but the code went ahead and built the ShuffleVectorExpr. While I'm here also simplify a couple lines by wrapping the return ExprError around the Diag calls.
llvm-svn: 187344
This adds three overloaded intrinsics to Clang:
T __builtin_arm_ldrex(const volatile T *addr)
int __builtin_arm_strex(T val, volatile T *addr)
void __builtin_arm_clrex()
The intent is that these do what users would expect when given most sensible
types. Currently, "sensible" translates to ints, floats and pointers.
llvm-svn: 186394
& operator (ignoring any overloaded operator& for the type). The purpose of
this builtin is for use in std::addressof, to allow it to be made constexpr;
the existing implementation technique (reinterpret_cast to some reference type,
take address, reinterpert_cast back) does not permit this because
reinterpret_cast between reference types is not permitted in a constant
expression in C++11 onwards.
llvm-svn: 186053
Use UsualArithmeticConversions unconditionally in analysis of
comparisons and conditional operators: the method performs
the usual arithmetic conversions if both sides are arithmetic, and
usual unary conversions if they are not. This is just a cleanup
for conditional operators; for comparisons, it fixes the issue that
we would try to check isArithmetic() on an atomic type.
Also, fix GetExprRange() in SemaChecking.cpp so it deals with variables
of atomic type correctly.
Fixes PR15537.
llvm-svn: 185857
before the value computation of the result. In C, this is implied by there being
a sequence point after their evaluation, and in C++, it's implied by the
side-effects being sequenced before the expressions and statements in the
function body.
llvm-svn: 185282
side-effect is not sequenced before its value computation. Also fix a
mishandling of ?: expressions where the condition is constant that was
exposed by the tests for this.
llvm-svn: 185035
Itanium destroys them in the caller at the end of the full expression,
but MSVC destroys them in the callee. This is further complicated by
the need to emit EH-only destructor cleanups in the caller.
This should help clang compile MSVC's debug iterators more correctly.
There is still an outstanding issue in PR5064 of a memcpy emitted by the
LLVM backend, which is not correct for C++ records.
Fixes PR16226.
Reviewers: rjmccall
Differential Revision: http://llvm-reviews.chandlerc.com/D929
llvm-svn: 184543
operations in the case where evaluating a subexpression fails. No functionality
change, but test/Sema/many-logical-ops.c gets ~100x faster with this change.
llvm-svn: 184489
In some cases, clang applies the C++ rules for computing the range of a
value when said value is an enum.
Instead, apply C semantics when in C mode.
llvm-svn: 183084
- References to ObjC bit-field ivars are bit-field lvalues;
fixes rdar://13794269, which got me started down this.
- Introduce Expr::refersToBitField, switch a couple users to
it where semantically important, and comment the difference
between this and the existing API.
- Discourage Expr::getBitField by making it a bit longer and
less general-sounding.
- Lock down on const_casts of bit-field gl-values until we
hear back from the committee as to whether they're allowed.
llvm-svn: 181252
in the parameter of a function definition. Currently,
it crashes in irgen if it is on other than the 1st dimension.
// rdar://13705391
llvm-svn: 180732
likely be implicitly truncated:
* All forms of Bitwise-and, bitwise-or, and integer multiplication.
* The assignment form of integer addition, subtraction, and exclusive-or
* The RHS of the comma operator
* The LHS of left shifts.
llvm-svn: 178273
The TypeLoc hierarchy used the llvm::cast machinery to perform undefined
behavior by casting pointers/references to TypeLoc objects to derived types
and then using the derived copy constructors (or even returning pointers to
derived types that actually point to the original TypeLoc object).
Some context is in this thread:
http://lists.cs.uiuc.edu/pipermail/llvmdev/2012-December/056804.html
Though it's spread over a few months which can be hard to read in the mail
archive.
llvm-svn: 175462
argument to be memset, check for its type to be complete
before calling Context.getTypeSize(PointeeTy) to prevent
crash. // rdar://13081751.
llvm-svn: 173872
unsequenced operations in the RHS. We don't compare the RHS with the rest of
the expression yet; such checks will need care to avoid diagnosing unsequenced
operations which are both in conditionally-evaluated subexpressions which
actually can't occur together, such as in '(b && ++x) + (!b && ++x)'.
llvm-svn: 172760
expressions which have undefined behavior due to multiple unsequenced
modifications or an unsequenced modification and use of a variable.
llvm-svn: 172690
Along the way, fix a bug in CheckLiteralKind(), previously in diagnoseObjCLiteralComparison, where we didn't ignore parentheses
in boxed expressions for purpose of classification.
In other words, both @42 and @(42) should be classified as numeric
literals.
llvm-svn: 170931
This is just a minor bit of refactoring, but it is nice cleanup for
the subsequent patch that adds warning support for assigning literals
to weak variables.
llvm-svn: 170863
For most cases where a conversion specifier doesn't match an argument,
we usually guess that the conversion specifier is wrong. However, if
the argument is an integer type and the specifier is %C, it's likely
the user really did mean to print the integer as a character.
(This is more common than %c because there is no way to specify a unichar
literal -- you have to write an integer literal, such as '0x2603',
and then cast it to unichar.)
This does not change the behavior of %S, since there are fewer cases
where printing a literal Unicode *string* is necessary, but this could
easily be changed in the future.
