We believe that despite AMD's documentation, that they really do support all 32 comparision predicates under AVX.
Differential Revision: https://reviews.llvm.org/D38609
llvm-svn: 315201
This is similar to D37843, but for sub_8bit. This fixes all of the patterns except for the 2 that emit only an EXTRACT_SUBREG. That causes a verifier error with global isel because global isel doesn't know to issue the ABCD when doing this extract on 32-bits targets.
Differential Revision: https://reviews.llvm.org/D37890
llvm-svn: 313558
Summary:
ZExt and SExt from i8 to i16 aren't implemented in the autogenerated fast isel table because normal isel does a zext/sext to 32-bits and a subreg extract to avoid a partial register write or false dependency on the upper bits of the destination. This means without handling in fast isel we end up triggering a fast isel abort.
We had no custom sign extend handling at all so while I was there I went ahead and implemented sext i1->i8/i16/i32/i64 which was also missing. This generates an i1->i8 sign extend using a mask with 1, then an 8-bit negate, then continues with a sext from i8. A better sequence would be a wider and/negate, but would require more custom code.
Fast isel tests are a mess and I couldn't find a good home for the tests so I created a new one.
The test pr34381.ll had to have fast-isel removed because it was relying on a fast isel abort to hit the bug. The test case still seems valid with fast-isel disabled though some of the instructions changed.
Reviewers: spatel, zvi, igorb, guyblank, RKSimon
Reviewed By: guyblank
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37320
llvm-svn: 312422
Summary:
I don't think we need this code anymore. It only existed because i1 used to be legal.
There's probably more unneeded code in fast isel still.
Reviewers: guyblank, zvi
Reviewed By: guyblank
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D36652
llvm-svn: 310843
Summary:
Direct calls to dllimport functions are very common Windows. We should
add them to the -O0 fast path.
Reviewers: rafael
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D36197
llvm-svn: 310152
Rename the enum value from X86_64_Win64 to plain Win64.
The symbol exposed in the textual IR is changed from 'x86_64_win64cc'
to 'win64cc', but the numeric value is kept, keeping support for
old bitcode.
Differential Revision: https://reviews.llvm.org/D34474
llvm-svn: 308208
FastIsel can't handle them, so we would end up crashing during
register class selection.
Fixes PR26522.
Differential Revision: https://reviews.llvm.org/D35272
llvm-svn: 307797
This patch defines the i1 type as illegal in the X86 backend for AVX512.
For DAG operations on <N x i1> types (build vector, extract vector element, ...) i8 is used, and should be truncated/extended.
This should produce better scalar code for i1 types since GPRs will be used instead of mask registers.
Differential Revision: https://reviews.llvm.org/D32273
llvm-svn: 303421
Summary:
Move getX86ConditionCode() from X86FastISel.cpp to X86InstrInfo.cpp so it can be used by GloabalIsel instruction selector.
This is a pre-commit for a patch I'm working on to support G_ICMP. NFC.
Reviewers: zvi, guyblank, delena
Reviewed By: guyblank, delena
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33038
llvm-svn: 302767
Using arguments with attribute inalloca creates problems for verification
of machine representation. This attribute instructs the backend that the
argument is prepared in stack prior to CALLSEQ_START..CALLSEQ_END
sequence (see http://llvm.org/docs/InAlloca.htm for details). Frame size
stored in CALLSEQ_START in this case does not count the size of this
argument. However CALLSEQ_END still keeps total frame size, as caller can
be responsible for cleanup of entire frame. So CALLSEQ_START and
CALLSEQ_END keep different frame size and the difference is treated by
MachineVerifier as stack error. Currently there is no way to distinguish
this case from actual errors.
This patch adds additional argument to CALLSEQ_START and its
target-specific counterparts to keep size of stack that is set up prior to
the call frame sequence. This argument allows MachineVerifier to calculate
actual frame size associated with frame setup instruction and correctly
process the case of inalloca arguments.
