oth strlcat and strlcpy cut off their safe bound for the argument value
at sizeof(destination). There's no need to subtract 1 in only one
of these cases.
Differential Revision: https://reviews.llvm.org/D57981
rdar://problem/47873212
llvm-svn: 353583
Now, instead of passing the reference to a shared_ptr, we pass the shared_ptr instead.
I've also removed the check if Z3 is present in CreateZ3ConstraintManager as this function already calls CreateZ3Solver that performs the exactly same check.
Differential Revision: https://reviews.llvm.org/D54976
llvm-svn: 353371
This patch moves the ConstraintSMT definition to the SMTConstraintManager header to make it easier to move the Z3 backend around.
We achieve this by not using shared_ptr anymore, as llvm::ImmutableSet doesn't seem to like it.
The solver specific exprs and sorts are cached in the Z3Solver object now and we move pointers to those objects around.
As a nice side-effect, SMTConstraintManager doesn't have to be a template anymore. Yay!
Differential Revision: https://reviews.llvm.org/D54975
llvm-svn: 353370
Memory region that correspond to a variable is identified by the variable's
declaration and, in case of local variables, the stack frame it belongs to.
The declaration needs to be canonical, otherwise we'd have two different
memory regions that correspond to the same variable.
Fix such bug for global variables with forward declarations and assert
that no other problems of this kind happen.
Differential Revision: https://reviews.llvm.org/D57619
llvm-svn: 353353
This reverts commit r341722.
The "postponed" mechanism turns out to be necessary in order to handle
situations when a symbolic region is only kept alive by implicit bindings
in the Store. Otherwise the region is never scanned by the Store's worklist
and the binding gets dropped despite being live, as demonstrated
by the newly added tests.
Differential Revision: https://reviews.llvm.org/D57554
llvm-svn: 353350
This patch is an implementation of the ideas discussed on the mailing list[1].
The idea is to somewhat heuristically guess whether the field that was confirmed
to be uninitialized is actually guarded with ifs, asserts, switch/cases and so
on. Since this is a syntactic check, it is very much prone to drastically
reduce the amount of reports the checker emits. The reports however that do not
get filtered out though have greater likelihood of them manifesting into actual
runtime errors.
[1] http://lists.llvm.org/pipermail/cfe-dev/2018-September/059255.html
Differential Revision: https://reviews.llvm.org/D51866
llvm-svn: 352959
Having an incorrect type for a cast causes the checker to incorrectly
dismiss the operation under ARC, leading to a false positive
use-after-release on the test.
rdar://47709885
Differential Revision: https://reviews.llvm.org/D57557
llvm-svn: 352824
This builtin has the same UI as __builtin_object_size, but has the
potential to be evaluated dynamically. It is meant to be used as a
drop-in replacement for libraries that use __builtin_object_size when
a dynamic checking mode is enabled. For instance,
__builtin_object_size fails to provide any extra checking in the
following function:
void f(size_t alloc) {
char* p = malloc(alloc);
strcpy(p, "foobar"); // expands to __builtin___strcpy_chk(p, "foobar", __builtin_object_size(p, 0))
}
This is an overflow if alloc < 7, but because LLVM can't fold the
object size intrinsic statically, it folds __builtin_object_size to
-1. With __builtin_dynamic_object_size, alloc is passed through to
__builtin___strcpy_chk.
rdar://32212419
Differential revision: https://reviews.llvm.org/D56760
llvm-svn: 352665
Provide a more powerful and at the same time more readable way of specifying
taint propagation rules for known functions within the checker.
Now it should be possible to specify an unlimited amount of source and
destination parameters for taint propagation.
No functional change intended just yet.
Patch by Gábor Borsik!
Differential Revision: https://reviews.llvm.org/D55734
llvm-svn: 352572
Track them for ISL/OS objects by default, and for NS/CF under a flag.
rdar://47536377
Differential Revision: https://reviews.llvm.org/D57356
llvm-svn: 352534
That weakens inner invariants, but allows the class to be more generic,
allowing usage in situations where the call expression is not known (or
should not matter).
Differential Revision: https://reviews.llvm.org/D57344
llvm-svn: 352531
When a function takes the address of a field the analyzer will no longer
assume that the function will change other fields of the enclosing structs.
Differential Revision: https://reviews.llvm.org/D57230
llvm-svn: 352473
This patch effectively fixes the almost decade old checker naming issue.
The solution is to assert when CheckerManager::getChecker is called on an
unregistered checker, and assert when CheckerManager::registerChecker is called
on a checker that is already registered.
Differential Revision: https://reviews.llvm.org/D55429
llvm-svn: 352292
Unfortunately, up until now, the fact that certain checkers depended on one
another was known, but how these actually unfolded was hidden deep within the
implementation. For example, many checkers (like RetainCount, Malloc or CString)
modelled a certain functionality, and exposed certain reportable bug types to
the user. For example, while MallocChecker models many many different types of
memory handling, the actual "unix.MallocChecker" checker the user was exposed to
was merely and option to this modeling part.
Other than this being an ugly mess, this issue made resolving the checker naming
issue almost impossible. (The checker naming issue being that if a checker
registered more than one checker within its registry function, both checker
object recieved the same name) Also, if the user explicitly disabled a checker
that was a dependency of another that _was_ explicitly enabled, it implicitly,
without "telling" the user, reenabled it.
Clearly, changing this to a well structured, declarative form, where the
handling of dependencies are done on a higher level is very much preferred.
This patch, among the detailed things later, makes checkers declare their
dependencies within the TableGen file Checkers.td, and exposes the same
functionality to plugins and statically linked non-generated checkers through
CheckerRegistry::addDependency. CheckerRegistry now resolves these dependencies,
makes sure that checkers are added to CheckerManager in the correct order,
and makes sure that if a dependency is disabled, so will be every checker that
depends on it.
In detail:
* Add a new field to the Checker class in CheckerBase.td called Dependencies,
which is a list of Checkers.
* Move unix checkers before cplusplus, as there is no forward declaration in
tblgen :/
* Add the following new checkers:
- StackAddrEscapeBase
- StackAddrEscapeBase
- CStringModeling
- DynamicMemoryModeling (base of the MallocChecker family)
- IteratorModeling (base of the IteratorChecker family)
- ValistBase
- SecuritySyntaxChecker (base of bcmp, bcopy, etc...)