<rdar://problem/11982013>
llvm-svn: 169400
The type of a character literal is 'int' in C, but if the user writes a
character /as/ a literal, we should assume they meant it to be a
character and not a numeric value, and thus offer %c as a correction
rather than %d.
There's a special case for multi-character literals (like 'MooV'), which
have implementation-defined value and usually cannot be printed with %c.
These still use %d as the suggestion.
In C++, the type of a character literal is 'char', and so this problem
doesn't exist.
<rdar://problem/12282316>
llvm-svn: 169398
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
width of an enum with negative values in IntRange. Include a test for
-Wtautological-constant-out-of-range-compare where this had manifested.
llvm-svn: 168126
type conversion between integers. This allows the warning to be more accurate.
Also, turned the warning off in an analyzer test. The relavent test cases
are covered by the tests in Sema.
llvm-svn: 167992
Also applies to -Wnonnull, -Wtype-safety, and -Wnon-pod-varargs.
All of these can be better checked at instantiation time.
This change does not actually affect regular CallExpr function calls,
since the checks there only happen after overload resolution.
However, it will affect Objective-C method calls.
<rdar://problem/12373934>
llvm-svn: 164984
Like properties, loading from a weak ivar twice in the same function can
give you inconsistent results if the object is deallocated between the
two loads. It is safer to assign to a strong local variable and use that.
Second half of <rdar://problem/12280249>.
llvm-svn: 164855
Retain cycles happen in the case where a block is persisted past its
life on the stack, and the way that occurs is by copying the block.
We should thus look through any explicit copies we see.
Note that Block_copy is actually a type-safe wrapper for _Block_copy,
which does all the real work.
<rdar://problem/12219663>
llvm-svn: 164039
Specifically, this should warn:
__block block_t a = ^{ a(); };
Furthermore, this case which previously warned now does not, since the value
of 'b' is captured before the assignment occurs:
block_t b; // not __block
b = ^{ b(); };
(This will of course warn under -Wuninitialized, as before.)
<rdar://problem/11015883>
llvm-svn: 163962
These types are defined differently on 32-bit and 64-bit platforms, and
trying to offer a fixit for one platform would only mess up the format
string for the other. The Apple-recommended solution is to cast to a type
that is known to be large enough and always use that to print the value.
This should only have an impact on compile time if the format string is
incorrect; in cases where the format string matches the definition on the
current platform, no warning will be emitted.
<rdar://problem/9135072&12164284>
llvm-svn: 163266
(__builtin_* etc.) so that it isn't possible to take their address.
Specifically, introduce a new type to represent a reference to a builtin
function, and a new cast kind to convert it to a function pointer in the
operand of a call. Fixes PR13195.
llvm-svn: 162962
This warns in two specific situations:
1) For potentially swapped function arguments, e.g.
void foo(bool, float);
foo(1.7, false);
2) Misplaced brackets around function call arguments, e.g.
bool InRange = fabs(a - b < delta);
Where the last argument in a function call is implicitly converted
from bool to float, and the function returns a float which gets
implicitly converted to bool.
Patch by Andreas Eckleder!
llvm-svn: 162763
function arguments and arguments for variadic functions are of a particular
type which is determined by some other argument to the same function call.
Usecases include:
* MPI library implementations, where these attributes enable checking that
buffer type matches the passed MPI_Datatype;
* for HDF5 library there is a similar usecase as MPI;
* checking types of variadic functions' arguments for functions like
fcntl() and ioctl().
llvm-svn: 162067
and remove ASTContext reference (which was frequently bound to a dereferenced
null pointer) from the recursive lump of printPretty functions. In so doing,
fix (at least) one case where we intended to use the 'dump' mode, but that
failed because a null ASTContext reference had been passed in.
llvm-svn: 162011
tablegen code, found by -fcatch-undefined-behavior. I would appreciate if
someone more familiar with the NEON code could point me in the direction of how
to write a test for this. We appear to have essentially no test coverage
whatsoever for these builtins.
llvm-svn: 161827
This is useful for example for %n in printf, which expects
a pointer to int with the same logic for checking as %d
would have in scanf.
llvm-svn: 161407
The one caller that's surrounded by nearby code manipulating the underlying
evaluation context list is left unmodified for readability.
Review by Sean Silva and Richard Smith.
llvm-svn: 161355
While '%n' can be used for evil in an attacker-controlled format string, there
isn't any acute danger in using it in a literal format string with an argument
of the appropriate type.
llvm-svn: 160984
While we still want to consider this a hard error (non-POD variadic args are
normally a DefaultError warning), delaying the diagnostic allows us to give
better error messages, which also match the usual non-POD errors more closely.
In addition, this change improves the diagnostic messages for format string
argument type mismatches by passing down the type of the callee, so we can
say "variadic method" or "variadic function" appropriately.
<rdar://problem/11825593>
llvm-svn: 160517
Previously, we would ask for the SourceLocation of an argument even if
it were NULL (i.e. if Sema resulted in an ExprError trying to build it).
<rdar://problem/11890818>
llvm-svn: 160515
resulted in it being reverted. A test for that bug was added in r158950.
Original comment:
If an object (such as a std::string) with an appropriate c_str() member function
is passed to a variadic function in a position where a format string indicates
that c_str()'s return type is desired, provide a note suggesting that the user
may have intended to call the c_str() member.