The changes made by the patch are:
- Frame setup instructions get the second mandatory argument. It
affects all targets that use frame pseudo instructions and touched many
files although the changes are uniform.
- Access to frame properties are implemented using special instructions
rather than calls getOperand(N).getImm(). For X86 and ARM such
replacement was made previously.
- Changes that reflect appearance of additional argument of frame setup
instruction. These involve proper instruction initialization and
methods that access instruction arguments.
- MachineVerifier retrieves frame size using method, which reports sum of
frame parts initialized inside frame instruction pair and outside it.
The patch implements approach proposed by Quentin Colombet in
https://bugs.llvm.org/show_bug.cgi?id=27481#c1.
It fixes 9 tests failed with machine verifier enabled and listed
in PR27481.
Differential Revision: https://reviews.llvm.org/D32394
llvm-svn: 302527
This eliminates many extra 'Idx' induction variables in loops over
arguments in CodeGen/ and Target/. It also reduces the number of places
where we assume that ReturnIndex is 0 and that we should add one to
argument numbers to get the corresponding attribute list index.
NFC
llvm-svn: 301666
1. RegisterClass::getSize() is split into two functions:
- TargetRegisterInfo::getRegSizeInBits(const TargetRegisterClass &RC) const;
- TargetRegisterInfo::getSpillSize(const TargetRegisterClass &RC) const;
2. RegisterClass::getAlignment() is replaced by:
- TargetRegisterInfo::getSpillAlignment(const TargetRegisterClass &RC) const;
This will allow making those values depend on subtarget features in the
future.
Differential Revision: https://reviews.llvm.org/D31783
llvm-svn: 301221
This avoids the confusing 'CS.paramHasAttr(ArgNo + 1, Foo)' pattern.
Previously we were testing return value attributes with index 0, so I
introduced hasReturnAttr() for that use case.
llvm-svn: 300367
We should be masking the value and emitting a register copy like we do in non-fast isel. Instead we were just updating the value map and emitting nothing.
After r298928 we started seeing cases where we would create a copy from GR8 to GR32 because the source register in a VK1 to GR32 copy was replaced by the GR8 going into a truncate.
This fixes PR32451.
llvm-svn: 298957
We've had several bugs(PR32256, PR32241) recently that resulted from usages of AH/BH/CH/DH either before or after a copy to/from a mask register.
This ultimately occurs because we create COPY_TO_REGCLASS with VK1 and GR8. Then in CopyToFromAsymmetricReg in X86InstrInfo we find a 32-bit super register for the GR8 to emit the KMOV with. But as these tests are demonstrating, its possible for the GR8 register to be a high register and we end up doing an accidental extra or insert from bits 15:8.
I think the best way forward is to stop making copies directly between mask registers and GR8/GR16. Instead I think we should restrict to only copies between mask registers and GR32/GR64 and use EXTRACT_SUBREG/INSERT_SUBREG to handle the conversion from GR32 to GR16/8 or vice versa.
Unfortunately, this complicates fastisel a bit more now to create the subreg extracts where we used to create GR8 copies. We can probably make a helper function to bring down the repitition.
This does result in KMOVD being used for copies when BWI is available because we don't know the original mask register size. This caused a lot of deltas on tests because we have to split the checks for KMOVD vs KMOVW based on BWI.
Differential Revision: https://reviews.llvm.org/D30968
llvm-svn: 298928
I'm pretty sure there are more problems lurking here. But I think this fixes PR32241.
I've added the test case from that bug and added asserts that will fail if we ever try to copy between high registers and mask registers again.
llvm-svn: 297574
Summary:
This patch removes the scalar logical operation alias instructions. We can just use reg class copies and use the normal packed instructions instead. This removes the need for putting these instructions in the execution domain fixing tables as was done recently.
I removed the loadf64_128 and loadf32_128 patterns as DAG combine creates a narrower load for (extractelt (loadv4f32)) before we ever get to isel.
