Summary:
According to the ARMARM, the VQDMLADH, VQRDMLADH, VQDMLSDH and
VQRDMLSDH instructions handle their results as follows: "The base
variant writes the results into the lower element of each pair of
elements in the destination register, whereas the exchange variant
writes to the upper element in each pair". I.e., the initial content
of the output register affects the result, as usual, we model this
with an additional input.
Also, for 32-bit variants Qd is not allowed to be the same register as
Qm and Qn, we use @earlyclobber to indicate this.
This patch also changes vpred_r to vpred_n because the instructions
don't have an explicit 'inactive' operand.
Reviewers: dmgreen, ostannard, simon_tatham
Reviewed By: simon_tatham
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64007
llvm-svn: 364796
Backend changes to enable WLS/LE low-overhead loops for armv8.1-m:
1) Use TTI to communicate to the HardwareLoop pass that we should try
to generate intrinsics that guard the loop entry, as well as setting
the loop trip count.
2) Lower the BRCOND that uses said intrinsic to an Arm specific node:
ARMWLS.
3) ISelDAGToDAG the node to a new pseudo instruction:
t2WhileLoopStart.
4) Add support in ArmLowOverheadLoops to handle the new pseudo
instruction.
Differential Revision: https://reviews.llvm.org/D63816
llvm-svn: 364733
MVE adds the lsll, lsrl and asrl instructions, which perform a shift on a 64 bit value separated into two 32 bit registers.
The Expand64BitShift function is modified to accept ISD::SHL, ISD::SRL and ISD::SRA and convert it into the appropriate opcode in ARMISD. An SHL is converted into an lsll, an SRL is converted into an lsrl for the immediate form and a negation and lsll for the register form, and SRA is converted into an asrl.
test/CodeGen/ARM/shift_parts.ll is added to test the logic of emitting these instructions.
Differential Revision: https://reviews.llvm.org/D63430
llvm-svn: 364654
This simply adds integer and floating point VMUL patterns for MVE, same as we
have add and sub.
Differential Revision: https://reviews.llvm.org/D63866
llvm-svn: 364643
This adds handling and tests for a number of floating point math routines,
which have no MVE instructions.
Differential Revision: https://reviews.llvm.org/D63725
llvm-svn: 364641
MVE has instructions to widen as it loads, and narrow as it stores. This adds
the required patterns and legalisation to make them work including specifying
that they are legal, patterns to select them and test changes.
Patch by David Sherwood.
Differential Revision: https://reviews.llvm.org/D63839
llvm-svn: 364636
This fills in the gaps for basic MVE loads and stores, allowing unaligned
access and adding far too many tests. These will become important as
narrowing/expanding and pre/post inc are added. Big endian might still not be
handled very well, because we have not yet added bitcasts (and I'm not sure how
we want it to work yet). I've included the alignment code anyway which maps
with our current patterns. We plan to return to that later.
Code written by Simon Tatham, with additional tests from Me and Mikhail Maltsev.
Differential Revision: https://reviews.llvm.org/D63838
llvm-svn: 364633
We don't have vector operations for these, so they need to be expanded for both
integer and float.
Differential Revision: https://reviews.llvm.org/D63595
llvm-svn: 364631
The same as integer arithmetic, we can add simple floating point MVE addition and
subtraction patterns.
Initial code by David Sherwood
Differential Revision: https://reviews.llvm.org/D63257
llvm-svn: 364629
This adds the first few patterns for MVE code generation, adding simple integer
add and sub patterns.
Initial code by David Sherwood
Differential Revision: https://reviews.llvm.org/D63255
llvm-svn: 364627
This patch adds necessary shuffle vector and buildvector support for ARM MVE.
It essentially adds support for VDUP, VREVs and some VMOVs, which are often
required by other code (like upcoming patches).
This mostly uses the same code from Neon that already generated
NEONvdup/NEONvduplane/NEONvrev's. These have been renamed to ARMvdup/etc and
moved to ARMInstrInfo as they are common to both architectures. Most of the
selection code seems to be applicable to both, but NEON does have some more
instructions making some parts specific.
Most code originally by David Sherwood.