- NSOrCFErrorDerefChecker (base of NSErrorChecker and CFErrorChecker)
- IvarInvalidationModeling (base of IvarInvalidation checker family)
- RetainCountBase (base of RetainCount and OSObjectRetainCount)
* Clear up and registry functions in MallocChecker, happily remove old FIXMEs.
* Add a new addDependency function to CheckerRegistry.
* Neatly format RUN lines in files I looked at while debugging.
Big thanks to Artem Degrachev for all the guidance through this project!
Differential Revision: https://reviews.llvm.org/D54438
llvm-svn: 352287
My last patch, D56989, moved the validation of whether a checker exists into
its constructor, but we do support statically linked (and non-plugin) checkers
that were do not have an entry in Checkers.td. However, the handling of this
happens after the creation of the CheckerRegistry object.
This patch fixes this bug by moving even this functionality into
CheckerRegistry's constructor.
llvm-svn: 352284
I added a new enum to CheckerInfo, so we can easily track whether the check is
explicitly enabled, explicitly disabled, or isn't specified in this regard.
Checkers belonging in the latter category may be implicitly enabled through
dependencies in the followup patch. I also made sure that this is done within
CheckerRegisty's constructor, leading to very significant simplifications in
its query-like methods.
Differential Revision: https://reviews.llvm.org/D56989
llvm-svn: 352282
Since pretty much all methods of CheckerRegistry has AnalyzerOptions as an
argument, it makes sense to just simply require it in it's constructor.
Differential Revision: https://reviews.llvm.org/D56988
llvm-svn: 352279
The actual implementation of unix.API features a dual-checker: two checkers in
one, even though they don't even interact at all. Split them up, as this is a
problem for establishing dependencies.
I added no new code at all, just merely moved it around.
Since the plist files change (and that's a benefit!) this patch isn't NFC.
Differential Revision: https://reviews.llvm.org/D55425
llvm-svn: 352278
Introduce the boolean ento::shouldRegister##CHECKERNAME(const LangOptions &LO)
function very similarly to ento::register##CHECKERNAME. This will force every
checker to implement this function, but maybe it isn't that bad: I saw a lot of
ObjC or C++ specific checkers that should probably not register themselves based
on some LangOptions (mine too), but they do anyways.
A big benefit of this is that all registry functions now register their checker,
once it is called, registration is guaranteed.
This patch is a part of a greater effort to reinvent checker registration, more
info here: D54438#1315953
Differential Revision: https://reviews.llvm.org/D55424
llvm-svn: 352277
As noted in https://bugs.llvm.org/show_bug.cgi?id=36651, the specialization for
isPodLike<std::pair<...>> did not match the expectation of
std::is_trivially_copyable which makes the memcpy optimization invalid.
This patch renames the llvm::isPodLike trait into llvm::is_trivially_copyable.
Unfortunately std::is_trivially_copyable is not portable across compiler / STL
versions. So a portable version is provided too.
Note that the following specialization were invalid:
std::pair<T0, T1>
llvm::Optional<T>
Tests have been added to assert that former specialization are respected by the
standard usage of llvm::is_trivially_copyable, and that when a decent version
of std::is_trivially_copyable is available, llvm::is_trivially_copyable is
compared to std::is_trivially_copyable.
As of this patch, llvm::Optional is no longer considered trivially copyable,
even if T is. This is to be fixed in a later patch, as it has impact on a
long-running bug (see r347004)
Note that GCC warns about this UB, but this got silented by https://reviews.llvm.org/D50296.
Differential Revision: https://reviews.llvm.org/D54472
llvm-svn: 351701
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Add a defensive check against an invalid destructor in the CFG.
Unions with fields with destructors have their own destructor implicitly
deleted. Due to a bug in the CFG we're still trying to evaluate them
at the end of the object's lifetime and crash because we are unable
to find the destructor's declaration.
rdar://problem/47362608
Differential Revision: https://reviews.llvm.org/D56899
llvm-svn: 351610
This is especially crucial for reports related to use-after-move of
standard library objects.
rdar://problem/47338505
Differential Revision: https://reviews.llvm.org/D56824
llvm-svn: 351500
SymbolReaper now realizes that our liveness analysis isn't sharp enough
to discriminate between liveness of, say, variables and their fields.
Surprisingly, this didn't quite work before: having a variable live only
through Environment (eg., calling a C++ method on a local variable
as the last action ever performed on that variable) would not keep the
region value symbol of a field of that variable alive.
It would have been broken in the opposite direction as well, but both
Environment and RegionStore use the scanReachableSymbols mechanism for finding
live symbols regions within their values, and due to that they accidentally
end up marking the whole chain of super-regions as live when at least one
sub-region is known to be live.
It is now a direct responsibility of SymbolReaper to maintain this invariant,
and a unit test was added in order to make sure it stays that way.
Differential Revision: https://reviews.llvm.org/D56632
rdar://problem/46914108
llvm-svn: 351499
This is not NFC strictly speaking, since it unifies CleanupAttr handling,
so that out parameters now also understand it.
Differential Revision: https://reviews.llvm.org/D56759
llvm-svn: 351394
Summary:
https://reviews.llvm.org/D54862 removed the usages of `ASTContext&` from
within the `CXXMethodDecl::getThisType` method. Remove the parameter
altogether, as well as all usages of it. This does not result in any
functional change because the parameter was unused since
https://reviews.llvm.org/D54862.
Test Plan: check-clang
Reviewers: akyrtzi, mikael
Reviewed By: mikael
Subscribers: mehdi_amini, dexonsmith, cfe-commits
Differential Revision: https://reviews.llvm.org/D56509
llvm-svn: 350914
Several headers would fail to compile if other headers were not previously
included. The usual issue is that a class is forward declared, but the
full definition is needed. The requirement for the definition is use of
isa/dyn_cast or calling functions of pointer-packed data types such as
DenseMap or PointerIntPair. Add missing includes to these headers.
SVals.h required an out-of-line method definition in the .cpp file to avoid
circular inclusion of headers with BasicValueFactory.h
llvm-svn: 350913
We need to be able to emit the diagnostic at PreImplicitCall,
and the patch implements this functionality.
However, for now the need for emitting such diagnostics is not all that great:
it is only necessary to not crash when emitting a false positive due to an
unrelated issue of having dead symbol collection not working properly.