I plan to add similar patterns for AVX512DQ in a future commit to allow use of the larger register class when available.
Reviewers: spatel, delena, zvi, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27401
llvm-svn: 288771
Instead, expose whether the current type is an array or a struct, if an array
what the upper bound is, and if a struct the struct type itself. This is
in preparation for a later change which will make PointerType derive from
Type rather than SequentialType.
Differential Revision: https://reviews.llvm.org/D26594
llvm-svn: 288458
Summary:
Fix a case where the overflow value of type i1, which is legal on AVX512, was assigned to a VK1 register class.
We always want this value to be assigned to a GPR since the overflow return value is lowered to a SETO instruction.
Fixes pr30981.
Reviewers: mkuper, igorb, craig.topper, guyblank, qcolombet
Subscribers: qcolombet, llvm-commits
Differential Revision: https://reviews.llvm.org/D26620
llvm-svn: 286958
The KORTEST was introduced due to a bug where a TEST instruction used a K register.
but, turns out that the opposite case of KORTEST using a GPR is now happening
The change removes the KORTEST flow and adds a COPY instruction from the K reg to a GPR.
Differential Revision: https://reviews.llvm.org/D24953
llvm-svn: 282580
In some cases, FastIsel was emitting TEST instruction with K reg input, which is illegal.
Changed to using KORTEST when dealing with K regs.
Differential Revision: https://reviews.llvm.org/D23163
llvm-svn: 279393
This is a mechanical change of comments in switches like fallthrough,
fall-through, or fall-thru to use the LLVM_FALLTHROUGH macro instead.
llvm-svn: 278902
This mostly just works.
Vectorcall rets are still not supported.
The win64_eh test change is because fast isel doesn't use rsi for temporary
computations, so it doesn't need to be pushed. The test case I'm changing was
originally added to test pushes, but by now there are other test cases in that
file exercising that code path.
https://reviews.llvm.org/D22422
llvm-svn: 275607
stdcall is callee-pop like thiscall, so the thiscall changes already did most
of the work for this. This change only opts stdcall in and adds tests.
llvm-svn: 275414
The patch removes redundant kmov instructions (not all, we still have a lot of work here) and redundant "and" instructions after "setcc".
I use "AssertZero" marker between X86ISD::SETCC node and "truncate" to eliminate extra "and $1" instruction.
I also changed zext, aext and trunc patterns in the .td file. It allows to remove extra "kmov" instruictions.
This patch fixes https://llvm.org/bugs/show_bug.cgi?id=28173.
Fast ISEL mode is not supported correctly for AVX-512. ICMP/FCMP scalar instruction should return result in k-reg. It will be fixed in one of the next patches. I redirected handling of "cmp" to the DAG builder mode. (The code looks worse in one specific test case, but without this fix the new patch fails).
Differential revision: http://reviews.llvm.org/D21956
llvm-svn: 274613
This is mostly a mechanical change to make TargetInstrInfo API take
MachineInstr& (instead of MachineInstr* or MachineBasicBlock::iterator)
when the argument is expected to be a valid MachineInstr. This is a
general API improvement.
Although it would be possible to do this one function at a time, that
would demand a quadratic amount of churn since many of these functions
call each other. Instead I've done everything as a block and just
updated what was necessary.
This is mostly mechanical fixes: adding and removing `*` and `&`
operators. The only non-mechanical change is to split
ARMBaseInstrInfo::getOperandLatencyImpl out from
ARMBaseInstrInfo::getOperandLatency. Previously, the latter took a
`MachineInstr*` which it updated to the instruction bundle leader; now,
the latter calls the former either with the same `MachineInstr&` or the
bundle leader.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
Note: I updated WebAssembly, Lanai, and AVR (despite being
off-by-default) since it turned out to be easy. I couldn't run tests
for AVR since llc doesn't link with it turned on.
llvm-svn: 274189
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.
llvm-svn: 272512
Currently the only way to use the (V)MOVNTDQA nontemporal vector loads instructions is through the int_x86_sse41_movntdqa style builtins.