Differential Revision: https://reviews.llvm.org/D63567
llvm-svn: 364626
The code to generate register move instructions in and out of VPR and
FPSCR_NZCV had assertions checking that the other register involved
was a GPR _pair_, instead of a single GPR as it should have been.
Reviewers: miyuki, ostannard
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63865
llvm-svn: 364534
The BF and WLS/WLSTP instructions have various branch-offset fields
occupying different positions and lengths in the instruction encoding,
and all of them were decoded at disassembly time by the function
DecodeBFLabelOffset() which returned SoftFail if the offset was zero.
In fact, it's perfectly fine and not even a SoftFail for most of those
offset fields to be zero. The only one that can't be zero is the 4-bit
field labelled `boff` in the architecture spec, occupying bits {26-23}
of the BF instruction family. If that one is zero, the encoding
overlaps other instructions (WLS, DLS, LETP, VCTP), so it ought to be
a full Fail.
Fixed by adding an extra template parameter to DecodeBFLabelOffset
which controls whether a zero offset is accepted or rejected. Adjusted
existing tests (only in error messages for bad disassemblies); added
extra tests to demonstrate zero offsets being accepted in all the
right places, and a few demonstrating rejection of zero `boff`.
Reviewers: DavidSpickett, ostannard
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63864
llvm-svn: 364533
Different versions of the Arm architecture disallow the use of generic
coprocessor instructions like MCR and CDP on different sets of
coprocessors. This commit centralises the check of the coprocessor
number so that it's consistent between assembly and disassembly, and
also updates it for the new restrictions in Arm v8.1-M.
New tests added that check all the coprocessor numbers; old tests
updated, where they used a number that's now become illegal in the
context in question.
Reviewers: DavidSpickett, ostannard
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63863
llvm-svn: 364532
In the `CSEL Rd,Rm,Rn` instruction family (also including CSINC, CSINV
and CSNEG), the architecture lists it as CONSTRAINED UNPREDICTABLE
(i.e. SoftFail) to use SP in the Rd or Rm slot, but outright illegal
to use it in the Rn slot, not least because some encodings of that
form are used by MVE instructions such as UQRSHLL.
MC was treating all three slots the same, as SoftFail. So the only
reason UQRSHLL was disassembled correctly at all was because the MVE
decode table is separate from the Thumb2 one and takes priority; if
you turned off MVE, then encodings such as `[0x5f,0xea,0x0d,0x83]`
would disassemble as spurious CSELs.
Fixed by inventing another version of the `GPRwithZR` register class,
which disallows SP completely instead of just SoftFailing it.
Reviewers: DavidSpickett, ostannard
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63862
llvm-svn: 364531
Change the interface of CallLowering::lowerCall to accept several
virtual registers for each argument, instead of just one. This is a
follow-up to D46018.
CallLowering::lowerReturn was similarly refactored in D49660 and
lowerFormalArguments in D63549.
With this change, we no longer pack the virtual registers generated for
aggregates into one big lump before delegating to the target. Therefore,
the target can decide itself whether it wants to handle them as separate
pieces or use one big register.
ARM and AArch64 have been updated to use the passed in virtual registers
directly, which means we no longer need to generate so many
merge/extract instructions.
NFCI for AMDGPU, Mips and X86.
Differential Revision: https://reviews.llvm.org/D63551
llvm-svn: 364512
Change the interface of CallLowering::lowerCall to accept several
virtual registers for the call result, instead of just one. This is a
follow-up to D46018.
CallLowering::lowerReturn was similarly refactored in D49660 and
lowerFormalArguments in D63549.
With this change, we no longer pack the virtual registers generated for
aggregates into one big lump before delegating to the target. Therefore,
the target can decide itself whether it wants to handle them as separate
pieces or use one big register.
ARM and AArch64 have been updated to use the passed in virtual registers
directly, which means we no longer need to generate so many
merge/extract instructions.
NFCI for AMDGPU, Mips and X86.
Differential Revision: https://reviews.llvm.org/D63550
llvm-svn: 364511
Change the interface of CallLowering::lowerFormalArguments to accept
several virtual registers for each formal argument, instead of just one.
This is a follow-up to D46018.
CallLowering::lowerReturn was similarly refactored in D49660. lowerCall
will be refactored in the same way in follow-up patches.
