This is used by llvm tblgen as well as by LLVM Targets, so the only
common place is Support for now. (maybe we need another target for these
sorts of things - but for now I'm at least making them correct & we can
make them better if/when people have strong feelings)
llvm-svn: 328395
r327171 "Improve Dependency analysis when doing multi-node Instruction Selection"
r328170 "[DAG] Enforce stricter NodeId invariant during Instruction selection"
Reverting patch as NodeId invariant change is causing pathological
increases in compile time on PPC
llvm-svn: 327197
Instruction Selection makes use of the topological ordering of nodes
by node id (a node's operands have smaller node id than it) when doing
cycle detection. During selection we may violate this property as a
selection of multiple nodes may induce a use dependence (and thus a
node id restriction) between two unrelated nodes. If a selected node
has an unselected successor this may allow us to miss a cycle in
detection an invalid selection.
This patch fixes this by marking all unselected successors of a
selected node have negated node id. We avoid pruning on such negative
ids but still can reconstruct the original id for pruning.
In-tree targets have been updated to replace DAG-level replacements
with ISel-level ones which enforce this property.
This preemptively fixes PR36312 before triggering commit r324359 relands
Reviewers: craig.topper, bogner, jyknight
Subscribers: arsenm, nhaehnle, javed.absar, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D43198
llvm-svn: 327170
Note: This is a candidate for LLVM 6.0, because it was planned to be
in that release but was delayed due to a long review period.
Merge conflict in release_60 - resolution:
Add "-p6:32:32" into the second (non-amdgiz) string.
Only scalar loads support 32-bit pointers. An address in a VGPR will
fail to compile. That's OK because the results of loads will only be used
in places where VGPRs are forbidden.
Updated AMDGPUAliasAnalysis and used SReg_64_XEXEC.
The tests cover all uses cases we need for Mesa.
Reviewers: arsenm, nhaehnle
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D41651
llvm-svn: 324487
Summary:
I had a case where multiple nested uniform ifs resulted in code that did
v_cmp comparisons, combining the results with s_and_b64, s_or_b64 and
s_xor_b64 and using the resulting mask in s_cbranch_vccnz, without first
ensuring that bits for inactive lanes were clear.
There was already code for inserting an "s_and_b64 vcc, exec, vcc" to
clear bits for inactive lanes in the case that the branch is instruction
selected as s_cbranch_scc1 and is then changed to s_cbranch_vccnz in
SIFixSGPRCopies. I have added the same code into SILowerControlFlow for
the case that the branch is instruction selected as s_cbranch_vccnz.
This de-optimizes the code in some cases where the s_and is not needed,
because vcc is the result of a v_cmp, or multiple v_cmp instructions
combined by s_and/s_or. We should add a pass to re-optimize those cases.
Reviewers: arsenm, kzhuravl
Subscribers: wdng, yaxunl, t-tye, llvm-commits, dstuttard, timcorringham, nhaehnle
Differential Revision: https://reviews.llvm.org/D41292
llvm-svn: 322119
Move the entire optimization to one place. Before it was possible
to adjust dmask without changing the register class of the output
instruction, since they were done in separate places. Fix all
lane sizes and move all of the optimization into the DAG folding.
llvm-svn: 319705
GFX9 does not enable bounds checking for the resource descriptors
used for private access, so it should be OK to use vaddr with
a potentially negative value.
llvm-svn: 319393
GFX9 stopped using m0 for most DS instructions. Select
a different instruction without the use. I think this will
be less error prone than trying to manually maintain m0
uses as needed.
llvm-svn: 319270
Use VOP3 add/addc like usual.
This has some tradeoffs. Inline immediates fold
a little better, but other constants are worse off.
SIShrinkInstructions could be made smarter to handle
these cases.
This allows us to avoid selecting scalar adds where we
need to track the carry in scc and replace its users.
This makes it easier to use the carryless VALU adds.
llvm-svn: 318340
opt-bisect/optnone disable the AMDGPUUniformAnnotateValues pass.
The heuristic in the custom selector for brcond deferred the
branch uniformity check to the pattern, which would fail.
llvm-svn: 315360
Summary:
Atomic buffer operations do not work (and trap on gfx9) when the
components are unaligned, even if their sum is aligned.