This patch adds support for lowering nontemporal loads from general IR, allowing us to remove the movntdqa builtins in a future patch.
We currently still fold nontemporal loads into suitable instructions, we should probably look at removing this (and nontemporal stores as well) or at least make the target's folding implementation aware that its dealing with a nontemporal memory transaction.
There is also an issue that VMOVNTDQA only acts on 128-bit vectors on pre-AVX2 hardware - so currently a normal ymm load is still used on AVX1 targets.
Differential Review: http://reviews.llvm.org/D20965
llvm-svn: 272011
I'm not sure why this was missing for so long.
This also exposed that we were picking floating point 256-bit VMOVNTPS for some integer types in normal isel for AVX1 even though VMOVNTDQ is available. In practice it doesn't matter due to the execution dependency fix pass, but it required extra isel patterns. Fixing that in a follow up commit.
llvm-svn: 271481
This refactors the logic in X86 to avoid code duplication. It also
splits it in two steps: it first decides if a symbol is local to the DSO
and then uses that information to decide how to access it.
The first part is implemented by shouldAssumeDSOLocal. It is not in any
way specific to X86. In a followup patch I intend to move it to
somewhere common and reused it in other backends.
llvm-svn: 270209
i1 is now a legal type for X86 with AVX512.
There were some paths in X86FastISel which were not quite ready to see
an i1 value: they were not quite sure how to deal with sign/zero extends
for call arguments.
DTRT by extending to i8 for zeroext and bailing out of FastISel for
signext.
This fixes PR27591.
llvm-svn: 268470
MachineInstr.h and MachineInstrBuilder.h are very popular headers,
widely included across all LLVM backends. It turns out that there only a
handful of TUs that actually care about DI operands on MachineInstrs.
After this change, touching DebugInfoMetadata.h and rebuilding llc only
needs 112 actions instead of 542.
llvm-svn: 266351
Summary:
There are a number of files in the tree which have been accidentally checked in with DOS line endings. Convert these to native line endings.
There are also a few files which have DOS line endings on purpose, and I have set the svn:eol-style property to 'CRLF' on those.
Reviewers: joerg, aaron.ballman
Subscribers: aaron.ballman, sanjoy, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D15848
llvm-svn: 256707
This adds support for the MCU psABI in a way different from r251223 and r251224,
basically reverting most of these two patches. The problem with the approach
taken in r251223/4 is that it only handled libcalls that originated from the backend.
However, the mid-end also inserts quite a few libcalls and assumes these use the
platform's default calling convention.
The previous patch tried to insert inregs when necessary both in the FE and,
somewhat hackily, in the CG. Instead, we now define a new default calling convention
for the MCU, which doesn't use inreg marking at all, similarly to what x86-64 does.
Differential Revision: http://reviews.llvm.org/D15054
llvm-svn: 256494
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
These intrinsics currently have an explicit alignment argument which is
required to be a constant integer. It represents the alignment of the
source and dest, and so must be the minimum of those.
This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments. The alignment
argument itself is removed.
There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe. For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)
For out of tree owners, I was able to strip alignment from calls using sed by replacing:
(call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
$1i1 false)
and similarly for memmove and memcpy.
I then added back in alignment to test cases which needed it.
A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.
In IRBuilder itself, a new argument was added. Instead of calling:
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)
There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool. This is to prevent isVolatile here from passing its default
parameter to the source alignment.
Note, changes in future can now be made to codegen. I didn't change anything here, but this
change should enable better memcpy code sequences.
Reviewed by Hal Finkel.
llvm-svn: 253511
Summary:
This is intended to make a later change simpler.
Note: adding this bounds checking required fixing `X86FastISel`. As
far I can tell I've preserved original behavior but a careful review
will be appreciated.
Reviewers: reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14304
llvm-svn: 252073
Add FastISel support for SSE4A scalar float / double non-temporal stores
Follow up to D13698
Differential Revision: http://reviews.llvm.org/D13773
llvm-svn: 250610
This patch teaches x86 fast-isel how to select nontemporal stores.
