A lot of comments in LLDB are surrounded by an ASCII line to delimit the
begging and end of the comment.
Its use is not really consistent across the code base, sometimes the
lines are longer, sometimes they are shorter and sometimes they are
omitted. Furthermore, it looks kind of weird with the 80 column limit,
where the comment actually extends past the line, but not by much.
Furthermore, when /// is used for Doxygen comments, it looks
particularly odd. And when // is used, it incorrectly gives the
impression that it's actually a Doxygen comment.
I assume these lines were added to improve distinguishing between
comments and code. However, given that todays editors and IDEs do a
great job at highlighting comments, I think it's worth to drop this for
the sake of consistency. The alternative is fixing all the
inconsistencies, which would create a lot more churn.
Differential revision: https://reviews.llvm.org/D60508
llvm-svn: 358135
Summary:
This is a preparatory step to enable adding extra unwind strategies by
symbol file plugins. This has been discussed on the lldb-dev mailing
list: <http://lists.llvm.org/pipermail/lldb-dev/2019-February/014703.html>.
Reviewers: jasonmolenda, clayborg, espindola
Subscribers: lemo, emaste, lldb-commits, arichardson
Differential Revision: https://reviews.llvm.org/D58129
llvm-svn: 354033
The `ap` suffix is a remnant of lldb's former use of auto pointers,
before they got deprecated. Although all their uses were replaced by
unique pointers, some variables still carried the suffix.
In r353795 I removed another auto_ptr remnant, namely redundant calls to
::get for unique_pointers. Jim justly noted that this is a good
opportunity to clean up the variable names as well.
I went over all the changes to ensure my find-and-replace didn't have
any undesired side-effects. I hope I didn't miss any, but if you end up
at this commit doing a git blame on a weirdly named variable, please
know that the change was unintentional.
llvm-svn: 353912
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This patch simplifies boolean expressions acorss LLDB. It was generated
using clang-tidy with the following command:
run-clang-tidy.py -checks='-*,readability-simplify-boolean-expr' -format -fix $PWD
Differential revision: https://reviews.llvm.org/D55584
llvm-svn: 349215
This re-commits r348592, which was reverted due to a failing test on
macos.
The issue was that I was passing a null pointer for the
"CreateMemoryInstance" callback when registering ObjectFileBreakpad,
which caused crashes when attemping to load modules from memory. The
correct thing to do is to pass a callback which always returns a null
pointer (as breakpad files are never loaded in inferior memory).
It turns out that there is only one test which exercises this code path,
and it's mac-only, so I've create a new test which should run everywhere
(except windows, as one cannot delete an executable which is being run).
Unfortunately, this test still fails on linux for other reasons, but at
least it gives us something to aim for.
The original commit message was:
This patch adds the scaffolding necessary for lldb to recognise symbol
files generated by breakpad. These (textual) files contain just enough
information to be able to produce a backtrace from a crash
dump. This information includes:
- UUID, architecture and name of the module
- line tables
- list of symbols
- unwind information
A minimal breakpad file could look like this:
MODULE Linux x86_64 0000000024B5D199F0F766FFFFFF5DC30 a.out
INFO CODE_ID 00000000B52499D1F0F766FFFFFF5DC3
FILE 0 /tmp/a.c
FUNC 1010 10 0 _start
1010 4 4 0
1014 5 5 0
1019 5 6 0
101e 2 7 0
PUBLIC 1010 0 _start
STACK CFI INIT 1010 10 .cfa: $rsp 8 + .ra: .cfa -8 + ^
STACK CFI 1011 $rbp: .cfa -16 + ^ .cfa: $rsp 16 +
STACK CFI 1014 .cfa: $rbp 16 +
Even though this data would normally be considered "symbol" information,
in the current lldb infrastructure it is assumed every SymbolFile object
is backed by an ObjectFile instance. So, in order to better interoperate
with the rest of the code (particularly symbol vendors).
In this patch I just parse the breakpad header, which is enough to
populate the UUID and architecture fields of the ObjectFile interface.