Factor the non-POD-vararg checking out of DefaultVariadicArgumentPromotion and
move it to SemaChecking in order to facilitate this. Factor the call checking
out of function call checking and block call checking, and extend it to cover
constructor calls too.
Patch by Sam Panzer!
llvm-svn: 159159
Revert "If an object (such as a std::string) with an appropriate c_str() member function"
This reverts commit 7d96f6106bfbd85b1af06f34fdbf2834aad0e47e.
llvm-svn: 158949
This now correctly covers, I believe, all the pointer types:
* 'any' pointers (both function and data normal pointers and ObjC object pointers)
* member pointers (both function and data)
* block pointers
llvm-svn: 158931
is passed to a variadic function in a position where a format string indicates
that c_str()'s return type is desired, provide a note suggesting that the user
may have intended to call the c_str() member.
Factor the non-POD-vararg checking out of DefaultVariadicArgumentPromotion and
move it to SemaChecking in order to facilitate this. Factor the call checking
out of function call checking and block call checking, and extend it to cover
constructor calls too.
Patch by Sam Panzer!
llvm-svn: 158887
Within the guts of CheckFormatHandler, the IsObjCLiteral flag was being used in
two ways: to see if null bytes were allowed, and to see if the '%@' specifier
is allowed.* The former usage has been changed to an explicit test and the
latter pushed down to CheckPrintfHandler and renamed ObjCContext, since it
applies to CFStrings as well.
* This also changes how wide chars are interpreted; in OS X Foundation, the
wide character type is 'unichar', a typedef for short, rather than wchar_t.
llvm-svn: 157968
about argument type mismatch.
This gives a nicer diagnostic in cases like
printf(fmt,
i);
where previously the snippet just pointed at 'fmt' (with a note at the
definition of fmt).
It's a wash for cases like
printf("%f",
i);
where previously we snippeted the offending portion of the format string,
but didn't indicate which argument was at fault.
llvm-svn: 156968
This fixes the included test case & was reported by Nico Weber.
It's a little bit nasty using the difference in the conversion context, but
seems to me like a not unreasonable solution. I did have to fix up the
conversion context for conditional operators (it seems correct to me to include
the context for which we're actually doing the comparison - across all the
nested conditionals, rather than the innermost conditional which might not
actually have the problematic implicit conversion at all) and template default
arguments (this is a bit of a hack, since we don't have the source location of
the '=' anymore, so I just used the start of the parameter - open to
suggestions there)
llvm-svn: 156861
Moves the bool bail-out down a little in SemaChecking - so now
-Wnull-conversion and -Wliteral-conversion can fire when the target type is
bool.
Also improve the wording/details in the -Wliteral-conversion warning to match
the -Wconstant-conversion.
llvm-svn: 156826
getTypeSourceInfo() without checking for NULL.
FieldDecls may have NULL TypeSourceInfo, and in
fact some FieldDecls generated by Clang -- and
all FieldDecls generated by LLDB -- have no
TypeSourceInfo.
This patch makes IsTailPaddedMemberArray check
for NULL.
llvm-svn: 156186
off PartialDiagnostic. PartialDiagnostic is rather heavyweight for
something that is in the critical path and is rarely used. So, switch
over to an abstract-class-based callback mechanism that delays most of
the work until a diagnostic is actually produced. Good for ~11k code
size reduction in the compiler and 1% speedup in -fsyntax-only on the
code in <rdar://problem/11004361>.
llvm-svn: 156176
Teach ASTContext about WIntType, and have it taken from TargetInfo like WCharType. Should fix test/Sema/format-strings.c for ARM, with the exception of one subtest which will fail if wint_t and wchar_t are the same size and wint_t is signed, wchar_t is unsigned.
There'll be a followup commit to fix that.
Reviewed by Chandler and Hans at http://llvm.org/reviews/r/8
llvm-svn: 156165
Some of the NSAssert macros in OS X 10.7 are implemented in a way that
adds extra arguments that trigger the -Wformat-extra-args warning.
Earlier versions of clang failed to detect those -Wformat issues, but now
that clang is reporting those problems, we need to quiet them since there's
nothing to be done to fix them. <rdar://problem/11317765>
I don't know how to write a testcase for this. Suggestions welcome.
Patch by Ted Kremenek!
llvm-svn: 156092
of a local variable, make sure we don't infinitely recurse when the
reference binds to itself.
e.g:
int* func() {
int& i = i; // assign non-exist variable to a reference which has same name.
return &i; // return pointer
}
rdar://11345441
llvm-svn: 155856
i32 __builtin_annotation(i32, string);
Applying it to i64 (e.g., long long) generates the following IR.
trunc i64 {{.*}} to i32
call i32 @llvm.annotation.i32
zext i32 {{.*}} to i64
The redundant truncation and extension make the result difficult to use.
This patch makes __builtin_annotation() generic.
type __builtin_annotation(type, string);
For the i64 example, it simplifies the generated IR to:
call i64 @llvm.annotation.i64
Patch by Xi Wang!
llvm-svn: 155764
The codepath already only works for source bits > target bits, it's just that
it was testing for the source expr bits to be exactly 64. This meant simple
cases (int i = x_long / 2) were missed & ended up under the general
-Wconversion warning, which a user might not have enabled.
llvm-svn: 154626
This is not quite sufficient for libstdc++'s <atomic>: we still need
__atomic_test_and_set and __atomic_clear, and may need a more complete
__atomic_is_lock_free implementation.
We are also missing an implementation of __atomic_always_lock_free,
__atomic_nand_fetch, and __atomic_fetch_nand, but those aren't needed
for libstdc++.
llvm-svn: 154579
<stdatomic.h> header.
