Summary:
GCC already catches these situations so we should handle it too.
GCC warns in C++ mode only (does anybody know why?). I think it is useful in C mode too.
Reviewers: rsmith, erichkeane, aaron.ballman, efriedma, xbolva00
Reviewed By: xbolva00
Subscribers: efriedma, craig.topper, scanon, cfe-commits
Differential Revision: https://reviews.llvm.org/D52835
llvm-svn: 346865
This patch fixes a minimum divider for offset in intrinsics
msa_[st/ld]_[b/h/w/d], when value is known in compile time.
Differential revision: https://reviews.llvm.org/D54038
llvm-svn: 346302
A mask type is a 1 to 8-byte string that follows the "mask." annotation
in the format string. This enables obfuscating data in the event the
provided privacy level isn't enabled.
rdar://problem/36756282
llvm-svn: 346211
The size of an os_log buffer is known at any stage of compilation, so making it
a constant expression means that the common idiom of declaring a buffer for it
won't result in a VLA. That allows the compiler to skip saving and restoring
the stack pointer around such buffers.
This also moves the OSLog and other FormatString helpers from
libclangAnalysis to libclangAST to avoid a circular dependency.
llvm-svn: 345971
We haven't supported compiling ObjC1 for a long time (and never will again), so
there isn't any reason to keep these separate. This patch replaces
LangOpts::ObjC1 and LangOpts::ObjC2 with LangOpts::ObjC.
Differential revision: https://reviews.llvm.org/D53547
llvm-svn: 345637
Summary:
- Add `UETT_PreferredAlignOf` to account for the difference between `__alignof` and `alignof`
- `AlignOfType` now returns ABI alignment instead of preferred alignment iff clang-abi-compat > 7, and one uses _Alignof or alignof
Patch by Nicole Mazzuca!
Differential Revision: https://reviews.llvm.org/D53207
llvm-svn: 345419
Constructing a global std::map requires clang to generate a linear
amount of code to construct the initializer list if the elements are not
constexpr-constructible. std::vector is not constexpr-constructible, so
this code pattern was generating large amounts of code.
Also, because of PR38829, LLVM is pathologically slow on large basic
blocks, and this causes slow compilation. This works around the bug and
reduces code size.
SemaChecking.cpp -debug-info-kind=limited:
time objsize
before: 1m45.023s 9.8M
after: 0m25.205s 6.9M
So, a 42% obj size reduction and 3.2x speedup.
llvm-svn: 345329
Add a warning if a parameter with a named address space is passed
to a to_addr builtin.
For example:
int i;
to_private(&i); // generate warning as conversion from private to private is redundant.
Patch by Alistair Davies.
Differential Revision: https://reviews.llvm.org/D51411
llvm-svn: 342638
unsigned long long builtin_unpack_vector_int128 (vector int128_t, int);
vector int128_t builtin_pack_vector_int128 (unsigned long long, unsigned long long);
Builtins should behave the same way as in GCC.
Patch By: wuzish (Zixuan Wu)
Differential Revision: https://reviews.llvm.org/D52074
llvm-svn: 342614
Summary:
_Atomic and __sync_* operations are implicitly sequentially-consistent. Some
codebases want to force explicit usage of memory order instead. This warning
allows them to know where implicit sequentially-consistent memory order is used.
The warning isn't on by default because _Atomic was purposefully designed to
have seq_cst as the default: the idea was that it's the right thing to use most
of the time. This warning allows developers who disagree to enforce explicit
usage instead.
A follow-up patch will take care of C++'s std::atomic. It'll be different enough
from this patch that I think it should be separate: for C++ the atomic
operations all have a memory order parameter (or two), but it's defaulted. I
believe this warning should trigger when the default is used, but not when
seq_cst is used explicitly (or implicitly as the failure order for cmpxchg).