Coming up with a non-false-positive test seems impossible with the current
set of checkers, though it is likely to be needed for good things as well
in the future.
Differential Revision: https://reviews.llvm.org/D56042
rdar://problem/46911462
llvm-svn: 350907
The complicated machinery for passing the summary log around is actually
only used for one thing! To figure out whether the "dealloc" message was
sent.
Since I have tried to extend it for other uses and failed (it's actually
very hard to use), I think it's much better to simply use a tag and
remove the summary log altogether.
Differential Revision: https://reviews.llvm.org/D56228
llvm-svn: 350864
Make sure all checks for attributes go through a centralized function,
which checks whether attribute handling is enabled, and performs
validation. The type of the attribute is returned.
Sadly, metaprogramming is required as attributes have no sensible static
getters.
Differential Revision: https://reviews.llvm.org/D56222
llvm-svn: 350862
Summary: The LocationE parameter of evalStore is documented as "The location expression that is stored to". When storing from an increment / decrement operator this was not satisfied. In user code this causes an inconsistency between the SVal and Stmt parameters of checkLocation.
Reviewers: NoQ, dcoughlin, george.karpenkov
Reviewed By: NoQ
Subscribers: xazax.hun, baloghadamsoftware, szepet, a.sidorin, mikhail.ramalho, Szelethus, donat.nagy, dkrupp, cfe-commits
Differential Revision: https://reviews.llvm.org/D55701
llvm-svn: 350528
Previously, argument effects were stored in a method variable, which was
effectively global.
The global state was reset at each (hopefully) entrance point to the
summary construction,
and every function could modify it.
Differential Revision: https://reviews.llvm.org/D56036
llvm-svn: 350057
This patch is a different approach to landing the reverted r349701.
It is expected to have the same object (memory region) treated as if it has
different types in different program points. The correct behavior for
RegionStore when an object is stored as an object of type T1 but loaded as
an object of type T2 is to store the object as if it has type T1 but cast it
to T2 during load.
Note that the cast here is some sort of a "reinterpret_cast" (even in C). For
instance, if you store an integer and load a float, you won't get your integer
represented as a float; instead, you will get garbage.
Admit that we cannot perform the cast and return an unknown value.
Differential Revision: https://reviews.llvm.org/D55875
rdar://problem/45062567
llvm-svn: 349984
The fix done in D55465 did not previously apply when the function was inlined.
rdar://46889541
Differential Revision: https://reviews.llvm.org/D55976
llvm-svn: 349876
Previously, we were not printing a note at all if at least one of the parameters was not annotated.
rdar://46888422
Differential Revision: https://reviews.llvm.org/D55972
llvm-svn: 349875
If it ends with "Retain" like CFRetain and returns a CFTypeRef like CFRetain,
then it is not necessarily a CFRetain. But it is indeed true that these two
return something retained.
Differential Revision: https://reviews.llvm.org/D55907
rdar://problem/39390714
llvm-svn: 349862
This adds anchors to all of the documented checks so that you can directly link to a check by a stable name. This is useful because the SARIF file format has a field for specifying a URI to documentation for a rule and some viewers, like CodeSonar, make use of this information. These links are then exposed through the SARIF exporter.
llvm-svn: 349812
This reverts commit r349701.
The patch was incorrect. The whole point of CastRetrievedVal()
is to handle the case in which the type from which the cast is made
(i.e., the "type" of value `V`) has nothing to do with the type of
the region it was loaded from (i.e., `R->getValueType()`).
Differential Revision: https://reviews.llvm.org/D55875
rdar://problem/45062567
llvm-svn: 349798
Replace multiple comparisons of getOS() value with FreeBSD, NetBSD,
OpenBSD and DragonFly with matching isOS*BSD() methods. This should
improve the consistency of coding style without changing the behavior.
Direct getOS() comparisons were left whenever used in switch or switch-
like context.
Differential Revision: https://reviews.llvm.org/D55916
llvm-svn: 349752
It is expected to have the same object (memory region) treated as if it has
different types in different program points. The correct behavior for
RegionStore when an object is stored as an object of type T1 but loaded as
an object of type T2 is to store the object as if it has type T1 but cast it
to T2 during load.
Note that the cast here is some sort of a "reinterpret_cast" (even in C). For
instance, if you store a float and load an integer, you won't have your float
rounded to an integer; instead, you will have garbage.
Admit that we cannot perform the cast as long as types we're dealing with are
non-trivial (neither integers, nor pointers).
Of course, if the cast is not necessary (eg, T1 == T2), we can still load the
value just fine.
Differential Revision: https://reviews.llvm.org/D55875
rdar://problem/45062567
llvm-svn: 349701
Static Analyzer processes the program function-by-function, sometimes diving
into other functions ("inlining" them). When an object is returned from an
inlined function, Return Value Optimization is modeled, and the returned object
is constructed at its return location directly.
When an object is returned from the function from which the analysis has started
(the top stack frame of the analysis), the return location is unknown. Model it
with a SymbolicRegion based on a conjured symbol that is specifically tagged for
that purpose, because this is generally the correct way to symbolicate
unknown locations in Static Analyzer.
Fixes leak false positives when an object is returned from top frame in C++17:
objects that are put into a SymbolicRegion-based memory region automatically
"escape" and no longer get reported as leaks. This only applies to C++17 return
values with destructors, because it produces a redundant CXXBindTemporaryExpr
in the call site, which confuses our liveness analysis. The actual fix
for liveness analysis is still pending, but it is no longer causing problems.
Additionally, re-enable temporary destructor tests in C++17.
Differential Revision: https://reviews.llvm.org/D55804
rdar://problem/46217550
llvm-svn: 349696
It turns out that it's not all that uncommon to have a C++ override of, say,
memcpy that receives a structure (or two) by reference (or by value, if it's
being copied from) and copies memory from it (or into it, if it's passed
by reference). In this case the argument will be of structure type (recall that
expressions of reference type do not exist: instead, C++ classifies expressions
into prvalues and lvalues and xvalues).
In this scenario we crash because we are trying to assume that, say,
a memory region is equal to an empty CompoundValue (the non-lazy one; this is
what makeZeroVal() return for compound types and it represents prvalue of
an object that is initialized with an empty initializer list).