In passing, fix LanguageExtensions to note that C11 and C++11 are no longer
"upcoming standards" but are now actually standardized.
llvm-svn: 154513
For "int i = NULL;" we would produce:
null.cpp:5:11: warning: implicit conversion of NULL constant to integer [-Wconversion]
int i = NULL;
~ ^~~~
null.cpp:1:14: note: expanded from macro 'NULL'
\#define NULL __null
^~~~~~
But we really shouldn't trace that macro expansion back into the header, yet we
still want macro back traces for code like this:
\#define FOO NULL
int i = FOO;
or
\#define FOO int i = NULL;
FOO
While providing appropriate tagging at different levels of the expansion, etc.
The included test case exercises these cases & does some basic validation (to
ensure we don't have macro expansion notes where we shouldn't, and do where we
should) - but doesn't go as far as to validate the source location/ranges
used in those notes and warnings.
llvm-svn: 152940
track whether the referenced declaration comes from an enclosing
local context. I'm amenable to suggestions about the exact meaning
of this bit.
llvm-svn: 152491
This renames the -Wformat-non-standard flag to -Wformat-non-iso,
rewords the current warnings a bit (pointing out that a format string
is not supported by ISO C rather than being "non standard"),
and adds a warning about positional arguments.
llvm-svn: 152403
This adds the -Wformat-non-standard flag (off by default,
enabled by -pedantic), which warns about non-standard
things in format strings (such as the 'q' length modifier,
the 'S' conversion specifier, etc.)
llvm-svn: 151154
block pointer that returns a block literal which captures (by copy)
the lambda closure itself. Some aspects of the block literal are left
unspecified, namely the capture variable (which doesn't actually
exist) and the body (which will be filled in by IRgen because it can't
be written as an AST).
Because we're switching to this model, this patch also eliminates
tracking the copy-initialization expression for the block capture of
the conversion function, since that information is now embedded in the
synthesized block literal. -1 side tables FTW.
llvm-svn: 151131
This commit makes PrintfSpecifier::fixType() and ScanfSpecifier::fixType()
only fix a conversion specification enough that Clang wouldn't warn about it,
as opposed to always changing it to use the "canonical" conversion specifier.
(PR11975)
This preserves the user's choice of conversion specifier in cases like:
printf("%a", (long double)1);
where we previously suggested "%Lf", we now suggest "%La"
printf("%x", (long)1);
where we previously suggested "%ld", we now suggest "%lx".
llvm-svn: 150578
* if, switch, range-based for: warn if semicolon is on the same line.
* for, while: warn if semicolon is on the same line and either next
statement is compound statement or next statement has more
indentation.
Replacing the semicolon with {} or moving the semicolon to the next
line will always silence the warning.
Tests from SemaCXX/if-empty-body.cpp merged into SemaCXX/warn-empty-body.cpp.
llvm-svn: 150515
[expr.prim.lambda]p4, including the current suggested resolution of
core isue 975, which allows multiple return statements so long as the
types match. ExtWarn when user code is actually making use of this
extension.
llvm-svn: 150168
- Complete the lambda class when we finish the lambda expression
(previously, it was left in the "being completed" state)
- Actually return the LambdaExpr object and bind to the resulting
temporary when needed.
- Detect when cleanups are needed while capturing a variable into a
lambda (e.g., due to default arguments in the copy constructor), and
make sure those cleanups apply for the whole of the lambda
expression.
llvm-svn: 150123
argument in strncat.
The warning is ignored by default since it needs more qualification.
TODO: The warning message and the note are messy when
strncat is a builtin due to the macro expansion.
llvm-svn: 149524
This is to prevent diagnostic when using NSLocalizedString or CFCopyLocalizedString
macros which are usually used in place of NS and CF strings literals.
llvm-svn: 149268
- Remove the printf0 special handling as we treat it as printf anyway.
- Perform basic checks (non-literal, empty) for all formats and not only printf/scanf.
llvm-svn: 149236
PR 10274: format function attribute with the NSString archetype yields no compiler warnings
PR 10275: format function attribute isn't checked in Objective-C methods
llvm-svn: 148324
for FunctionDecl::getMemoryFunctionKind().
This is a follow up on the Chris's review for r148142: We don't want to
pollute FunctionDecl with an extra enum. (To make this work, added
memcmp and family to the library builtins.)
llvm-svn: 148267
- Add atomic-to/from-nonatomic cast types
- Emit atomic operations for arithmetic on atomic types
- Emit non-atomic stores for initialisation of atomic types, but atomic stores and loads for every other store / load
- Add a __atomic_init() intrinsic which does a non-atomic store to an _Atomic() type. This is needed for the corresponding C11 stdatomic.h function.
- Enables the relevant __has_feature() checks. The feature isn't 100% complete yet, but it's done enough that we want people testing it.
Still to do:
- Make the arithmetic operations on atomic types (e.g. Atomic(int) foo = 1; foo++;) use the correct LLVM intrinsic if one exists, not a loop with a cmpxchg.