<rdar://problem/28172966>
Reviewers: rjmccall
Subscribers: dexonsmith, cfe-commits
Differential Revision: https://reviews.llvm.org/D51084
llvm-svn: 341860
Namely, print the likely macro name when it's used, and include the actual
computed sizes in the diagnostic message, which are sometimes not obvious.
rdar://43909200
Differential revision: https://reviews.llvm.org/D51697
llvm-svn: 341566
This adds the following intrinsics:
_kshiftli_mask8
_kshiftli_mask16
_kshiftli_mask32
_kshiftli_mask64
_kshiftri_mask8
_kshiftri_mask16
_kshiftri_mask32
_kshiftri_mask64
llvm-svn: 341234
Summary:
C++11 onwards specs the non-member functions atomic_load and atomic_load_explicit as taking the atomic<T> by const (potentially volatile) pointer. C11, in its infinite wisdom, decided to drop the const, and C17 will fix this with DR459 (the current draft forgot to fix B.16, but that’s not the normative part).
clang’s lib/Headers/stdatomic.h implements these as #define to the __c11_* equivalent, which are builtins with custom typecheck. Fix the typecheck.
D47613 takes care of the libc++ side.
Discussion: http://lists.llvm.org/pipermail/cfe-dev/2018-May/058129.html
<rdar://problem/27426936>
Reviewers: rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D47618
llvm-svn: 338743
This diagnoses calls to memset that have the second and third arguments
transposed, for example:
memset(buf, sizeof(buf), 0);
This is done by checking if the third argument is a literal 0, or if the second
is a sizeof expression (and the third isn't). The first check is also done for
calls to bzero.
Differential revision: https://reviews.llvm.org/D49112
llvm-svn: 337470
The '%tu'/'%td' as formatting specifiers have been used to print out the
NSInteger/NSUInteger values for a long time. Typically their ABI matches, but that's
not the case on watchOS. The ABI difference boils down to the following:
- Regular 32-bit darwin targets (like armv7) use 'ptrdiff_t' of type 'int',
which matches 'NSInteger'.
- WatchOS arm target (armv7k) uses 'ptrdiff_t' of type 'long', which doesn't
match 'NSInteger' of type 'int'.
Because of this ABI difference these specifiers trigger -Wformat warnings only
for watchOS builds, which is really inconvenient for cross-platform code.
This patch avoids this -Wformat warning for '%tu'/'%td' and NS[U]Integer only,
and instead uses the new -Wformat-pedantic warning that JF introduced in
https://reviews.llvm.org/D47290. This is acceptable because Darwin guarantees that,
despite the watchOS ABI differences, sizeof(ptrdiff_t) == sizeof(NS[U]Integer),
and alignof(ptrdiff_t) == alignof(NS[U]Integer) so the warning is therefore noisy
for pedantic reasons.
I'll update public documentation to ensure that this behaviour is properly
communicated.
rdar://41739204
Differential Revision: https://reviews.llvm.org/D48852
llvm-svn: 336396
If a function has multiple format_arg attributes, clang only considers
the first it finds (because AttributeLists are in reverse order, not
necessarily the textually first) and ignores all others.
Loop over all FormatArgAttr to print warnings for all declared
format_arg attributes.
For instance, libintl's ngettext (select plural or singular version of
format string) has two __format_arg__ attributes.
Differential Revision: https://reviews.llvm.org/D48734
llvm-svn: 336239
Summary:
Pick D42933 back up, and make NSInteger/NSUInteger with %zu/%zi specifiers on Darwin warn only in pedantic mode. The default -Wformat recently started warning for the following code because of the added support for analysis for the '%zi' specifier.
NSInteger i = NSIntegerMax;
NSLog(@"max NSInteger = %zi", i);
The problem is that on armv7 %zi is 'long', and NSInteger is typedefed to 'int' in Foundation. We should avoid this warning as it's inconvenient to our users: it's target specific (happens only on armv7 and not arm64), and breaks their existing code. We should also silence the warning for the '%zu' specifier to ensure consistency. This is acceptable because Darwin guarantees that, despite the unfortunate choice of typedef, sizeof(size_t) == sizeof(NS[U]Integer), the warning is therefore noisy for pedantic reasons. Once this is in I'll update public documentation.