The rough plan for followup patches is to expose the individual parts of
the breakpad file as ObjectFile "sections", which can then be used by
other parts of the codebase (SymbolFileBreakpad ?) to vend the necessary
information.
Reviewers: clayborg, zturner, lemo, amccarth
Subscribers: mgorny, fedor.sergeev, markmentovai, lldb-commits
Differential Revision: https://reviews.llvm.org/D55214
llvm-svn: 348773
Summary:
This patch adds the scaffolding necessary for lldb to recognise symbol
files generated by breakpad. These (textual) files contain just enough
information to be able to produce a backtrace from a crash
dump. This information includes:
- UUID, architecture and name of the module
- line tables
- list of symbols
- unwind information
A minimal breakpad file could look like this:
MODULE Linux x86_64 0000000024B5D199F0F766FFFFFF5DC30 a.out
INFO CODE_ID 00000000B52499D1F0F766FFFFFF5DC3
FILE 0 /tmp/a.c
FUNC 1010 10 0 _start
1010 4 4 0
1014 5 5 0
1019 5 6 0
101e 2 7 0
PUBLIC 1010 0 _start
STACK CFI INIT 1010 10 .cfa: $rsp 8 + .ra: .cfa -8 + ^
STACK CFI 1011 $rbp: .cfa -16 + ^ .cfa: $rsp 16 +
STACK CFI 1014 .cfa: $rbp 16 +
Even though this data would normally be considered "symbol" information,
in the current lldb infrastructure it is assumed every SymbolFile object
is backed by an ObjectFile instance. So, in order to better interoperate
with the rest of the code (particularly symbol vendors).
In this patch I just parse the breakpad header, which is enough to
populate the UUID and architecture fields of the ObjectFile interface.
The rough plan for followup patches is to expose the individual parts of
the breakpad file as ObjectFile "sections", which can then be used by
other parts of the codebase (SymbolFileBreakpad ?) to vend the necessary
information.
Reviewers: clayborg, zturner, lemo, amccarth
Subscribers: mgorny, fedor.sergeev, markmentovai, lldb-commits
Differential Revision: https://reviews.llvm.org/D55214
llvm-svn: 348592
Test cases were updated to not use the local compilation dir which
is different between development pc and build bots.
Original commit message:
[LLDB] - Support the single file split DWARF.
DWARF5 spec describes a single file split dwarf case
(when .dwo sections are in the .o files).
Problem is that LLDB does not work correctly in that case.
The issue is that, for example, both .debug_info and .debug_info.dwo
has the same type: eSectionTypeDWARFDebugInfo. And when code searches
section by type it might find the regular debug section
and not the .dwo one.
The patch fixes that. With it, LLDB is able to work with
output compiled with -gsplit-dwarf=single flag correctly.
Differential revision: https://reviews.llvm.org/D52403
llvm-svn: 346855
DWARF5 spec describes a single file split dwarf case
(when .dwo sections are in the .o files).
Problem is that LLDB does not work correctly in that case.
The issue is that, for example, both .debug_info and .debug_info.dwo
has the same type: eSectionTypeDWARFDebugInfo. And when code searches
section by type it might find the regular debug section
and not the .dwo one.
The patch fixes that. With it, LLDB is able to work with
output compiled with -gsplit-dwarf=single flag correctly.
Differential revision: https://reviews.llvm.org/D52296
llvm-svn: 346848
This moves construction of data buffers into the FileSystem class. Like
some of the previous refactorings we don't translate the path yet
because the functionality hasn't been landed in LLVM yet.
Differential revision: https://reviews.llvm.org/D54272
llvm-svn: 346598
This patch removes the logic for resolving paths out of FileSpec and
updates call sites to rely on the FileSystem class instead.
Differential revision: https://reviews.llvm.org/D53915
llvm-svn: 345890
This patch removes the Exists method from FileSpec and updates its uses
with calls to the FileSystem.
Differential revision: https://reviews.llvm.org/D53845
llvm-svn: 345854
This patch removes the GetByteSize method from FileSpec and updates its
uses with calls to the FileSystem.