Previously, we generated an offset of 4156 without an SGPR by
splitting it as 4095 + 61 (immediate + inline constant). The
highest offset for which we can do this correctly is 4156 = 4092 + 64.
Fixes dEQP-GLES31.functional.ssbo.atomic.*
Reviewers: arsenm
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, llvm-commits, t-tye
Differential Revision: https://reviews.llvm.org/D37850
llvm-svn: 315302
Also add some tests that should be able to use v_mad_mixhi_f16,
but do not yet. This is trickier because we don't really model
the partial update of the register done by 16-bit instructions.
llvm-svn: 313806
Also starts selecting global loads for constant address
in some cases. Some end up selecting to mubuf still, which
requires investigation.
We still get sub-optimal regalloc and extra waitcnts inserted
due to not really tracking the liveness of the separate register
halves.
llvm-svn: 313716
Summary: This refactoring is required in order to split the R600 and GCN tablegen files.
Reviewers: arsenm
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, tpr, llvm-commits, t-tye
Differential Revision: https://reviews.llvm.org/D36286
llvm-svn: 310336
Move the _RTN to the end of the name. It reads
better if the other addressing mode components
line up with the non-RTN version. It is also
more convenient to define saddr variants of
FLAT atomics to have the RTN last, and it is
good to have a consistent naming scheme.
llvm-svn: 308674
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
This reverts commit e065977c4b5f68ab845400b256f6a3822b1325fa.
It doesn't work. S_LOAD_DWORD_IMM_ci and friends aren't selected by any of
the patterns, so it was putting 32-bit literals into the 8-bit field.
llvm-svn: 303754
This is just a cleanup. Also, it adds checking that ByteCount is aligned to 4.
Reviewers: arsenm, nhaehnle, tstellarAMD
Subscribers: kzhuravl, wdng, yaxunl, tony-tye
Differential Revision: https://reviews.llvm.org/D28994
llvm-svn: 303658
Check the MachinePointerInfo for whether the access is
supposed to be relative to the stack pointer.
No tests because this is used in later commits implementing
calls.
llvm-svn: 303301
Avoids instructions to pack a vector when the source is really
a scalar being broadcast.
Also be smarter and look for per-component fneg.
Doesn't yet handle scalar from upper half of register
or other swizzles.
llvm-svn: 303291
We don't use it and it was removed in gfx9, and the encoding
bit repurposed.
Additionally actually using it requires changing the output register
class, which wasn't done anyway.
llvm-svn: 302814
In call sequence setups, there may not be a frame index base
and the pointer is a constant offset from the frame
pointer / scratch wave offset register.
llvm-svn: 301230
Enabled clamp and omod for v_cvt_* opcodes which have src0 of an integer type
Reviewers: vpykhtin, arsenm
Differential Revision: https://reviews.llvm.org/D31327
llvm-svn: 298852
As we introduced target triple environment amdgiz and amdgizcl, the address
space values are no longer enums. We have to decide the value by target triple.
The basic idea is to use struct AMDGPUAS to represent address space values.
For address space values which are not depend on target triple, use static
const members, so that they don't occupy extra memory space and is equivalent
to a compile time constant.
Since the struct is lightweight and cheap, it can be created on the fly at
the point of usage. Or it can be added as member to a pass and created at
the beginning of the run* function.
Differential Revision: https://reviews.llvm.org/D31284
llvm-svn: 298846
I think this is safe as long as no inputs are known to ever
be nans.
Also add an intrinsic for fmed3 to be able to handle all safe
math cases.
llvm-svn: 293598
m0 may need to be written for spill code, so
we don't want general code uses relying on the
value stored in it.
This introduces a few code quality regressions where copies
from m0 are not coalesced into copies of a copy of m0.
llvm-svn: 287841
Summary:
This will be used for 64-bit MULHU, which is in turn used for the 64-bit
divide-by-constant optimization (see D24822).
Reviewers: arsenm, tstellarAMD
Subscribers: kzhuravl, wdng, yaxunl, llvm-commits, tony-tye
Differential Revision: https://reviews.llvm.org/D25289
llvm-svn: 284224
We were trying to avoid using a FrameIndex operand in non-pointer
operands in a convoluted way, and would break because of
using TargetFrameIndex. The TargetFrameIndex should only be used
in the case where it makes sense to fold it as part of the addressing
mode, otherwise it requires materialization like a normal constant.