Related discussion on cfe-dev:
http://lists.llvm.org/pipermail/cfe-dev/2018-May/058050.html
<rdar://36874921&40501559>
Reviewers: ahatanak, vsapsai, alexshap, aaron.ballman, javed.absar, jfb, rjmccall
Subscribers: kristof.beyls, aheejin, cfe-commits
Differential Revision: https://reviews.llvm.org/D47290
llvm-svn: 335393
dead code.
This is important for C++ templates that essentially compute the valid
input in a way that is constant and will cause all the invalid cases to
be dead code that is deleted. Code in the wild actually does this and
GCC also accepts these kinds of patterns so it is important to support
it.
To make this work, we provide a non-error path to diagnose these issues,
and use a default-error warning instead. This keeps the relatively
strict handling but prevents nastiness like SFINAE on these errors. It
also allows us to safely use the system to diagnose this only when it
occurs at runtime (in emitted code).
Entertainingly, this required fixing the syntax in various other ways
for the x86 test because we never bothered to diagnose that the returns
were invalid.
Since debugging these compile failures was super confusing, I've also
improved the diagnostic to actually say what the value was. Most of the
checks I've made ignore this to simplify maintenance, but I've checked
it in a few places to make sure the diagnsotic is working.
Depends on D48462. Without that, we might actually crash some part of
the compiler after bypassing the error here.
Thanks to Richard, Ben Kramer, and especially Craig Topper for all the
help here.
Differential Revision: https://reviews.llvm.org/D48464
llvm-svn: 335309
r242675 changed the signature for the signbit builtin but did not introduce proper semantic checking to ensure the arguments are as-expected. This patch groups the signbit builtin along with the other fp classification builtins. Fixes PR28172.
llvm-svn: 335050
r242675 changed the signature for the signbit builtin but did not introduce proper semantic checking to ensure the arguments are as-expected. This patch groups the signbit builtin along with the other fp classification builtins. Fixes PR28172.
llvm-svn: 335048
The previous names took the shift amount in bits to match gcc and required a multiply by 8 in the header. This creates a misleading error message when we check the range of the immediate to the builtin since the allowed range also got multiplied by 8.
This commit changes the builtins to use a byte shift amount to match the underlying instruction and the Intel intrinsic.
Fixes the remaining issue from PR37795.
llvm-svn: 334773
Summary:
This fixes the ranges for the vcvth family of FP16 intrinsics in the clang front end. Previously it was accepting incorrect ranges
-Changed builtin range checking in SemaChecking
-added tests SemaCheck changes - included in their own file since no similar one exists
-modified existing tests to reflect new ranges
Reviewers: SjoerdMeijer, javed.absar
Reviewed By: SjoerdMeijer
Subscribers: kristof.beyls, cfe-commits
Differential Revision: https://reviews.llvm.org/D47592
llvm-svn: 334489
I'm looking into making the select builtins require avx512f, avx512bw, or avx512vl since masking operations generally require those features.
The extract builtins are funny because the 512-bit versions return a 128 or 256 bit vector with masking even when avx512vl is not supported.
llvm-svn: 334330
These builtins are all handled by CGBuiltin.cpp so it doesn't much matter what the immediate type is, but int matches the intrinsic spec.
llvm-svn: 334310
Test changes are due to differences in how we generate undef elements now. We also changed the types used for extractf128_si256/insertf128_si256 to match the signature of the builtin that previously existed which this patch resurrects. This also matches gcc.
llvm-svn: 334261
Adds support for these intrinsics, which are ARM and ARM64 only:
_interlockedbittestandreset_acq
_interlockedbittestandreset_rel
_interlockedbittestandreset_nf
_interlockedbittestandset_acq
_interlockedbittestandset_rel
_interlockedbittestandset_nf
Refactor the bittest intrinsic handling to decompose each intrinsic into
its action, its width, and its atomicity.
llvm-svn: 334239
We still emit shufflevector instructions we just do it from CGBuiltin.cpp now. This ensures the intrinsics that use this are only available on CPUs that support the feature.