Differential revision: https://reviews.llvm.org/D53788
llvm-svn: 345812
This implements the support for .debug_loclists section, which is
DWARF 5 version of .debug_loc.
Currently, clang is able to emit it with the use of D53365.
Differential revision: https://reviews.llvm.org/D53436
llvm-svn: 345016
This adds a basic support of the .debug_rnglists section.
Only the DW_RLE_start_length and DW_RLE_end_of_list entries are supported.
Differential revision: https://reviews.llvm.org/D52981
llvm-svn: 344119
This patch improves the support of DWARF5.
Particularly the reporting of source code locations.
Differential revision: https://reviews.llvm.org/D51935
llvm-svn: 342153
If we have a function with signature f(addr_t, AddressClass), it is easy to muddle up the order of arguments without any warnings from compiler. 'enum class' prevents passing integer in place of AddressClass and vice versa.
llvm-svn: 335599
SetFile has an optional style argument which defaulted to the native
style. This patch makes that argument mandatory so clients of the
FileSpec class are forced to think about the correct syntax.
At the same time this introduces a (protected) convenience method to
update the file from within the FileSpec class that keeps the current
style.
These two changes together prevent a potential pitfall where the style
might be forgotten, leading to the path being updated and the style
unintentionally being changed to the host style.
llvm-svn: 334663
In an effort to make the .debug_types patch smaller, breaking out the part that reads the .debug_types from object files into a separate patch
Differential Revision: https://reviews.llvm.org/D46529
llvm-svn: 331777
This is intended as a clean up after the big clang-format commit
(r280751), which unfortunately resulted in many of the comment
paragraphs in LLDB being very hard to read.
FYI, the script I used was:
import textwrap
import commands
import os
import sys
import re
tmp = "%s.tmp"%sys.argv[1]
out = open(tmp, "w+")
with open(sys.argv[1], "r") as f:
header = ""
text = ""
comment = re.compile(r'^( *//) ([^ ].*)$')
special = re.compile(r'^((([A-Z]+[: ])|([0-9]+ )).*)|(.*;)$')
for line in f:
match = comment.match(line)
if match and not special.match(match.group(2)):
# skip intentionally short comments.
if not text and len(match.group(2)) < 40:
out.write(line)
continue
if text:
text += " " + match.group(2)
else:
header = match.group(1)
text = match.group(2)
continue
if text:
filled = textwrap.wrap(text, width=(78-len(header)),
break_long_words=False)
for l in filled:
out.write(header+" "+l+'\n')
text = ""
out.write(line)
os.rename(tmp, sys.argv[1])
Differential Revision: https://reviews.llvm.org/D46144
llvm-svn: 331197
The difference between this and the previous patch is that now we use
ELF physical addresses only for loading objects into the target (and the
rest of the module load address logic still uses virtual addresses).
Summary:
When writing an object file over gdb-remote, use the vFlashErase, vFlashWrite, and vFlashDone commands if the write address is in a flash memory region. A bare metal target may have this kind of setup.
- Update ObjectFileELF to set load addresses using physical addresses. A typical case may be a data section with a physical address in ROM and a virtual address in RAM, which should be loaded to the ROM address.
- Add support for querying the target's qXfer:memory-map, which contains information about flash memory regions, leveraging MemoryRegionInfo data structures with minor modifications
- Update ProcessGDBRemote to use vFlash commands in DoWriteMemory when the target address is in a flash region
Original discussion at http://lists.llvm.org/pipermail/lldb-dev/2018-January/013093.html
Reviewers: clayborg, labath
Reviewed By: labath
Subscribers: llvm-commits, arichardson, emaste, mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D42145
Patch by Owen Shaw <llvm@owenpshaw.net>.
llvm-svn: 327970
This reverts commit r326261 as it introduces inconsistencies in the
handling of load addresses for ObjectFileELF -- some parts of the class
use physical addresses, and some use virtual. This has manifested itself
as us not being able to set the load address of the vdso "module" on
android.
llvm-svn: 326367
Summary:
When writing an object file over gdb-remote, use the vFlashErase, vFlashWrite, and vFlashDone commands if the write address is in a flash memory region. A bare metal target may have this kind of setup.