Add defensive checks.
Differential Revision: https://reviews.llvm.org/D55873
rdar://problem/45366551
llvm-svn: 349682
Accidentally commited earlier with the same commit title, but really it
should've been
"Revert rC349283 '[analyzer][MallocChecker] Improve warning messages on double-delete errors'"
llvm-svn: 349344
Re-using a moved-from local variable is most likely a bug because there's
rarely a good motivation for not introducing a separate variable instead.
We plan to keep emitting such warnings by default.
Introduce a flag that allows disabling warnings on local variables that are
not of a known move-unsafe type. If it doesn't work out as we expected,
we'll just flip the flag.
We still warn on move-unsafe objects and unsafe operations on known move-safe
objects.
Differential Revision: https://reviews.llvm.org/D55730
llvm-svn: 349327
This re-applies commit r349226 that was reverted in r349233 due to failures
on clang-x64-windows-msvc.
Specify enum type as unsigned for use in bit field. Otherwise overflows
may cause UB.
Differential Revision: https://reviews.llvm.org/D55388
llvm-svn: 349326
StaticAnalyzer uses the CFG-based RelaxedLiveVariables analysis in order to,
in particular, figure out values of which expressions are still needed.
When the expression becomes "dead", it is garbage-collected during
the dead binding scan.
Expressions that constitute branches/bodies of control flow statements,
eg. `E1' in `if (C1) E1;' but not `E2' in `if (C2) { E2; }', were kept alive
for too long. This caused false positives in MoveChecker because it relies
on cleaning up loop-local variables when they go out of scope, but some of those
live-for-too-long expressions were keeping a reference to those variables.
Fix liveness analysis to correctly mark these expressions as dead.
Add a debug checker, debug.DumpLiveStmts, in order to test expressions liveness.
Differential Revision: https://reviews.llvm.org/D55566
llvm-svn: 349320
This patch merely reorganizes some things, and features no functional change.
In detail:
* Provided documentation, or moved existing documentation in more obvious
places.
* Added dividers. (the //===----------===// thing).
* Moved getAllocationFamily, printAllocDeallocName, printExpectedAllocName and
printExpectedDeallocName in the global namespace on top of the file where
AllocationFamily is declared, as they are very strongly related.
* Moved isReleased and MallocUpdateRefState near RefState's definition for the
same reason.
* Realloc modeling was very poor in terms of variable and structure naming, as
well as documentation, so I renamed some of them and added much needed docs.
* Moved function IdentifierInfos to a separate struct, and moved isMemFunction,
isCMemFunction adn isStandardNewDelete inside it. This makes the patch affect
quite a lot of lines, should I extract it to a separate one?
* Moved MallocBugVisitor out of MallocChecker.
* Preferred switches to long else-if branches in some places.
* Neatly organized some RUN: lines.
Differential Revision: https://reviews.llvm.org/D54823
llvm-svn: 349281
Now that CheckerRegistry lies in Frontend, we can finally eliminate
ClangCheckerRegistry. Fortunately, this also provides us with a
DiagnosticsEngine, so I went ahead and removed some parameters from it's
methods.
Differential Revision: https://reviews.llvm.org/D54437
llvm-svn: 349280
ClangCheckerRegistry is a very non-obvious, poorly documented, weird concept.
It derives from CheckerRegistry, and is placed in lib/StaticAnalyzer/Frontend,
whereas it's base is located in lib/StaticAnalyzer/Core. It was, from what I can
imagine, used to circumvent the problem that the registry functions of the
checkers are located in the clangStaticAnalyzerCheckers library, but that
library depends on clangStaticAnalyzerCore. However, clangStaticAnalyzerFrontend
depends on both of those libraries.
One can make the observation however, that CheckerRegistry has no place in Core,
it isn't used there at all! The only place where it is used is Frontend, which
is where it ultimately belongs.
This move implies that since
include/clang/StaticAnalyzer/Checkers/ClangCheckers.h only contained a single function:
class CheckerRegistry;
void registerBuiltinCheckers(CheckerRegistry ®istry);
it had to re purposed, as CheckerRegistry is no longer available to
clangStaticAnalyzerCheckers. It was renamed to BuiltinCheckerRegistration.h,
which actually describes it a lot better -- it does not contain the registration
functions for checkers, but only those generated by the tblgen files.
Differential Revision: https://reviews.llvm.org/D54436
llvm-svn: 349275
Renaming collectCheckers to getEnabledCheckers
Changing the functionality to acquire all enabled checkers, rather then collect
checkers for a specific CheckerOptInfo (for example, collecting all checkers for
{ "core", true }, which meant enabling all checkers from the core package, which
was an unnecessary complication).
Removing CheckerOptInfo, instead of storing whether the option was claimed via a
field, we handle errors immediately, as getEnabledCheckers can now access a
DiagnosticsEngine. Realize that the remaining information it stored is directly
accessible through AnalyzerOptions.CheckerControlList.
Fix a test with -analyzer-disable-checker -verify accidentally left in.
llvm-svn: 349274
Right now they report to have one parameter with null decl,
because initializing an ArrayRef of pointers with a nullptr
yields an ArrayRef to an array of one null pointer.
Fixes a crash in the OSObject section of RetainCountChecker.
Differential Revision: https://reviews.llvm.org/D55671
llvm-svn: 349229
The checker wasn't prepared to see the dealloc message sent to the class itself
rather than to an instance, as if it was +dealloc.
Additionally, it wasn't prepared for pure-unknown or undefined self values.
The new guard covers that as well, but it is annoying to test because
both kinds of values shouldn't really appear and we generally want to
get rid of all of them (by modeling unknown values with symbols and
by warning on use of undefined values before they are used).
The CHECK: directive for FileCheck at the end of the test looks useless,
so i removed it.
Differential Revision: https://reviews.llvm.org/D55680
llvm-svn: 349228
Use trackExpressionValue() (previously known as trackNullOrUndefValue())
to track index value in the report, so that the user knew
what Static Analyzer thinks the index is.
Additionally, implement printState() to help debugging the checker later.
Differential Revision: https://reviews.llvm.org/D55458
llvm-svn: 349227
Calling operator*() or operator->() on a null STL smart pointer is
undefined behavior.
Smart pointers are specified to become null after being moved from.