- Add a signal fence builtin
- Properly set the fenv state in atomic operations on floating point values
- Correctly handle things like _Atomic(_Complex double) which are too large for an atomic cmpxchg on some platforms (this requires working out what 'correctly' means in this context)
- Fix the many remaining corner cases
llvm-svn: 148242
With that done, remove a bunch of buggy code from CGExprConstant for handling scalar expressions which is no longer necessary.
Fixes PR11705.
llvm-svn: 147561
The motivation here is a "clever" implementation of strncmp(), which peels the first few comparisons via chained conditional expressions which ensure that the input arrays are known at compile time to be sufficiently large.
llvm-svn: 146430
in addition to underlying type.
For example, the warning for printf("%zu", 42.0);
changes from "conversion specifies type 'unsigned long'" to "conversion
specifies type 'size_t' (aka 'unsigned long')"
(This is a second attempt after r145697, which got reverted.)
llvm-svn: 146032
methods) to bool. E.g.
void foo() {}
if (f) { ... // <- Warns here.
}
Only applies to non-weak functions, and does not apply if the function address
is taken explicitly with the addr-of operator.
llvm-svn: 145849
For example, the warning for printf("%zu", 42.0);
changes from "conversion specifies type 'unsigned long'" to "conversion
specifies type 'size_t' (aka 'unsigned long')"
llvm-svn: 145697
consider the _<width> variants as well, which we'll see if we're
performing the type checking in a template instantiation where the
call expression itself was originally not type-dependent. Fixes
PR11411.
llvm-svn: 145248
The code for checking Neon builtin pointer argument types was assuming that
there would only be one pointer argument. But, for vld2-4 builtins, the first
argument is a special sret pointer where the result will be stored. So,
instead of scanning all the arguments to find a pointer, have TableGen figure
out the index of the pointer argument that needs checking. That's better than
scanning all the arguments regardless. <rdar://problem/10448804>
llvm-svn: 144834
which they do. This avoids all of the default argument promotions that
we (1) don't want, and (2) undo during that custom type checking, and
makes sure that we don't run into trouble during template
instantiation. Fixes PR11320.
llvm-svn: 144110
The Neon load/store intrinsics need to be implemented as macros to avoid
hiding alignment attributes on the pointer arguments, and the macros can
only evaluate those pointer arguments once (in case they have side effects),
so it has been hard to get the right type checking for those pointers.
I tried various alternatives in the arm_neon.h header, but it's much more
straightforward to just check directly in Sema.
llvm-svn: 144075
This patch just adds a simple NeonTypeFlags class to replace the various
hardcoded constants that had been used until now. Unfortunately I couldn't
figure out a good way to avoid duplicating that class between clang and
TableGen, but since it's small and rarely changes, that's not so bad.
llvm-svn: 144054
property references to use a new PseudoObjectExpr
expression which pairs a syntactic form of the expression
with a set of semantic expressions implementing it.
This should significantly reduce the complexity required
elsewhere in the compiler to deal with these kinds of
expressions (e.g. IR generation's special l-value kind,
the static analyzer's Message abstraction), at the lower
cost of specifically dealing with the odd AST structure
of these expressions. It should also greatly simplify
efforts to implement similar language features in the
future, most notably Managed C++'s properties and indexed
properties.
Most of the effort here is in dealing with the various
clients of the AST. I've gone ahead and simplified the
ObjC rewriter's use of properties; other clients, like
IR-gen and the static analyzer, have all the old
complexity *and* all the new complexity, at least
temporarily. Many thanks to Ted for writing and advising
on the necessary changes to the static analyzer.
I've xfailed a small diagnostics regression in the static
analyzer at Ted's request.
llvm-svn: 143867
implicitly perform an lvalue-to-rvalue conversion if used on an lvalue
expression. Also improve the documentation of Expr::Evaluate* to indicate which
of them will accept expressions with side-effects.
llvm-svn: 143263
string is part of the function call, then there is no difference. If the
format string is not, the warning will point to the call site and a note
will point to where the format string is.
Fix-it hints for strings are moved to the note if a note is emitted. This will
prevent changes to format strings that may be used in multiple places.
llvm-svn: 143168
expressions: expressions which refer to a logical rather
than a physical l-value, where the logical object is
actually accessed via custom getter/setter code.
A subsequent patch will generalize the AST for these
so that arbitrary "implementing" sub-expressions can
be provided.
Right now the only client is ObjC properties, but
this should be generalizable to similar language
features, e.g. Managed C++'s __property methods.
llvm-svn: 142914
For PR11152. Make PrintSpecifier::fixType() suggest "%zu" for size_t, etc.
rather than looking at the underlying type and suggesting "%llu" or other
platform-specific length modifiers. Applies to C99 and C++11.
llvm-svn: 142342
- Remodel Expr::EvaluateAsInt to behave like the other EvaluateAs* functions,
and add Expr::EvaluateKnownConstInt to capture the current fold-or-assert
behaviour.
- Factor out evaluation of bitfield bit widths.
- Fix a few places which would evaluate an expression twice: once to determine
whether it is a constant expression, then again to get the value.
llvm-svn: 141561
C-style and functional casts are built in SemaCXXCast.cpp.