I also added range checking to the immediate, but only checked it is 8 bits or smaller. We should maybe be stricter since we never use all 8 bits, but gcc doesn't seem to do that.
llvm-svn: 334237
We still lower them to native shuffle IR, but we do it in CGBuiltin.cpp now. This allows us to check the target feature and ensure the immediate fits in 8 bits.
This also improves our -O0 codegen slightly because we're able to see the zeroinitializer in the shuffle. It looks like it got lost behind a store+load previously.
llvm-svn: 334208
Summary:
We recently switch to using a selects in the intrinsics header files for FMA instructions. But the 512-bit versions support flavors with rounding mode which must be an Integer Constant Expression. This has forced those intrinsics to be implemented as macros. As it stands now the mask and mask3 intrinsics evaluate one of their macro arguments twice. If that argument itself is another intrinsic macro, we can end up over expanding macros. Or if its something we can CSE later it would show up multiple times when it shouldn't.
I tried adding __extension__ around the macro and making it an expression statement and declaring a local variable. But whatever name you choose for the local variable can never be used as the name of an input to the macro in user code. If that happens you would end up with the same name on the LHS and RHS of an assignment after expansion. We might be safe if we use __ in front of the variable names because those names are reserved and user code shouldn't use that, but I wasn't sure I wanted to make that claim.
The other option which I've chosen here, is to add back _mask, _maskz, and _mask3 flavors of the builtin which we will expand in CGBuiltin.cpp to replicate the argument as needed and insert any fneg needed on the third operand to make a subtract. The _maskz isn't truly necessary if we have an unmasked version or if we use the masked version with a -1 mask and wrap a select around it. But I've chosen to make things more uniform.
I separated out the scalar builtin handling to avoid too many things going on in EmitX86FMAExpr. It was different enough due to the extract and insert that the minor duplication of the CreateCall was probably worth it.
Reviewers: tkrupa, RKSimon, spatel, GBuella
Reviewed By: tkrupa
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D47724
llvm-svn: 334159
Previously we were just using extended vector operations in the header file.
This unfortunately allowed non-constant indices to be used with the intrinsics. This is incompatible with gcc, icc, and MSVC. It also introduces a different performance characteristic because non-constant index gets lowered to a vector store and an element sized load.
By adding the builtins we can check for the index to be a constant and ensure its in range of the vector element count.
User code still has the option to use extended vector operations themselves if they need non-constant indexing.
llvm-svn: 334057
This patch replaces all packed (and scalar without rounding
mode) fused intrinsics with fmadd/fmaddsub variations.
Then fmadd/fmaddsub are lowered to native IR.
Patch by tkrupa
Reviewers: craig.topper, sroland, spatel, RKSimon
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D47444
llvm-svn: 333555
Handling of the third parameter was only checking for *_n and not for the C11 variant, which means that cmpxchg of a 'desired' 0 value was erroneously warning. Handle C11 properly, and add extgensive tests for this as well as NULL pointers in a bunch of places.
Fixes r333246 from D47229.
llvm-svn: 333290
Summary:
As a companion to libc++ patch https://reviews.llvm.org/D47225, mark builtin atomic non-member functions which accept pointers as nonnull.
The atomic non-member functions accept pointers to std::atomic / std::atomic_flag as well as to the non-atomic value. These are all dereferenced unconditionally when lowered, and therefore will fault if null. It's a tiny gotcha for new users, especially when they pass in NULL as expected value (instead of passing a pointer to a NULL value).
<rdar://problem/18473124>
Reviewers: arphaman
Subscribers: aheejin, cfe-commits
Differential Revision: https://reviews.llvm.org/D47229
llvm-svn: 333246
Like other conversion warnings, allow float overflow warnings to be disabled
in known dead paths of template instantiation. This often occurs when a
template template type is a numeric type and the template will check the
range of the numeric type before performing the conversion.
llvm-svn: 332310
These intrinsics work exactly as all other atomic_fetch_* intrinsics and allow to create *atomicrmw* with ordering.
Updated the clang-extensions document.