So we can't warn on arbitrary method calls, but these two operators
definitely make no sense.
The new bug is fatal because it's an immediate UB,
unlike other use-after-move bugs.
The work on a more generic null smart pointer dereference checker
is still pending.
Differential Revision: https://reviews.llvm.org/D55388
llvm-svn: 349226
Some C++ standard library classes provide additional guarantees about their
state after move. Suppress warnings on such classes until a more precise
behavior is implemented. Warnings for locals are not suppressed anyway
because it's still most likely a bug.
Differential Revision: https://reviews.llvm.org/D55307
llvm-svn: 349191
If a moved-from object is passed into a conservatively evaluated function
by pointer or by reference, we assume that the function may reset its state.
Make sure it doesn't apply to const pointers and const references. Add a test
that demonstrates that it does apply to rvalue references.
Additionally, make sure that the object is invalidated when its contents change
for reasons other than invalidation caused by evaluating a call conservatively.
In particular, when the object's fields are manipulated directly, we should
assume that some sort of reset may be happening.
Differential Revision: https://reviews.llvm.org/D55289
llvm-svn: 349190
Functional changes include:
* The run.files property is now an array instead of a mapping.
* fileLocation objects now have a fileIndex property specifying the array index into run.files.
* The resource.rules property is now an array instead of a mapping.
* The result object was given a ruleIndex property that is an index into the resource.rules array.
* rule objects now have their "id" field filled out in addition to the name field.
* Updated the schema and spec version numbers to 11-28.
llvm-svn: 349188
- explicit_bzero has limited scope/usage only for security/crypto purposes but is non-optimisable version of memset/0 and bzero.
- explicit_memset has similar signature and semantics as memset but is also a non-optimisable version.
Reviewers: NoQ
Reviewed By: NoQ
Differential Revision: https://reviews.llvm.org/D54592
llvm-svn: 348884
Memoization dose not seem to be necessary, as other statement visitors
run just fine without it,
and in fact seems to be causing memory corruptions.
Just removing it instead of investigating the root cause.
rdar://45945002
Differential Revision: https://reviews.llvm.org/D54921
llvm-svn: 348822
This is currently a diagnostics, but might be upgraded to an error in the future,
especially if we introduce os_return_on_success attributes.
rdar://46359592
Differential Revision: https://reviews.llvm.org/D55530
llvm-svn: 348820
Escaping to void * / uint64_t / others non-OSObject * should stop tracking,
as such functions can have heterogeneous semantics depending on context,
and can not always be annotated.
rdar://46439133
Differential Revision: https://reviews.llvm.org/D55465
llvm-svn: 348675
Allow enabling and disabling tracking of ObjC/CF objects
separately from tracking of OS objects.
Differential Revision: https://reviews.llvm.org/D55400
llvm-svn: 348638
The option has no tests, is not used anywhere, and is actually
incorrect: it prints the line number without the reference to a file,
which can be outright incorrect.
Differential Revision: https://reviews.llvm.org/D55385
llvm-svn: 348637
Summary:
With a new switch we may be able to print to stderr if a new TU is being loaded
during CTU. This is very important for higher level scripts (like CodeChecker)
to be able to parse this output so they can create e.g. a zip file in case of
a Clang crash which contains all the related TU files.
Reviewers: xazax.hun, Szelethus, a_sidorin, george.karpenkov
Subscribers: whisperity, baloghadamsoftware, szepet, rnkovacs, a.sidorin, mikhail.ramalho, donat.nagy, dkrupp,
Differential Revision: https://reviews.llvm.org/D55135
llvm-svn: 348594
Previously, the iterator range checker only warned upon dereferencing of
iterators outside their valid range as well as increments and decrements of
out-of-range iterators where the result remains out-of-range. However, the C++
standard is more strict than this: decrementing begin() or incrementing end()
results in undefined behaviour even if the iterator is not dereferenced
afterwards. Coming back to the range once out-of-range is also undefined.
This patch corrects the behaviour of the iterator range checker: warnings are
given for any operation whose result is ahead of begin() or past the end()
(which is the past-end iterator itself, thus now we are speaking of past
past-the-end).
Differential Revision: https://reviews.llvm.org/D53812
llvm-svn: 348245
If an iterator is represented by a derived C++ class but its comparison operator
is for its base the iterator checkers cannot recognize the iterators compared.
This results in false positives in very straightforward cases (range error when
dereferencing an iterator after disclosing that it is equal to the past-the-end
iterator).
To overcome this problem we always use the region of the topmost base class for
iterators stored in a region. A new method called getMostDerivedObjectRegion()
was added to the MemRegion class to get this region.
Differential Revision: https://reviews.llvm.org/D54466
llvm-svn: 348244
Includes "resize" and "shrink" because they can reset the object to a known
state in certain circumstances.
Differential Revision: https://reviews.llvm.org/D54563
llvm-svn: 348235
The warning piece traditionally describes the bug itself, i.e.
"The bug is a _____", eg. "Attempt to delete released memory",
"Resource leak", "Method call on a moved-from object".
Event pieces produced by the visitor are usually in a present tense, i.e.
"At this moment _____": "Memory is released", "File is closed",
"Object is moved".
Additionally, type information is added into the event pieces for STL objects
(in order to highlight that it is in fact an STL object), and the respective
event piece now mentions that the object is left in an unspecified state
after it was moved, which is a vital piece of information to understand the bug.
Differential Revision: https://reviews.llvm.org/D54560
llvm-svn: 348229
In general case there use-after-move is not a bug. It depends on how the
move-constructor or move-assignment is implemented.
In STL, the convention that applies to most classes is that the move-constructor
(-assignment) leaves an object in a "valid but unspecified" state. Using such
object without resetting it to a known state first is likely a bug. Objects
Local value-type variables are special because due to their automatic lifetime
there is no intention to reuse space. If you want a fresh object, you might
as well make a new variable, no need to move from a variable and than re-use it.
Therefore, it is not always a bug, but it is obviously easy to suppress when it
isn't, and in most cases it indeed is - as there's no valid intention behind
the intentional use of a local after move.
This applies not only to local variables but also to parameter variables,
not only of value type but also of rvalue reference type (but not to lvalue
references).