- Update ObjectFileELF to set load addresses using physical addresses. A typical case may be a data section with a physical address in ROM and a virtual address in RAM, which should be loaded to the ROM address.
- Add support for querying the target's qXfer:memory-map, which contains information about flash memory regions, leveraging MemoryRegionInfo data structures with minor modifications
- Update ProcessGDBRemote to use vFlash commands in DoWriteMemory when the target address is in a flash region
Original discussion at http://lists.llvm.org/pipermail/lldb-dev/2018-January/013093.html
Reviewers: clayborg, labath
Reviewed By: labath
Subscribers: arichardson, emaste, mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D42145
Patch by Owen Shaw <llvm@owenpshaw.net>
llvm-svn: 326261
Summary:
We sometimes need to write to the object file we've mapped into memory,
generally to apply relocations to debug info sections. We've had that
ability before, but with the introduction of DataBufferLLVM, we have
lost it, as the underlying llvm class (MemoryBuffer) only supports
read-only mappings.
This switches DataBufferLLVM to use the new llvm::WritableMemoryBuffer
class as a back-end, as this one guarantees to return a writable buffer.
This removes the need for the "Private" flag to the DataBufferLLVM
creation functions, as it was really used to mean "writable". The LLVM
function also does not have the NullTerminate flag, so I've modified our
clients to not require this feature and removed that flag as well.
Reviewers: zturner, clayborg, jingham
Subscribers: emaste, aprantl, arichardson, krytarowski, lldb-commits
Differential Revision: https://reviews.llvm.org/D40079
llvm-svn: 321255
Summary:
These two functions were calling each other, while handling different
branches of the if(IsInMemory()). This had a reason at some point in the
past, but right now it's just confusing.
I resolve this by removing the MemoryMapSectionData function and
inlining the !IsInMemory branch into ReadSectionData. There isn't
anything mmap-related in this function anyway, as the decision whether
to mmap is handled at a higher level.
This is a preparatory step to make ObjectFileELF be able to decompress
compressed sections (I want to make sure that all calls reading section
data are routed through a single piece of code).
Reviewers: clayborg
Subscribers: emaste, JDevlieghere, lldb-commits
Differential Revision: https://reviews.llvm.org/D41169
llvm-svn: 320705
FreeBSD kernel modules are actually relocatable (.o) ELF files and this
previously caused some issues for LLDB. This change addresses these when
using lldb to symbolicate FreeBSD kernel backtraces.
The major problems:
- Relocations were not being applied to the DWARF debug info despite
there being code to do this. Several issues prevented it from working:
- Relocations are computed at the same time as the symbol table, but
in the case of split debug files, symbol table parsing always
redirects to the primary object file, meaning that relocations would
never be applied in the debug file.
- There's actually no guarantee that the symbol table has been parsed
yet when trying to parse debug information.
- When actually applying relocations, it will segfault because the
object files are not mapped with MAP_PRIVATE and PROT_WRITE.
- LLDB returned invalid results when performing ordinary address-to-
symbol resolution. It turned out that the addresses specified in the
section headers were all 0, so LLDB believed all the sections had
overlapping "file addresses" and would sometimes return a symbol from
the wrong section.
Patch by Brian Koropoff
Differential Revision: https://reviews.llvm.org/D38142
llvm-svn: 314672
Summary:
The DWP (DWARF package) format is used to pack multiple dwo files
generated by split-dwarf into a single ELF file to make distributing
them easier. It is part of the DWARFv5 spec and can be generated by
dwp or llvm-dwp from a set of dwo files.
Caviats:
* Only the new version of the dwp format is supported (v2 in GNU
numbering schema and v5 in the DWARF spec). The old version (v1) is
already deprecated but binutils 2.24 still generates that one.
* Combining DWP files with module debugging is not yet supported.
Subscribers: emaste, mgorny, aprantl
Differential Revision: https://reviews.llvm.org/D36062
llvm-svn: 311775
Summary:
The classes have no dependencies, and they are used both by lldb and
lldb-server, so it makes sense for them to live in the lowest layers.