Introduce a helper class to encapsulate most of the random
state being passed around, at least one level down.
llvm-svn: 141170
is cast to a boolean. An exception has been made for string literals in
logical expressions to allow the common case of use in assert statements.
bool x;
x = "hi"; // Warn here
void foo(bool x);
foo("hi"); // Warn here
assert(0 && "error");
assert("error); // Warn here
llvm-svn: 140405
builtin types (When requested). This is another step toward making
ASTUnit build the ASTContext as needed when loading an AST file,
rather than doing so after the fact. No actual functionality change (yet).
llvm-svn: 138985
case situations with the unary operators & and *. Also extend the array bounds
checking to work with pointer arithmetic; the pointer arithemtic checking can
be turned on using -Warray-bounds-pointer-arithmetic.
The changes to where CheckArrayAccess gets called is based on some trial &
error and a bunch of digging through source code and gdb backtraces in order
to have the check performed under as many situations as possible (such as for
variable initializers, arguments to function calls, and within conditional in
addition to the simpler cases of the operands to binary and unary operator)
while not being called--and triggering warnings--more than once for a given
ArraySubscriptExpr.
llvm-svn: 136997
arrays. This now suppresses the warning only in the case of
a one-element array as the last field in a struct where the array size
is a literal '1' rather than any macro expansion or template parameter.
This doesn't distinguish between the language standard in use to allow
code which dates from C89 era to compile without the warning even in C99
and C++ builds. We could add a separate warning (under a different flag)
with fixit hints to switch to a flexible array, but its not clear that
this would be desirable. Much of the code using this idiom is striving
for maximum portability.
Tests were also fleshed out a bit, and the diagnostic itself tweaked to
be more pretty w.r.t. single elment arrays. This is more ugly than
I would like due to APInt's not being supported by the diagnostic
rendering engine.
A pseudo-patch for this was proposed by Nicola Gigante, but I reworked
it both for several correctness issues and for code style.
Sorry this was so long in coming.
llvm-svn: 136965
1-element character arrays which are serving as flexible arrays. This is
the initial step, which is to restrict the 1-element array whitelist to
arrays that are member declarations. I'll refine it from here based on
the proposed patch.
llvm-svn: 136964
has a single element. This disables the warning in cases where
there is a clear bug, but this is really rare (who uses arrays
with one element?) and it also silences a large class of false
positive issues with C89 code that is using tail padding in structs.
A better version of this patch would detect when an array is in
a tail position in a struct, but at least patch fixes the huge
false positives that are hitting postgres and other code.
llvm-svn: 136724
and to work with pointer arithmetic in addition to array indexing.
The new pointer arithmetic porition of the array bounds checking can be
turned on by -Warray-bounds-pointer-arithmetic (and is off by default).
llvm-svn: 136046
where we have an immediate need of a retained value.
As an exception, don't do this when the call is made as the immediate
operand of a __bridge retain. This is more in the way of a workaround
than an actual guarantee, so it's acceptable to be brittle here.
rdar://problem/9504800
llvm-svn: 134605
MaterializeTemporaryExpr captures a reference binding to a temporary
value, making explicit that the temporary value (a prvalue) needs to
be materialized into memory so that its address can be used. The
intended AST invariant here is that a reference will always bind to a
glvalue, and MaterializeTemporaryExpr will be used to convert prvalues
into glvalues for that binding to happen. For example, given
const int& r = 1.0;
The initializer of "r" will be a MaterializeTemporaryExpr whose
subexpression is an implicit conversion from the double literal "1.0"
to an integer value.
IR generation benefits most from this new node, since it was
previously guessing (badly) when to materialize temporaries for the
purposes of reference binding. There are likely more refactoring and
cleanups we could perform there, but the introduction of
MaterializeTemporaryExpr fixes PR9565, a case where IR generation
would effectively bind a const reference directly to a bitfield in a
struct. Addresses <rdar://problem/9552231>.
llvm-svn: 133521
__builtin_ versions of these functions as well as the normal function
versions, so that it works on platforms where memset/memcpy/memmove
are macros that map down to the builtins (e.g., Darwin). Fixes
<rdar://problem/9372688>.
llvm-svn: 133173
and the programmer intended to write 'sizeof(*p)'. There are several
elements to the new version:
1) The actual expressions are compared in order to more accurately flag
the case where the pattern that works for an array has been used, or
a '*' has been omitted.
2) Only do a loose type-based check for record types. This prevents us
from warning when we happen to be copying around chunks of data the
size of a pointer and the pointer types for the sizeof and
source/dest match.
3) Move all the diagnostics behind the runtime diagnostic filter. Not
sure this is really important for this particular diagnostic, but
almost everything else in SemaChecking.cpp does so.
4) Make the wording of the diagnostic more precise and informative. At
least to my eyes.
5) Provide highlighting for the two expressions which had the unexpected
similarity.
6) Place this diagnostic under a flag: -Wsizeof-pointer-memaccess
This uses the Stmt::Profile system for computing #1. Because of the
potential cost, this is guarded by the warning flag. I'd be interested
in feedback on how bad this is in practice; I would expect it to be
quite cheap in practice. Ideas for a cheaper / better way to do this are
also welcome.
The diagnostic wording could likely use some further wordsmithing.
Suggestions welcome here. The goals I had were to: clarify that its the
interaction of 'memset' and 'sizeof' and give more reasonable
suggestions for a resolution.