Differential Revision: https://reviews.llvm.org/D54557
llvm-svn: 348210
The checker had extra code to clean up memory regions that were sticking around
in the checker without ever being cleaned up due to the bug that was fixed in
r347953. Because of that, if a region was moved from, then became dead,
and then reincarnated, there were false positives.
Why regions are even allowed to reincarnate is a separate story. Luckily, this
only happens for local regions that don't produce symbols when loaded from.
No functional change intended. The newly added test demonstrates that even
though no cleanup is necessary upon destructor calls, the early return
cannot be removed. It was not failing before the patch.
Differential Revision: https://reviews.llvm.org/D54372
llvm-svn: 348208
This follows the Static Analyzer's tradition to name checkers after
things in which they find bugs, not after bugs they find.
Differential Revision: https://reviews.llvm.org/D54556
llvm-svn: 348201
This continues the work that was started in r342313, which now gets applied to
object-under-construction tracking in C++. Makes it possible to debug
temporaries by dumping exploded graphs again.
Differential Revision: https://reviews.llvm.org/D54459
llvm-svn: 348200
Buildbot failures were caused by an unrelated UB that was introduced in r347943
and fixed in r347970.
Also the revision was incorrectly specified as r344580 during revert.
Differential Revision: https://reviews.llvm.org/D54017
llvm-svn: 348188
It seems the two failing tests can be simply fixed after r348037
Fix 3 cases in Analysis/builtin-functions.cpp
Delete the bad CodeGen/builtin-constant-p.c for now
llvm-svn: 348053
Kept the "indirect_builtin_constant_p" test case in test/SemaCXX/constant-expression-cxx1y.cpp
while we are investigating why the following snippet fails:
extern char extern_var;
struct { int a; } a = {__builtin_constant_p(extern_var)};
llvm-svn: 348039
In earlier patches regarding AnalyzerOptions, a lot of effort went into
gathering all config options, and changing the interface so that potential
misuse can be eliminited.
Up until this point, AnalyzerOptions only evaluated an option when it was
querried. For example, if we had a "-no-false-positives" flag, AnalyzerOptions
would store an Optional field for it that would be None up until somewhere in
the code until the flag's getter function is called.
However, now that we're confident that we've gathered all configs, we can
evaluate off of them before analysis, so we can emit a error on invalid input
even if that prticular flag will not matter in that particular run of the
analyzer. Another very big benefit of this is that debug.ConfigDumper will now
show the value of all configs every single time.
Also, almost all options related class have a similar interface, so uniformity
is also a benefit.
The implementation for errors on invalid input will be commited shorty.
Differential Revision: https://reviews.llvm.org/D53692
llvm-svn: 348031
From what I can see, this should be the last patch needed to replicate macro
argument expansions.
Differential Revision: https://reviews.llvm.org/D52988
llvm-svn: 348025
During the review of D41938 a condition check with an early exit accidentally
slipped into a branch, leaving the other branch unprotected. This may result in
an assertion later on. This hotfix moves this contition check outside of the
branch.
Differential Revision: https://reviews.llvm.org/D55051
llvm-svn: 347981
Don't generate a checker-tagged node unconditionally on the first
checkDeadSymbols callback when no pointers are tracked.
This is a tiny performance optimization; it may change the behavior slightly
by making Static Analyzer bail out on max-nodes one node later (which is good)
but any test would either break for no good reason or become useless
every time someone sneezes.
Differential Revision: https://reviews.llvm.org/D54013
llvm-svn: 347955
The checker suppresses warnings on paths on which a nonnull value is assumed
to be nullable. This probably deserves a warning, but it's a separate story.
Now, because dead symbol collection fires in pretty random moments,
there sometimes was a situation when dead symbol collection fired after
computing a parameter but before actually evaluating call enter into the
function, which triggered the suppression when the argument was null
in the first place earlier than the obvious warning for null-to-nonnull
was emitted, causing false negatives.
Only trigger the suppression for symbols, not for concrete values.
It is impossible to constrain a concrete value post-factum because
it is impossible to constrain a concrete value at all.
This covers all the necessary cases because by the time we reach the call,
symbolic values should be either not constrained to null, or already collapsed
into concrete null values. Which in turn happens because they are passed through
the Store, and the respective collapse is implemented as part of getSVal(),
which is also weird.
Differential Revision: https://reviews.llvm.org/D54017
llvm-svn: 347954
It's an old bug that consists in stale references to symbols remaining in the
GDM if they disappear from other program state sections as a result of any
operation that isn't the actual dead symbol collection. The most common example
here is:
FILE *fp = fopen("myfile.txt", "w");
fp = 0; // leak of file descriptor
In this example the leak were not detected previously because the symbol
disappears from the public part of the program state due to evaluating
the assignment. For that reason the checker never receives a notification
that the symbol is dead, and never reports a leak.
This patch not only causes leak false negatives, but also a number of other
problems, including false positives on some checkers.
What's worse, even though the program state contains a finite number of symbols,
the set of symbols that dies is potentially infinite. This means that is
impossible to compute the set of all dead symbols to pass off to the checkers
for cleaning up their part of the GDM.
No longer compute the dead set at all. Disallow iterating over dead symbols.
Disallow querying if any symbols are dead. Remove the API for marking symbols
as dead, as it is no longer necessary. Update checkers accordingly.
Differential Revision: https://reviews.llvm.org/D18860
llvm-svn: 347953
The "free" call frees the object immediately, ignoring the reference count.
Sadly, it is actually used in a few places, so we need to model it.
Differential Revision: https://reviews.llvm.org/D55092
llvm-svn: 347950
Move visitors to the implementation file, move a complicated logic into
a function.
Differential Revision: https://reviews.llvm.org/D55036
llvm-svn: 347946
Attempt to get a fully qualified name from AST if an SVal corresponding
to the object is not available.
Differential Revision: https://reviews.llvm.org/D55034
llvm-svn: 347944
If the object is a temporary, and there is no variable it binds to,
let's at least print out the object name in order to help differentiate
it from other temporaries.
rdar://45175098
Differential Revision: https://reviews.llvm.org/D55033
llvm-svn: 347943
Summary: Left only the constructors that are actually required, and marked the move constructors as deleted. They are not used anymore and we were never sure they've actually worked correctly.