On x86, we can use MOVNTI for nontemporal stores of doublewords/quadwords.
Instructions (V)MOVNTPS/PD/DQ can be used for SSE2/AVX aligned nontemporal
vector stores.
Before this patch, fast-isel always selected 'movd/movq' instead of 'movnti'
for doubleword/quadword nontemporal stores. In the case of nontemporal stores
of aligned vectors, fast-isel always selected movaps/movapd/movdqa instead of
movntps/movntpd/movntdq.
With this patch, if we use SSE2/AVX intrinsics for nontemporal stores we now
always get the expected (V)MOVNT instructions.
The lack of fast-isel support for nontemporal stores was spotted when analyzing
the -O0 codegen for nontemporal stores.
Differential Revision: http://reviews.llvm.org/D13698
llvm-svn: 250285
This patch teaches FastIsel the following two things:
1) On SSE2, no instructions are needed for bitcasts between 128-bit vector types;
2) On AVX, no instructions are needed for bitcasts between 256-bit vector types.
Example:
%1 = bitcast <4 x i31> %V to <2 x i64>
Before (-fast-isel -fast-isel-abort=1):
FastIsel miss: %1 = bitcast <4 x i31> %V to <2 x i64>
Now we don't fall back to SelectionDAG and we correctly fold that computation
propagating the register associated to %V.
Originally reviewed here: http://reviews.llvm.org/D13347
llvm-svn: 249147
This patch teaches FastIsel the following two things:
1) On SSE2, no instructions are needed for bitcasts between 128-bit vector types;
2) On AVX, no instructions are needed for bitcasts between 256-bit vector types.
Example:
%1 = bitcast <4 x i31> %V to <2 x i64>
Before (-fast-isel -fast-isel-abort=1):
FastIsel miss: %1 = bitcast <4 x i31> %V to <2 x i64>
Now we don't fall back to SelectionDAG and we correctly fold that computation
propagating the register associated to %V.
Differential Revision: http://reviews.llvm.org/D13347
llvm-svn: 249121
alignment requirements, for example in the case of vectors.
These requirements are exploited by the code generator by using
move instructions that have similar alignment requirements, e.g.,
movaps on x86.
Although the code generator properly aligns the arguments with
respect to the displacement of the stack pointer it computes,
the displacement itself may cause misalignment. For example if
we have
%3 = load <16 x float>, <16 x float>* %1, align 64
call void @bar(<16 x float> %3, i32 0)
the x86 back-end emits:
movaps 32(%ecx), %xmm2
movaps (%ecx), %xmm0
movaps 16(%ecx), %xmm1
movaps 48(%ecx), %xmm3
subl $20, %esp <-- if %esp was 16-byte aligned before this instruction, it no longer will be afterwards
movaps %xmm3, (%esp) <-- movaps requires 16-byte alignment, while %esp is not aligned as such.
movl $0, 16(%esp)
calll __bar
To solve this, we need to make sure that the computed value with which
the stack pointer is changed is a multiple af the maximal alignment seen
during its computation. With this change we get proper alignment:
subl $32, %esp
movaps %xmm3, (%esp)
Differential Revision: http://reviews.llvm.org/D12337
llvm-svn: 248786
X86FastISel has been using the wrong register class for VBLENDVPS which
produces a VR128 and needs an extra copy to the target register. The
problem was already hit by the existing test cases when using
> llvm-lit -Dllc="llc -verify-machineinstr"
llvm-svn: 246461
This should be no functional change but for the record: For three cases
in X86FastISel this will change the order in which the FalseMBB and
TrueMBB of a conditional branch is addedd to the successor/predecessor
lists.
llvm-svn: 245997
This commit removes the global manager variable which is responsible for
storing and allocating pseudo source values and instead it introduces a new
manager class named 'PseudoSourceValueManager'. Machine functions now own an
instance of the pseudo source value manager class.