An open question is whether these diagnostics should have the note
attached for silencing by casting the dest/source pointer to void*.
llvm-svn: 133155
argument types for mem{set,cpy,move}. Character pointers, much like void
pointers, often point to generic "memory", so trying to check whether
they match the type of the argument to 'sizeof' (or other checks) is
unproductive and often results in false positives.
Nico, please review; does this miss any of the bugs you were trying to
find with this warning? The array test case you had should be caught by
the array-specific sizeof warning I think.
llvm-svn: 133136
Language-design credit goes to a lot of people, but I particularly want
to single out Blaine Garst and Patrick Beard for their contributions.
Compiler implementation credit goes to Argyrios, Doug, Fariborz, and myself,
in no particular order.
llvm-svn: 133103
diagnostic group to cover the cases where we have definitively bad
behavior: dynamic classes.
It also rips out the existing support for POD-based checking. This
didn't work well, and triggered too many false positives. I'm looking
into a possibly more principled way to warn on the fundamental buggy
construct here. POD-ness isn't the critical aspect anyways, so a clean
slate is better. This also removes some silliness from the code until
the new checks arrive.
llvm-svn: 132534
checking both the source and the destination operands, renaming the
warning group to -Wnon-pod-memaccess and tweaking the diagnostic text
in the process.
llvm-svn: 130786
definition of POD. Specifically, this allows certain non-aggregate
types due to their data members being private.
The representation of C++11 POD testing is pretty gross. Any suggestions
for improvements there are welcome. Especially the name
'isCXX11PODType()' seems truly unfortunate.
llvm-svn: 130492
a destination pointer that points to a non-POD type. This can flag such
horrible bugs as overwriting vptrs when a previously POD structure is
suddenly given a virtual method, or creating objects that crash on
practically any use by zero-ing out a member when its changed from
a const char* to a std::string, etc.
llvm-svn: 130299
rewriting the literal when the value is integral. It is not uncommon to
see code written as:
const int kBigNumber = 42e5;
Without any real awareness that this is no longer an ICE. The note helps
automate and ease the process of fixing code that violates the warning.
llvm-svn: 129243
This patch authored by Eric Niebler.
Many methods on the Sema class (e.g. ConvertPropertyForRValue) take Expr
pointers as in/out parameters (Expr *&). This is especially true for the
routines that apply implicit conversions to nodes in-place. This design is
workable only as long as those conversions cannot fail. If they are allowed
to fail, they need a way to report their failures. The typical way of doing
this in clang is to use an ExprResult, which has an extra bit to signal a
valid/invalid state. Returning ExprResult is de riguour elsewhere in the Sema
interface. We suggest changing the Expr *& parameters in the Sema interface
to ExprResult &. This increases interface consistency and maintainability.
This interface change is important for work supporting MS-style C++
properties. For reasons explained here
<http://lists.cs.uiuc.edu/pipermail/cfe-dev/2011-February/013180.html>,
seemingly trivial operations like rvalue/lvalue conversions that formerly
could not fail now can. (The reason is that given the semantics of the
feature, getter/setter method lookup cannot happen until the point of use, at
which point it may be found that the method does not exist, or it may have the
wrong type, or overload resolution may fail, or it may be inaccessible.)
llvm-svn: 129143
enumeration type to another in C, classify enumeration constants as if
they had the type of their enclosing enumeration. Fixes
<rdar://problem/9116337>.
llvm-svn: 127514
in the LLVM test suite, this function was consuming 7.4% of -fsyntax-only time. This change fixes this issue
by delaying the check that the warning would be issued within a system macro by as long as possible. The
main negative of this change is now the logic for this check is done in multiple places in this function instead
of just in one place up front.
llvm-svn: 127425
don't let calls to such functions go down the normal type-checking path.
Test this out with __builtin_classify_type and __builtin_constant_p.
llvm-svn: 126539
especially C++ code, and generally expand the test coverage.
Logic adapted from a patch by Kaelyn Uhrain <rikka@google.com> and
another Googler.
llvm-svn: 125775
specifically targets literals which are implicitly converted, a those
are more often unintended and trivial to fix. This can be especially
helpful for diagnosing what makes 'const int x = 1e6' not an ICE.
Original patch authored by Jim Meehan with contributions from other
Googlers and a few cleanups from myself.
llvm-svn: 125745
class and to bind the shared value using OpaqueValueExpr. This fixes an
unnoticed problem with deserialization of these expressions where the
deserialized form would lose the vital pointer-equality trait; or rather,
it fixes it because this patch also does the right thing for deserializing
OVEs.
Change OVEs to not be a "temporary object" in the sense that copy elision is
permitted.
This new representation is not totally unawkward to work with, but I think
that's really part and parcel with the semantics we're modelling here. In
particular, it's much easier to fix things like the copy elision bug and to
make the CFG look right.
I've tried to update the analyzer to deal with this in at least some
obvious cases, and I think we get a much better CFG out, but the printing
of OpaqueValueExprs probably needs some work.
llvm-svn: 125744
Diagnostic pragmas are broken because we don't keep track of the diagnostic state changes and we only check the current/latest state.
Problems manifest if a diagnostic is emitted for a source line that has different diagnostic state than the current state; this can affect
a lot of places, like C++ inline methods, template instantiations, the lexer, etc.