Reviewers: george.karpenkov, NoQ
Reviewed By: george.karpenkov
Subscribers: xazax.hun, baloghadamsoftware, szepet, a.sidorin, Szelethus, donat.nagy, dkrupp
Differential Revision: https://reviews.llvm.org/D54974
llvm-svn: 347777
This was reverted in r347656 due to me thinking it caused a miscompile of
Chromium. Turns out it was the Chromium code that was broken.
llvm-svn: 347756
This caused a miscompile in Chrome (see crbug.com/908372) that's
illustrated by this small reduction:
static bool f(int *a, int *b) {
return !__builtin_constant_p(b - a) || (!(b - a));
}
int arr[] = {1,2,3};
bool g() {
return f(arr, arr + 3);
}
$ clang -O2 -S -emit-llvm a.cc -o -
g() should return true, but after r347417 it became false for some reason.
This also reverts the follow-up commits.
r347417:
> Re-Reinstate 347294 with a fix for the failures.
>
> Don't try to emit a scalar expression for a non-scalar argument to
> __builtin_constant_p().
>
> Third time's a charm!
r347446:
> The result of is.constant() is unsigned.
r347480:
> A __builtin_constant_p() returns 0 with a function type.
r347512:
> isEvaluatable() implies a constant context.
>
> Assume that we're in a constant context if we're asking if the expression can
> be compiled into a constant initializer. This fixes the issue where a
> __builtin_constant_p() in a compound literal was diagnosed as not being
> constant, even though it's always possible to convert the builtin into a
> constant.
r347531:
> A "constexpr" is evaluated in a constant context. Make sure this is reflected
> if a __builtin_constant_p() is a part of a constexpr.
llvm-svn: 347656
Summary:
A __builtin_constant_p may end up with a constant after inlining. Use
the is.constant intrinsic if it's a variable that's in a context where
it may resolve to a constant, e.g., an argument to a function after
inlining.
Reviewers: rsmith, shafik
Subscribers: jfb, kristina, cfe-commits, nickdesaulniers, jyknight
Differential Revision: https://reviews.llvm.org/D54355
llvm-svn: 347294
CheckerOptInfo feels very much out of place in CheckerRegistration.cpp, so I
moved it to CheckerRegistry.h.
Differential Revision: https://reviews.llvm.org/D54397
llvm-svn: 347157
Especially with pointees, a lot of meaningless reports came from uninitialized
regions that were already reported. This is fixed by storing all reported fields
to the GDM.
Differential Revision: https://reviews.llvm.org/D51531
llvm-svn: 347153
Extend the alpha.core.Conversion checker to handle implicit converions
where a too large integer value is converted to a floating point type. Each
floating point type has a range where it can exactly represent all integers; we
emit a warning when the integer value is above this range. Although it is
possible to exactly represent some integers which are outside of this range
(those that are divisible by a large enough power of 2); we still report cast
involving those, because their usage may lead to bugs. (For example, if 1<<24
is stored in a float variable x, then x==x+1 holds.)
Patch by: Donát Nagy!
Differential Revision: https://reviews.llvm.org/D52730
llvm-svn: 347006
With z3-4.8.1:
../tools/clang/lib/StaticAnalyzer/Core/Z3ConstraintManager.cpp:49:40: error:
'Z3_get_error_msg_ex' was not declared in this scope
../tools/clang/lib/StaticAnalyzer/Core/Z3ConstraintManager.cpp:49:40: note:
suggested alternative: 'Z3_get_error_msg'
Formerly used Z3_get_error_msg_ex() as one could find in z3-4.7.1 states:
"Retained function name for backwards compatibility within v4.1"
And it is implemented only as a forwarding call:
return Z3_get_error_msg(c, err);
Differential Revision: https://reviews.llvm.org/D54391
llvm-svn: 346635
Summary:
Compound literals, enums, file-scoped arrays, etc. require their
initializers and size specifiers to be constant. Wrap the initializer
expressions in a ConstantExpr so that we can easily check for this later
on.
Reviewers: rsmith, shafik
Reviewed By: rsmith
Subscribers: cfe-commits, jyknight, nickdesaulniers
Differential Revision: https://reviews.llvm.org/D53921
llvm-svn: 346455
One of the reasons why AnalyzerOptions is so chaotic is that options can be
retrieved from the command line whenever and wherever. This allowed for some
options to be forgotten for a looooooong time. Have you ever heard of
"region-store-small-struct-limit"? In order to prevent this in the future, I'm
proposing to restrict AnalyzerOptions' interface so that only checker options
can be retrieved without special getters. I would like to make every option be
accessible only through a getter, but checkers from plugins are a thing, so I'll
have to figure something out for that.
This also forces developers who'd like to add a new option to register it
properly in the .def file.
This is done by
* making the third checker pointer parameter non-optional, and checked by an
assert to be non-null.
* I added new, but private non-checkers option initializers, meant only for
internal use,
* Renamed these methods accordingly (mind the consistent name for once with
getBooleanOption!):
- getOptionAsString -> getCheckerStringOption,
- getOptionAsInteger -> getCheckerIntegerOption
* The 3 functions meant for initializing data members (with the not very
descriptive getBooleanOption, getOptionAsString and getOptionAsUInt names)
were renamed to be overloads of the getAndInitOption function name.
* All options were in some way retrieved via getCheckerOption. I removed it, and
moved the logic to getStringOption and getCheckerStringOption. This did cause
some code duplication, but that's the only way I could do it, now that checker
and non-checker options are separated. Note that the non-checker version
inserts the new option to the ConfigTable with the default value, but the
checker version only attempts to find already existing entries. This is how
it always worked, but this is clunky and I might end reworking that too, so we
can eventually get a ConfigTable that contains the entire configuration of the
analyzer.
Differential Revision: https://reviews.llvm.org/D53483
llvm-svn: 346113
Windows buildbots break with the previous commit '[analyzer][PlistMacroExpansion]
Part 2.: Retrieving the macro name and primitive expansion'. This patch attempts
to solve this issue.
llvm-svn: 346112
This patch adds a couple new functions to acquire the macro's name, and also
expands it, although it doesn't expand the arguments, as seen from the test files
Differential Revision: https://reviews.llvm.org/D52794
llvm-svn: 346095
This exposes a (known) CodeGen bug: it can't cope with emitting lvalue
expressions that denote non-odr-used but usable-in-constant-expression
variables. See PR39528 for a testcase.