With this change, we forward the virtual registers generated for
aggregates to CallLowering. Therefore, the target can decide itself
whether it wants to handle them as separate pieces or use one big
register. We also copy the pack/unpackRegs helpers to CallLowering to
facilitate this.
ARM and AArch64 have been updated to use the passed in virtual registers
directly, which means we no longer need to generate so many
merge/extract instructions.
AArch64 seems to have had a bug when lowering e.g. [1 x i8*], which was
put into a s64 instead of a p0. Added a test-case which illustrates the
problem more clearly (it crashes without this patch) and fixed the
existing test-case to expect p0.
AMDGPU has been updated to unpack into the virtual registers for
kernels. I think the other code paths fall back for aggregates, so this
should be NFC.
Mips doesn't support aggregates yet, so it's also NFC.
x86 seems to have code for dealing with aggregates, but I couldn't find
the tests for it, so I just added a fallback to DAGISel if we get more
than one virtual register for an argument.
Differential Revision: https://reviews.llvm.org/D63549
llvm-svn: 364510
Allow CallLowering::ArgInfo to contain more than one virtual register.
This is useful when passes split aggregates into several virtual
registers, but need to also provide information about the original type
to the call lowering. Used in follow-up patches.
Differential Revision: https://reviews.llvm.org/D63548
llvm-svn: 364509
The current implementation of ThumbRegisterInfo::saveScavengerRegister
is bad for two reasons: one, it's buggy, and two, it blocks using R12
for other optimizations. So this patch gets rid of it, and adds the
necessary support for using an ordinary emergency spill slot on Thumb1.
(Specifically, I think saveScavengerRegister was broken by r305625, and
nobody noticed for two years because the codepath is almost never used.
The new code will also probably not be used much, but it now has better
tests, and if we fail to emit a necessary emergency spill slot we get a
reasonable error message instead of a miscompile.)
A rough outline of the changes in the patch:
1. Gets rid of ThumbRegisterInfo::saveScavengerRegister.
2. Modifies ARMFrameLowering::determineCalleeSaves to allocate an
emergency spill slot for Thumb1.
3. Implements useFPForScavengingIndex, so the emergency spill slot isn't
placed at a negative offset from FP on Thumb1.
4. Modifies the heuristics for allocating an emergency spill slot to
support Thumb1. This includes fixing ExtraCSSpill so we don't try to
use "lr" as a substitute for allocating an emergency spill slot.
5. Allocates a base pointer in more cases, so the emergency spill slot
is always accessible.
6. Modifies ARMFrameLowering::ResolveFrameIndexReference to compute the
right offset in the new cases where we're forcing a base pointer.
7. Ensures we never generate a load or store with an offset outside of
its frame object. This makes the heuristics more straightforward.
8. Changes Thumb1 prologue and epilogue emission so it never uses
register scavenging.
Some of the changes to the emergency spill slot heuristics in
determineCalleeSaves affect ARM/Thumb2; hopefully, they should allow
the compiler to avoid allocating an emergency spill slot in cases
where it isn't necessary. The rest of the changes should only affect
Thumb1.
Differential Revision: https://reviews.llvm.org/D63677
llvm-svn: 364490
Summary:
The getFixupKindContainerSizeBytes function returns the size of the
instruction containing a given fixup. Currently fixup_arm_pcrel_9 is
not handled in this function, this causes an assertion failure in
the debug build and incorrect codegen in the release build.
This patch fixes the problem.
Reviewers: ostannard, simon_tatham
Reviewed By: ostannard
Subscribers: javed.absar, kristof.beyls, hiraditya, pbarrio, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63778
llvm-svn: 364404
"To" selects an odd-numbered GPR, and "Te" an even one. There are some
8.1-M instructions that have one too few bits in their register fields
and require registers of particular parity, without necessarily using
a consecutive even/odd pair.
Also, the constraint letter "t" should select an MVE q-register, when
MVE is present. This didn't need any source changes, but some extra
tests have been added.
Reviewers: dmgreen, samparker, SjoerdMeijer
Subscribers: javed.absar, eraman, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D60709
llvm-svn: 364331
This provides the low-level support to start using MVE vector types in
LLVM IR, loading and storing them, passing them to __asm__ statements
containing hand-written MVE vector instructions, and *if* you have the
hard-float ABI turned on, using them as function parameters.