This wasn't working reliably and failed in the added testcase, hitting
the assert when processing the frame index.
The TargetFrameIndex was coming from trying to produce an AssertZext
limiting the maximum stack size. I'm not sure this was correct to begin
with, because it is apparently possible to have a single workitem
dispatch that requires all 4G of private memory.
llvm-svn: 281824
Summary:
Previously, constant index insertelements would be turned into SI_INDIRECT_DST,
which is bound to prevent some optimization opportunities. Worse, it mislead
the heuristic that decides whether immediates should be lowered to S_MOV_B32
or V_MOV_B32 in a way that resulted in unnecessary v_readfirstlanes.
Reviewers: arsenm, tstellarAMD
Subscribers: arsenm, kzhuravl, llvm-commits
Differential Revision: http://reviews.llvm.org/D22217
llvm-svn: 275160
Summary:
These have been replaced with TableGen code (except for isConstantLoad,
which is still used for R600). The queries were broken for cases
where MemOperand was a PseudoSourceValue.
Reviewers: arsenm
Subscribers: arsenm, kzhuravl, llvm-commits
Differential Revision: http://reviews.llvm.org/D21684
llvm-svn: 274561
Summary:
The isGlobalLoad() query was returning true for constant address space loads
with memory types less than 32-bits, which is wrong. This logic has been
replaced with PatFrag in the TableGen files, to provide the same functionality.
Reviewers: arsenm
Subscribers: arsenm, kzhuravl, llvm-commits
Differential Revision: http://reviews.llvm.org/D21696
llvm-svn: 274521
Split AMDGPUSubtarget into amdgcn/r600 specific subclasses.
This removes most of the static_casting of the basic codegen
classes everywhere, and tries to restrict the features
visible on the wrong target.
llvm-svn: 273652
Summary:
This fixes two related bugs. First, the generic optimization passes
unfortunately generate negative constant offsets but the hardware treats
SOffset as an unsigned value.
Second, there is a hardware bug on SI and CI, where address clamping in MUBUF
instructions does not work correctly when SOffset is larger than the buffer
size. This patch works around this bug by never using SOffset.
An alternative workaround would be to do the clamping manually when SOffset
is too large, but generating the required code sequence during instruction
selection would be rather involved, and in any case the resulting code would
probably be worse.
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=96360
Reviewers: arsenm, tstellarAMD
Subscribers: arsenm, llvm-commits, kzhuravl
Differential Revision: http://reviews.llvm.org/D21326
llvm-svn: 272761
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.
llvm-svn: 272512
Summary:
This fixes a bug with ds_*permute instructions where if it was passed a
constant address, then the offset operand would get assigned a register
operand instead of an immediate.
Reviewers: scchan, arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D19994
llvm-svn: 272349
This was using extract_subreg sub0 to extract the low register
of the result instead of sub0_sub1, producing an invalid copy.
There doesn't seem to be a way to use the compound subreg indices
in tablegen since those are generated, so manually select it.
llvm-svn: 272344
- Where we were returning a node before, call ReplaceNode instead.
- Where we would return null to fall back to another selector, rename
the method to try* and return a bool for success.
- Where we were calling SelectNodeTo, just return afterwards.
Part of llvm.org/pr26808.
llvm-svn: 269349
This is a step towards removing the rampant undefined behaviour in
SelectionDAG, which is a part of llvm.org/PR26808.
We rename SelectionDAGISel::Select to SelectImpl and update targets to
match, and then change Select to return void and consolidate the
sketchy behaviour we're trying to get away from there.
Next, we'll update backends to implement `void Select(...)` instead of
SelectImpl and eventually drop the base Select implementation.
llvm-svn: 268693
Now that unaligned access expansion should not attempt
to produce i64 accesses, we can remove the hack in
PreprocessISelDAG where this is done.
This allows splitting i64 private accesses while
allowing the new add nodes indexing the vector components
can be folded with the base pointer arithmetic.
llvm-svn: 268293
Summary:
These instructions can add an immediate offset to the address, like other
ds instructions.
Reviewers: arsenm
Subscribers: arsenm, scchan
Differential Revision: http://reviews.llvm.org/D19233
llvm-svn: 268043