Fix the issue by having the Diagnostic object keep track of the source location of the pragmas so that it is able to know what is the diagnostic state at any given source location.
Fixes rdar://8365684.
llvm-svn: 121873
Most Neon shift intrinsics do not have variants for polynomial types, but
vsri_n and vsli_n do support them, and we need to properly range-check the
shift immediates for them.
llvm-svn: 121509
zextOrTrunc(), and APSInt methods extend(), extOrTrunc() and new method
trunc(), to be const and to return a new value instead of modifying the
object in place.
llvm-svn: 121121
not actually frequently used, because ImpCastExprToType only creates a node
if the types differ. So explicitly create an ICE in the lvalue-to-rvalue
conversion code in DefaultFunctionArrayLvalueConversion() as well as several
other new places, and consistently deal with the consequences throughout the
compiler.
In addition, introduce a new cast kind for loading an ObjCProperty l-value,
and make sure we emit those nodes whenever an ObjCProperty l-value appears
that's not on the LHS of an assignment operator.
This breaks a couple of rewriter tests, which I've x-failed until future
development occurs on the rewriter.
Ted Kremenek kindly contributed the analyzer workarounds in this patch.
llvm-svn: 120890
store it on the expression node. Also store an "object kind",
which distinguishes ordinary "addressed" l-values (like
variable references and pointer dereferences) and bitfield,
@property, and vector-component l-values.
Currently we're not using these for much, but I aim to switch
pretty much everything calculating l-valueness over to them.
For now they shouldn't necessarily be trusted.
llvm-svn: 119685
no longer depends on Preprocessor, so we can move it out of Sema into
a nice new StringLiteral::getLocationOfByte method that can be used by
any AST client.
llvm-svn: 119481
producing warnings.
This feels really fragile, and I've not audited all other argument index-based
warnings. I suspect we'll grow this bug on another warning eventually. It might
be nice to adjust the argument indices when building up the attribute AST node,
as we already have to remember about the 'this' argument within that code to
produce correct errors.
llvm-svn: 119340
of the enumerators rather than the actual expressible range. This is
great when dealing with opaque *values* of that type, but when computing
the range of the type for purposes of converting *into* it, it produces
warnings in cases we don't care about (e.g. enum_t x = 500;). Divide
the logic into these two cases and use the more conservative range for
targets.
llvm-svn: 118735
NEON vector types need to be mangled in a special way to comply with ARM's ABI,
similar to some of the AltiVec-specific vector types. This patch is mostly
just renaming a bunch of "AltiVecSpecific" things, since they will no longer
be specific to AltiVec. Besides that, it just adds the new "NeonVector" enum.
llvm-svn: 118724
own subcategory, -Wconstant-conversion, which is on by default.
Tweak the constant folder to give better results in the invalid
case of a negative shift amount.
Implements rdar://problem/6792488
llvm-svn: 118636
For example, on:
#include <emmintrin.h>
int foo(int N) {
__m128i white2;
white2 = _mm_slli_si128(white2, N);
return 0;
}
we used to get:
fatal error: error in backend: Cannot yet select: intrinsic %llvm.x86.sse2.psll.dq
now we get:
/Users/sabre/t.c:4:11: error: argument to '__builtin_ia32_pslldqi128' must be a
constant integer
white2 = _mm_slli_si128(white2, N);
^~~~~~~~~~~~~~~~~~~~~~~~~
In file included from /Users/sabre/t.c:1:
/Volumes/Projects/cvs/llvm/Debug+Asserts/lib/clang/2.9/include/emmintrin.h:781:13: note: instantiated from:
((__m128i)__builtin_ia32_pslldqi128((__m128i)(VEC), (IMM)*8))
^ ~~~~~~~
1 error generated.
llvm-svn: 115374
the function processing the format string can decided whether or not to accept a null format string (e.g., asl_log). Fixes <rdar://problem/8269537>.
llvm-svn: 113469
Now all classes derived from Attr are generated from TableGen.
Additionally, Attr* is no longer its own linked list; SmallVectors or
Attr* are used. The accompanying LLVM commit contains the updates to
TableGen necessary for this.
Some other notes about newly-generated attribute classes:
- The constructor arguments are a SourceLocation and a Context&,
followed by the attributes arguments in the order that they were
defined in Attr.td
- Every argument in Attr.td has an appropriate accessor named getFoo,
and there are sometimes a few extra ones (such as to get the length
of a variadic argument).
Additionally, specific_attr_iterator has been introduced, which will
iterate over an AttrVec, but only over attributes of a certain type. It
can be accessed through either Decl::specific_attr_begin/end or
the global functions of the same name.
llvm-svn: 111455
from GCC's in that we warn on *any* increase in alignment requirements, not
just those that are enforced by hardware. Please let us know if this causes
major problems for you (which it shouldn't, since it's an optional warning).
llvm-svn: 110959
This takes some trickery since CastExpr has subclasses (and indeed,
is abstract).
Also, smoosh the CastKind into the bitfield from Expr.
Drops two words of storage from Expr in the common case of expressions
which don't need inheritance paths. Avoids a separate allocation and
another word of overhead in cases needing inheritance paths. Also has
the advantage of not leaking memory, since destructors for AST nodes are
never run.
llvm-svn: 110507