(In the soft-float ABI, vector types are passed in integer registers,
and combining all those 32-bit integers into a q-reg requires support
for selection DAG nodes like insert_vector_elt and build_vector which
aren't implemented yet for MVE. In fact I've also had to add
`arm_aapcs_vfpcc` to a couple of existing tests to avoid that
problem.)
Specifically, this commit adds support for:
* spills, reloads and register moves for MVE vector registers
* ditto for the VPT predication mask that lives in VPR.P0
* make all the MVE vector types legal in ISel, and provide selection
DAG patterns for BITCAST, LOAD and STORE
* make loads and stores of scalar FP types conditional on
`hasFPRegs()` rather than `hasVFP2Base()`. As a result a few
existing tests needed their llc command lines updating to use
`-mattr=-fpregs` as their method of turning off all hardware FP
support.
Reviewers: dmgreen, samparker, SjoerdMeijer
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60708
llvm-svn: 364329
The expensive buildbots highlighted the mir tests were broken, which
I've now updated and added --verify-machineinstrs to them. This also
uncovered a couple of bugs in the backend pass, so these have also
been fixed.
llvm-svn: 364323
Including both 'case ARM_AM::uxtw' and 'default' in the getShiftOp
switch caused a buildbot to fail with
error: default label in switch which covers all enumeration values [-Werror,-Wcovered-switch-default]
llvm-svn: 364300
A minor iteration on the MVE VPT Block pass to enable more efficient VPT Block
code generation: consecutive VPT predicated statements, predicated on the same
condition, will be placed within the same VPT Block. This essentially is also
an exercise to write some more tests for the next step, which should be more
generic also merging instructions when they are not consecutive.
Differential Revision: https://reviews.llvm.org/D63711
llvm-svn: 364298
If an FP_EXTEND or FP_ROUND isel dag node converts directly between
f16 and f32 when the target CPU has no instruction to do it in one go,
it has to be done in two steps instead, going via f32.
Previously, this was done implicitly, because all such CPUs had the
storage-only implementation of f16 (i.e. the only thing you can do
with one at all is to convert it to/from f32). So isel would legalize
the f16 into an f32 as soon as it saw it, by inserting an fp16_to_fp
node (or vice versa), and then the fp_extend would already be f32->f64
rather than f16->f64.
But that technique can't support a target CPU which has full f16
support but _not_ f64, such as some variants of Arm v8.1-M. So now we
provide custom lowering for FP_EXTEND and FP_ROUND, which checks
support for f16 and f64 and decides on the best thing to do given the
combination of flags it gets back.
Reviewers: dmgreen, samparker, SjoerdMeijer
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60692
llvm-svn: 364294
This final batch includes the tail-predicated versions of the
low-overhead loop instructions (LETP); the VPSEL instruction to select
between two vector registers based on the predicate mask without
having to open a VPT block; and VPNOT which complements the predicate
mask in place.
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62681
llvm-svn: 364292
This adds the rest of the vector memory access instructions. It
includes contiguous loads/stores, with an ordinary addressing mode
such as [r0,#offset] (plus writeback variants); gather loads and
scatter stores with a scalar base address register and a vector of
offsets from it (written [r0,q1] or similar); and gather/scatters with
a vector of base addresses (written [q0,#offset], again with
writeback). Additionally, some of the loads can widen each loaded
value into a larger vector lane, and the corresponding stores narrow
them again.
To implement these, we also have to add the addressing modes they
need. Also, in AsmParser, the `isMem` query function now has
subqueries `isGPRMem` and `isMVEMem`, according to which kind of base
register is used by a given memory access operand.
I've also had to add an extra check in `checkTargetMatchPredicate` in
the AsmParser, without which our last-minute check of `rGPR` register
operands against SP and PC was failing an assertion because Tablegen
had inserted an immediate 0 in place of one of a pair of tied register
operands. (This matches the way the corresponding check for `MCK_rGPR`
in `validateTargetOperandClass` is guarded.) Apparently the MVE load
instructions were the first to have ever triggered this assertion, but
I think only because they were the first to have a combination of the
usual Arm pre/post writeback system and the `rGPR` class in particular.