This commit also modifies the 'get...' methods in the 'MachinePointerInfo'
class to construct pseudo source values using the instance of the pseudo
source value manager object from the machine function.
This commit updates calls to the 'get...' methods from the 'MachinePointerInfo'
class in a lot of different files because those calls now need to pass in a
reference to a machine function to those methods.
This change will make it easier to serialize pseudo source values as it will
enable me to transform the mips specific MipsCallEntry PseudoSourceValue
subclass into two target independent subclasses.
Reviewers: Akira Hatanaka
llvm-svn: 244693
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, ted, yaron.keren, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D11028
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241775
Summary:
Avoid using the TargetMachine owned DataLayout and use the Module owned
one instead. This requires passing the DataLayout up the stack to
ComputeValueVTs().
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, yaron.keren, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D11019
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241773
From the linker's perspective, an available_externally global is equivalent
to an external declaration (per isDeclarationForLinker()), so it is incorrect
to consider it to be a weak definition.
Also clean up some logic in the dead argument elimination pass and clarify
its comments to better explain how its behavior depends on linkage,
introduce GlobalValue::isStrongDefinitionForLinker() and start using
it throughout the optimizers and backend.
Differential Revision: http://reviews.llvm.org/D10941
llvm-svn: 241413
The summary is that it moves the mangling earlier and replaces a few
calls to .addExternalSymbol with addSym.
I originally wanted to replace all the uses of addExternalSymbol with
addSym, but noticed it was a lot of work and doesn't need to be done
all at once.
llvm-svn: 240395
Summary:
This was a longstanding FIXME and is a necessary precursor to cases
where foldOperandImpl may have to create more than one instruction
(e.g. to constrain a register class). This is the split out NFC changes from
D6262.
Reviewers: pete, ributzka, uweigand, mcrosier
Reviewed By: mcrosier
Subscribers: mcrosier, ted, llvm-commits
Differential Revision: http://reviews.llvm.org/D10174
llvm-svn: 239336
MIOperands/ConstMIOperands are classes iterating over the MachineOperand
of a MachineInstr, however MachineInstr::mop_iterator does the same
thing.
I assume these two iterators exist to have a uniform interface to
iterate over the operands of a machine instruction bundle and a single
machine instruction. However in practice I find it more confusing to have 2
different iterator classes, so this patch transforms (nearly all) the
code to use mop_iterators.
The only exception being MIOperands::anlayzePhysReg() and
MIOperands::analyzeVirtReg() still needing an equivalent, I leave that
as an exercise for the next patch.
Differential Revision: http://reviews.llvm.org/D9932
This version is slightly modified from the proposed revision in that it
introduces MachineInstr::getOperandNo to avoid the extra counting
variable in the few loops that previously used MIOperands::getOperandNo.
llvm-svn: 238539
to use the information in the module rather than TargetOptions.
We've had and clang has used the use-soft-float attribute for some
time now so have the backends set a subtarget feature based on
a particular function now that subtargets are created based on
functions and function attributes.
For the one middle end soft float check go ahead and create
an overloadable TargetLowering::useSoftFloat function that
just checks the TargetSubtargetInfo in all cases.
Also remove the command line option that hard codes whether or
not soft-float is set by using the attribute for all of the
target specific test cases - for the generic just go ahead and
add the attribute in the one case that showed up.
llvm-svn: 237079
A trunc from i32 to i1 on x86_64 generates an instruction such as
%vreg19<def> = COPY %vreg9:sub_8bit<kill>; GR8:%vreg19 GR32:%vreg9
However, the copy here should only have the kill flag on the 32-bit path, not the 64-bit one.
Otherwise, we are killing the source of the truncate which could be used later in the program.
llvm-svn: 236890
When folding a load in to another instruction, we need to fix the class of the index register
Otherwise, it could be something like GR64 not GR64_NOSP and would fail the machine verifier.
llvm-svn: 236644