Differential Revision: https://reviews.llvm.org/D46386
llvm-svn: 332193
This is similar to the LLVM change https://reviews.llvm.org/D46290.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\@brief'); do perl -pi -e 's/\@brief //g' $i & done
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46320
llvm-svn: 331834
As Eli brought up here: https://reviews.llvm.org/D46535
I'd previously messed up this fix by missing conversions
that are just slightly outside the range. This patch fixes
this by no longer ignoring the return value of
convertToInteger. Additionally, one of the error messages
wasn't very sensical (mentioning out of range value, when it
really was not), so it was cleaned up as well.
llvm-svn: 331812
As identified and briefly discussed here:
https://bugs.llvm.org/show_bug.cgi?id=37305
Converting a floating point number to an integer type when
the integral part is out of the range of the integer type is
undefined behavior in C. Additionally, CodeGen emits an undef
in this situation.
HOWEVER, we've been giving a warning that says that the value is
changed. This patch corrects the warning to list that it is actually
undefined behavior.
Differential Revision: https://reviews.llvm.org/D46535
llvm-svn: 331673
FunctionProtoType.
We previously re-evaluated the expression each time we wanted to know whether
the type is noexcept or not. We now evaluate the expression exactly once.
This is not quite "no functional change": it fixes a crasher bug during AST
deserialization where we would try to evaluate the noexcept specification in a
situation where we have not deserialized sufficient portions of the AST to
permit such evaluation.
llvm-svn: 331428
When a '>>' token is split into two '>' tokens (in C++11 onwards), or (as an
extension) when we do the same for other tokens starting with a '>', we can't
just use a location pointing to the first '>' as the location of the split
token, because that would result in our miscomputing the length and spelling
for the token. As a consequence, for example, a refactoring replacing 'A<X>'
with something else would sometimes replace one character too many, and
similarly diagnostics highlighting a template-id source range would highlight
one character too many.
Fix this by creating an expansion range covering the first character of the
'>>' token, whose spelling is '>'. For this to work, we generalize the
expansion range of a macro FileID to be either a token range (the common case)
or a character range (used in this new case).
llvm-svn: 331155
These builtins can't be handled by the backend on 64-bit targets. So error up front instead of throwing an isel error.
Fixes PR37225
Differential Revision: https://reviews.llvm.org/D46132
llvm-svn: 330987
Issue a warning when non-trivial C structs are copied or initialized by
calls to memset, bzero, memcpy, or memmove.
rdar://problem/36124208
Differential Revision: https://reviews.llvm.org/D45310
llvm-svn: 330202
The current support of the feature produces only 2 lines in report:
-Some general Code Generation Time;
-Total time of Backend Consumer actions.
This patch extends Clang time report with new lines related to Preprocessor, Include Filea Search, Parsing, etc.
Differential Revision: https://reviews.llvm.org/D43578
llvm-svn: 329684
Found via codespell -q 3 -I ../clang-whitelist.txt
Where whitelist consists of:
archtype
cas
classs
checkk
compres
definit
frome
iff
inteval
ith
lod
methode
nd
optin
ot
pres
statics
te
thru
Patch by luzpaz! (This is a subset of D44188 that applies cleanly with a few
files that have dubious fixes reverted.)
Differential revision: https://reviews.llvm.org/D44188
llvm-svn: 329399
The diagnostic system for Clang can already handle many AST nodes. Instead
of converting them to strings first, just hand the AST node directly to
the diagnostic system and let it handle the output. Minor changes in some
diagnostic output.
llvm-svn: 328688
Summary:
Libc++'s default allocator uses `__builtin_operator_new` and `__builtin_operator_delete` in order to allow the calls to new/delete to be ellided. However, libc++ now needs to support over-aligned types in the default allocator. In order to support this without disabling the existing optimization Clang needs to support calling the aligned new overloads from the builtins.
See llvm.org/PR22634 for more information about the libc++ bug.
This patch changes `__builtin_operator_new`/`__builtin_operator_delete` to call any usual `operator new`/`operator delete` function. It does this by performing overload resolution with the arguments passed to the builtin to determine which allocation function to call. If the selected function is not a usual allocation function a diagnostic is issued.