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62680
llvm-svn: 364291
Introduce three pseudo instructions to be used during DAG ISel to
represent v8.1-m low-overhead loops. One maps to set_loop_iterations
while loop_decrement_reg is lowered to two, so that we can separate
the decrement and branching operations. The pseudo instructions are
expanded pre-emission, where we can still decide whether we actually
want to generate a low-overhead loop, in a new pass:
ARMLowOverheadLoops. The pass currently bails, reverting to an sub,
icmp and br, in the cases where a call or stack spill/restore happens
between the decrement and branching instructions, or if the loop is
too large.
Differential Revision: https://reviews.llvm.org/D63476
llvm-svn: 364288
Avoids using a plain unsigned for registers throughoug codegen.
Doesn't attempt to change every register use, just something a little
more than the set needed to build after changing the return type of
MachineOperand::getReg().
llvm-svn: 364191
This adds the family of loads and stores with names like VLD20.8 and
VST42.32, which load and store parts of multiple q-registers in such a
way that executing both VLD20 and VLD21, or all four of VLD40..VLD43,
will distribute 2 or 4 vectors' worth of memory data across the lanes
of the same number of registers but in a transposed order.
In addition to the Tablegen descriptions of the instructions
themselves, this patch also adds encode and decode support for the
QQPR and QQQQPR register classes (representing the range of loaded or
stored vector registers), and tweaks to the parsing system for lists
of vector registers to make it return the right format in this case
(since, unlike NEON, MVE regards q-registers as primitive, and not
just an alias for two d-registers).
llvm-svn: 364172
These instructions let you load half a vector register at once from
two general-purpose registers, or vice versa.
The assembly syntax for these instructions mentions the vector
register name twice. For the move _into_ a vector register, the MC
operand list also has to mention the register name twice (once as the
output, and once as an input to represent where the unchanged half of
the output register comes from). So we can conveniently assign one of
the two asm operands to be the output $Qd, and the other $QdSrc, which
avoids confusing the auto-generated AsmMatcher too much. For the move
_from_ a vector register, there's no way to get round the fact that
both instances of that register name have to be inputs, so we need a
custom AsmMatchConverter to avoid generating two separate output MC
operands. (And even that wouldn't have worked if it hadn't been for
D60695.)
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62679
llvm-svn: 364041
This adds the `MVE_qDest_rSrc` superclass and all its instances, plus
a few other instructions that also take a scalar input register or two.
I've also belatedly added custom diagnostic messages to the operand
classes for odd- and even-numbered GPRs, which required matching
changes in two of the existing MVE assembly test files.
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62678
llvm-svn: 364040
Summary:
This adds the `MVE_qDest_qSrc` superclass and all instructions that
inherit from it. It's not the complete class of _everything_ with a
q-register as both destination and source; it's a subset of them that
all have similar encodings (but it would have been hopelessly unwieldy
to call it anything like MVE_111x11100).
This category includes add/sub with carry; long multiplies; halving
multiplies; multiply and accumulate, and some more complex
instructions.
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62677
llvm-svn: 364037
Summary:
These take a pair of vector register to compare, and a comparison type
(written in the form of an Arm condition suffix); they output a vector
of booleans in the VPR register, where predication can conveniently
use them.
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62676
llvm-svn: 364027
Teach RegisterBankInfo to use the correct register class, and tell the
legalizer it's legal. Everything else just works.
The one thing that's slightly weird about this compared to SelectionDAG
isel is that legalization can't distinguish between i64 and <1 x i64>,
so we might end up with more NEON instructions than the user expects.
Differential Revision: https://reviews.llvm.org/D63585
llvm-svn: 363989
This includes integer arithmetic of various kinds (add/sub/multiply,
saturating and not), and the immediate forms of VMOV and VMVN that
load an immediate into all lanes of a vector.
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62674
llvm-svn: 363936
The ARMDisassembler changes allow changing between ARM and Thumb mode
based on the MCSubtargetInfo, rather than the Target, which simplifies
the other changes a bit.
I'm not really happy with adding more target-specific logic to
tools/llvm-objdump/, but there isn't any easy way around it: the logic
in question specifically applies to disassembling an object file, and
that code simply isn't located in lib/Target, at least at the moment.
Differential Revision: https://reviews.llvm.org/D60927
llvm-svn: 363903