Reviewers: zturner, jingham
Subscribers: emaste, mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D34746
llvm-svn: 306682
The Timer destructor would grab a global mutex in order to update
execution time. Add a class to define a category once, statically; the
class adds itself to an atomic singly linked list, and thus subsequent
updates only need to use an atomic rather than grab a lock and perform a
hashtable lookup.
Differential Revision: https://reviews.llvm.org/D32823
Patch by Scott Smith <scott.smith@purestorage.com>.
llvm-svn: 303058
This renames the LLDB error class to Status, as discussed
on the lldb-dev mailing list.
A change of this magnitude cannot easily be done without
find and replace, but that has potential to catch unwanted
occurrences of common strings such as "Error". Every effort
was made to find all the obvious things such as the word "Error"
appearing in a string, etc, but it's possible there are still
some lingering occurences left around. Hopefully nothing too
serious.
llvm-svn: 302872
This functionality is subsumed by DataBufferLLVM, which is
also more efficient since it will try to mmap. However, we
don't yet support mmaping writable private sections, and in
some cases we were using ReadFileContents and then modifying
the buffer. To address that I've added a flag to the
DataBufferLLVM methods that allow you to map privately, which
disables the mmaping path entirely. Eventually we should teach
DataBufferLLVM to use mmap with writable private, but that is
orthogonal to this effort.
Differential Revision: https://reviews.llvm.org/D30622
llvm-svn: 297095
All references to Host and Core have been removed, so this
class can now safely be lowered into Utility.
Differential Revision: https://reviews.llvm.org/D30559
llvm-svn: 296909
This moves the following classes from Core -> Utility.
ConstString
Error
RegularExpression
Stream
StreamString
The goal here is to get lldbUtility into a state where it has
no dependendencies except on itself and LLVM, so it can be the
starting point at which to start untangling LLDB's dependencies.
These are all low level and very widely used classes, and
previously lldbUtility had dependencies up to lldbCore in order
to use these classes. So moving then down to lldbUtility makes
sense from both the short term and long term perspective in
solving this problem.
Differential Revision: https://reviews.llvm.org/D29427
llvm-svn: 293941
Summary: This commit adds an option to set PC to the entry point of the file loaded using "target module load" command. In D28804, Greg asked me to separate this part under a different option.
Reviewers: clayborg
Reviewed By: clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D28944
llvm-svn: 292989
For bare-metal targets, lldb was missing a command like 'load' in gdb
which can be used to create executable image on the target. This was
discussed in
http://lists.llvm.org/pipermail/lldb-dev/2016-December/011752.html
This commits adds an option to "target module load" command to provide
that functionality. It does not set the PC to entry address which will
be done separately.
Reviewed in https://reviews.llvm.org/D28804
llvm-svn: 292499
This is a large API change that removes the two functions from
StreamString that return a std::string& and a const std::string&,
and instead provide one function which returns a StringRef.
Direct access to the underlying buffer violates the concept of
a "stream" which is intended to provide forward only access,
and makes porting to llvm::raw_ostream more difficult in the
future.
Differential Revision: https://reviews.llvm.org/D26698
llvm-svn: 287152
This updates getters and setters to use StringRef instead of
const char *. I tested the build on Linux, Windows, and OSX
and saw no build or test failures. I cannot test any BSD
or Android variants, however I expect the required changes
to be minimal or non-existant.
llvm-svn: 282079
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
It's always hard to remember when to include this file, and
when you do include it it's hard to remember what preprocessor
check it needs to be behind, and then you further have to remember
whether it's windows.h or win32.h which you need to include.
This patch changes the name to PosixApi.h, which is more appropriately
named, and makes it independent of any preprocessor setting.
There's still the issue of people not knowing when to include this,
because there's not a well-defined set of things it exposes other
than "whatever is missing on Windows", but at least this should
make it less painful to fix when problems arise.
This patch depends on LLVM revision r278170.
llvm-svn: 278177