One open issue is if the `align_val_t` overloads should be considered "usual" when `LangOpts::AlignedAllocation` is disabled.
In order to allow libc++ to detect this new behavior the value for `__has_builtin(__builtin_operator_new)` has been updated to `201802`.
Reviewers: rsmith, majnemer, aaron.ballman, erik.pilkington, bogner, ahatanak
Reviewed By: rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D43047
llvm-svn: 328134
The patch fixes a number of bugs related to parameter indexing in
attributes:
* Parameter indices in some attributes (argument_with_type_tag,
pointer_with_type_tag, nonnull, ownership_takes, ownership_holds,
and ownership_returns) are specified in source as one-origin
including any C++ implicit this parameter, were stored as
zero-origin excluding any this parameter, and were erroneously
printing (-ast-print) and confusingly dumping (-ast-dump) as the
stored values.
* For alloc_size, the C++ implicit this parameter was not subtracted
correctly in Sema, leading to assert failures or to silent failures
of __builtin_object_size to compute a value.
* For argument_with_type_tag, pointer_with_type_tag, and
ownership_returns, the C++ implicit this parameter was not added
back to parameter indices in some diagnostics.
This patch fixes the above bugs and aims to prevent similar bugs in
the future by introducing careful mechanisms for handling parameter
indices in attributes. ParamIdx stores a parameter index and is
designed to hide the stored encoding while providing accessors that
require each use (such as printing) to make explicit the encoding that
is needed. Attribute declarations declare parameter index arguments
as [Variadic]ParamIdxArgument, which are exposed as ParamIdx[*]. This
patch rewrites all attribute arguments that are processed by
checkFunctionOrMethodParameterIndex in SemaDeclAttr.cpp to be declared
as [Variadic]ParamIdxArgument. The only exception is xray_log_args's
argument, which is encoded as a count not an index.
Differential Revision: https://reviews.llvm.org/D43248
llvm-svn: 326602
So I wrote a clang-tidy check to lint out redundant `isa`, `cast`, and
`dyn_cast`s for fun. This is a portion of what it found for clang; I
plan to do similar cleanups in LLVM and other subprojects when I find
time.
Because of the volume of changes, I explicitly avoided making any change
that wasn't highly local and obviously correct to me (e.g. we still have
a number of foo(cast<Bar>(baz)) that I didn't touch, since overloading
is a thing and the cast<Bar> did actually change the type -- just up the
class hierarchy).
I also tried to leave the types we were cast<>ing to somewhere nearby,
in cases where it wasn't locally obvious what we were dealing with
before.
llvm-svn: 326416
The code for going up the macro arg expansion is duplicated in many
places (and we need it for the analyzer as well, so I did not want to
duplicate it two more times).
This patch is an NFC, so the semantics should remain the same.
Differential Revision: https://reviews.llvm.org/D42458
llvm-svn: 324780
typeof expressions
This commit looks through typeof type at the original expression when diagnosing
-Wsign-compare to avoid an unfriendly diagnostic.
rdar://36588828
Differential Revision: https://reviews.llvm.org/D42561
llvm-svn: 324514
The 'trivial_abi' attribute can be applied to a C++ class, struct, or
union. It makes special functions of the annotated class (the destructor
and copy/move constructors) to be trivial for the purpose of calls and,
as a result, enables the annotated class or containing classes to be
passed or returned using the C ABI for the underlying type.
When a type that is considered trivial for the purpose of calls despite
having a non-trivial destructor (which happens only when the class type
or one of its subobjects is a 'trivial_abi' class) is passed to a
function, the callee is responsible for destroying the object.
For more background, see the discussions that took place on the mailing
list:
http://lists.llvm.org/pipermail/cfe-dev/2017-November/055955.htmlhttp://lists.llvm.org/pipermail/cfe-commits/Week-of-Mon-20180101/thread.html#214043
rdar://problem/35204524
Differential Revision: https://reviews.llvm.org/D41039
llvm-svn: 324269