Reverted for now until that issue can be fixed.
llvm-svn: 346065
Interestingly, this many year old (when I last looked I remember 2010ish)
checker was committed without any tests, so I thought I'd implement them, but I
was shocked to see how I barely managed to get it working. The code is severely
outdated, I'm not even sure it has ever been used, so I'd propose to move it
back into alpha, and possibly even remove it.
Differential Revision: https://reviews.llvm.org/D53856
llvm-svn: 345990
I'm in the process of refactoring AnalyzerOptions. The main motivation behind
here is to emit warnings if an invalid -analyzer-config option is given from the
command line, and be able to list them all.
In this patch, I'm moving all analyzer options to a def file, and move 2 enums
to global namespace.
Differential Revision: https://reviews.llvm.org/D53277
llvm-svn: 345986
I'm in the process of refactoring AnalyzerOptions. The main motivation behind
here is to emit warnings if an invalid -analyzer-config option is given from
the command line, and be able to list them all.
In this patch, I found some flags that should've been used as checker options,
or have absolutely no mention of in AnalyzerOptions, or are nonexistent.
- NonLocalizedStringChecker now uses its "AggressiveReport" flag as a checker
option
- lib/StaticAnalyzer/Frontend/ModelInjector.cpp now accesses the "model-path"
option through a getter in AnalyzerOptions
- -analyzer-config path-diagnostics-alternate=false is not a thing, I removed it,
- lib/StaticAnalyzer/Checkers/AllocationDiagnostics.cpp and
lib/StaticAnalyzer/Checkers/AllocationDiagnostics.h are weird, they actually
only contain an option getter. I deleted them, and fixed RetainCountChecker
to get it's "leak-diagnostics-reference-allocation" option as a checker option,
- "region-store-small-struct-limit" has a proper getter now.
Differential Revision: https://reviews.llvm.org/D53276
llvm-svn: 345985
This patch should not introduce any behavior changes. It consists of
mostly one of two changes:
1. Replacing fall through comments with the LLVM_FALLTHROUGH macro
2. Inserting 'break' before falling through into a case block consisting
of only 'break'.
We were already using this warning with GCC, but its warning behaves
slightly differently. In this patch, the following differences are
relevant:
1. GCC recognizes comments that say "fall through" as annotations, clang
doesn't
2. GCC doesn't warn on "case N: foo(); default: break;", clang does
3. GCC doesn't warn when the case contains a switch, but falls through
the outer case.
I will enable the warning separately in a follow-up patch so that it can
be cleanly reverted if necessary.
Reviewers: alexfh, rsmith, lattner, rtrieu, EricWF, bollu
Differential Revision: https://reviews.llvm.org/D53950
llvm-svn: 345882
SARIF allows you to export descriptions about rules that are present in the SARIF log. Expose the help text table generated into Checkers.inc as the rule's "full description" and export all of the rules present in the analysis output. This information is useful for analysis result viewers like CodeSonar.
llvm-svn: 345874
This removes the Step property (which can be calculated by consumers trivially), and updates the schema and version numbers accordingly.
llvm-svn: 345823
MallocChecker no longer thinks that operator delete() that accepts the size of
the object to delete (available since C++14 or under -fsized-deallocation)
is some weird user-defined operator. Instead, it handles it like normal delete.
Additionally, it exposes a regression in NewDelete-intersections.mm's
testStandardPlacementNewAfterDelete() test, where the diagnostic is delayed
from before the call of placement new into the code of placement new
in the header. This happens because the check for pass-into-function-after-free
for placement arguments is located in checkNewAllocator(), which happens after
the allocator is inlined, which is too late. Move this use-after-free check
into checkPreCall instead, where it works automagically because the guard
that prevents it from working is useless and can be removed as well.
This commit causes regressions under -analyzer-config
c++-allocator-inlining=false but this option is essentially unsupported
because the respective feature has been enabled by default quite a while ago.
Differential Revision: https://reviews.llvm.org/D53543
llvm-svn: 345802
Trusting summaries of inlined code would require a more thorough work,
as the current approach was causing too many false positives, as the new
example in test. The culprit lies in the fact that we currently escape
all variables written into a field (but not passed off to unknown
functions!), which can result in inconsistent behavior.
rdar://45655344
Differential Revision: https://reviews.llvm.org/D53902
llvm-svn: 345746
This is the first part of the implementation of the inclusion of macro
expansions into the plist output. It adds a new flag that adds a new
"macro_expansions" entry to each report that has PathDiagnosticPieces that were
expanded from a macro. While there's an entry for each macro expansion, both
the name of the macro and what it expands to is missing, and will be implemented
in followup patches.
Differential Revision: https://reviews.llvm.org/D52742
llvm-svn: 345724
A ConstantExpr class represents a full expression that's in a context where a
constant expression is required. This class reflects the path the evaluator
took to reach the expression rather than the syntactic context in which the
expression occurs.
In the future, the class will be expanded to cache the result of the evaluated
expression so that it's not needlessly re-evaluated
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D53475
llvm-svn: 345692
We haven't supported compiling ObjC1 for a long time (and never will again), so
there isn't any reason to keep these separate. This patch replaces
LangOpts::ObjC1 and LangOpts::ObjC2 with LangOpts::ObjC.
Differential revision: https://reviews.llvm.org/D53547
llvm-svn: 345637
This allows users to specify SARIF (https://github.com/oasis-tcs/sarif-spec) as the output from the clang static analyzer so that the results can be read in by other tools, such as extensions to Visual Studio and VSCode, as well as static analyzers like CodeSonar.
llvm-svn: 345628
nullptr_t does not access memory.
We now reuse CK_NullToPointer to represent a conversion from a glvalue
of type nullptr_t to a prvalue of nullptr_t where necessary.
llvm-svn: 345562
The existing padding checker skips classes that have any base classes.
This patch allows the checker to traverse very simple cases:
classes that have no fields and have exactly one base class.
This is important mostly in the case of array declarations.
Patch by Max Bernstein!
Test plan: make check-all
Differential revision: https://reviews.llvm.org/D53206
llvm-svn: 345558
This has been a long time coming. Note the usage of AnalyzerOptions: I'll need
it for D52742, and added it in rC343620. The main motivation for this was that
I'll need to add yet another parameter to every single function, and some
functions would reach their 10th parameter with that change.
llvm-svn: 345531