As stated in IEEE-754 and discussed in:
https://bugs.llvm.org/show_bug.cgi?id=38086
...the sign of zero does not affect any FP compare predicate.
Known regressions were fixed with:
rL346097 (D54001)
rL346143
The transform will help reduce pattern-matching complexity to solve:
https://bugs.llvm.org/show_bug.cgi?id=39475
...as well as improve CSE and codegen (a zero constant is almost always
easier to produce than 0x80..00).
llvm-svn: 346147
The 'OLT' case was updated at rL266175, so I assume it was just an
oversight that 'UGE' was not included because that patch handled
both predicates in InstSimplify.
llvm-svn: 345727
Summary:
This is a continuation of the fix for PR34627 "InstCombine assertion at vector gep/icmp folding". (I just realized bugpoint had fuzzed the original test for me, so I had fixed another trigger of the same assert in adjacent code in InstCombine.)
This patch avoids optimizing an icmp (to look only at the base pointers) when the resulting icmp would have a different type.
The patch adds a testcase and also cleans up and shrinks the pre-existing test for the adjacent assert trigger.
Reviewers: lebedev.ri, majnemer, spatel
Reviewed By: lebedev.ri
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52494
llvm-svn: 343486
When C is not zero and infinites are not allowed (C / X) > 0 is a sign
test. Depending on the sign of C, the predicate must be swapped.
E.g.:
foo(double X) {
if ((-2.0 / X) <= 0) ...
}
=>
foo(double X) {
if (X >= 0) ...
}
Patch by: @marels (Martin Elshuber)
Differential Revision: https://reviews.llvm.org/D51942
llvm-svn: 343228
Summary:
Same as to D52146.
`((1 << y)+(-1))` is simply non-canoniacal version of `~(-1 << y)`: https://rise4fun.com/Alive/0vl
We can not canonicalize it due to the extra uses. But we can handle it here.
Reviewers: spatel, craig.topper, RKSimon
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52147
llvm-svn: 342547
Summary:
Two folds are happening here:
1. https://rise4fun.com/Alive/oaFX
2. And then `foldICmpWithHighBitMask()` (D52001): https://rise4fun.com/Alive/wsP4
This change doesn't just add the handling for eq/ne predicates,
it actually builds upon the previous `foldICmpWithLowBitMaskedVal()` work,
so **all** the 16 fold variants* are immediately supported.
I'm indeed only testing these two predicates.
I do not feel like re-proving all 16 folds*, because they were already proven
for the general case of constant with all-ones in low bits. So as long as
the mask produces all-ones in low bits, i'm pretty sure the fold is valid.
But required, i can re-prove, let me know.
* eq/ne are commutative - 4 folds; ult/ule/ugt/uge - are not commutative (the commuted variant is InstSimplified), 4 folds; slt/sle/sgt/sge are not commutative - 4 folds. 12 folds in total.
https://bugs.llvm.org/show_bug.cgi?id=38123https://bugs.llvm.org/show_bug.cgi?id=38708
Reviewers: spatel, craig.topper, RKSimon
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52146
llvm-svn: 342546
Summary:
It is sometimes important to check that some newly-computed value
is non-negative and only n bits wide (where n is a variable.)
There are many ways to check that:
https://godbolt.org/z/o4RB8D
The last variant seems best?
(I'm sure there are some other variations i haven't thought of..)
More complicated, canonical pattern:
https://rise4fun.com/Alive/uhA
We do need to have two `switch()`'es like this,
to not mismatch the swappable predicates.
https://bugs.llvm.org/show_bug.cgi?id=38708
Reviewers: spatel, craig.topper, RKSimon
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52001
llvm-svn: 342173
Summary:
It is sometimes important to check that some newly-computed value
is non-negative and only `n` bits wide (where `n` is a variable.)
There are **many** ways to check that:
https://godbolt.org/z/o4RB8D
The last variant seems best?
(I'm sure there are some other variations i haven't thought of..)
Let's handle the second variant first, since it is much simpler.
https://rise4fun.com/Alive/LYjYhttps://bugs.llvm.org/show_bug.cgi?id=38708
Reviewers: spatel, craig.topper, RKSimon
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D51985
llvm-svn: 342067
Name: op_ugt_sum
%a = add i8 %x, %y
%r = icmp ugt i8 %x, %a
=>
%notx = xor i8 %x, -1
%r = icmp ugt i8 %y, %notx
Name: sum_ult_op
%a = add i8 %x, %y
%r = icmp ult i8 %a, %x
=>
%notx = xor i8 %x, -1
%r = icmp ugt i8 %y, %notx
https://rise4fun.com/Alive/ZRxI
AFAICT, this doesn't interfere with any add-saturation patterns
because those have >1 use for the 'add'. But this should be
better for IR analysis and codegen in the basic cases.
This is another fold inspired by PR14613:
https://bugs.llvm.org/show_bug.cgi?id=14613
llvm-svn: 342004
These are the folds in Alive;
Name: xor_ult
Pre: isPowerOf2(-C1)
%xor = xor i8 %x, C1
%r = icmp ult i8 %xor, C1
=>
%r = icmp ugt i8 %x, ~C1
Name: xor_ugt
Pre: isPowerOf2(C1+1)
%xor = xor i8 %x, C1
%r = icmp ugt i8 %xor, C1
=>
%r = icmp ugt i8 %x, C1
https://rise4fun.com/Alive/Vty
The ugt case in its simplest form was already handled by DemandedBits,
but that's not ideal as shown in the multi-use test.
I'm not sure if these are all of the symmetrical folds, but I adjusted
the existing code for one of the folds to try to show the similarities.
There's no obvious connection, but this is another preliminary step
for PR14613...
https://bugs.llvm.org/show_bug.cgi?id=14613
llvm-svn: 341997
There were two combines not covered by the check before now, neither of which
actually differed from normal in the benefit analysis.
The most recent seems to be because it was just added at the top of the
function (naturally). The older is from way back in 2008 (r46687) when we just
didn't put those checks in so routinely, and has been diligently maintained
since.
llvm-svn: 341831
Summary:
[[ https://bugs.llvm.org/show_bug.cgi?id=38149 | PR38149 ]]
As discussed in https://reviews.llvm.org/D49179#1158957 and later,
the IR for 'check for [no] signed truncation' pattern can be improved:
https://rise4fun.com/Alive/gBf
^ that pattern will be produced by Implicit Integer Truncation sanitizer,
https://reviews.llvm.org/D48958https://bugs.llvm.org/show_bug.cgi?id=21530
in signed case, therefore it is probably a good idea to improve it.
Proofs for this transform: https://rise4fun.com/Alive/mgu
This transform is surprisingly frustrating.
This does not deal with non-splat shift amounts, or with undef shift amounts.
I've outlined what i think the solution should be:
```
// Potential handling of non-splats: for each element:
// * if both are undef, replace with constant 0.
// Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
// * if both are not undef, and are different, bailout.
// * else, only one is undef, then pick the non-undef one.
```
The DAGCombine will reverse this transform, see
https://reviews.llvm.org/D49266
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: JDevlieghere, rkruppe, llvm-commits
Differential Revision: https://reviews.llvm.org/D49320
llvm-svn: 337190
All predicates are handled.
There does not seem to be any other possible folds here.
There are some more folds possible with inverted mask though.
llvm-svn: 337112
Summary:
https://bugs.llvm.org/show_bug.cgi?id=38123
This pattern will be produced by Implicit Integer Truncation sanitizer,
https://reviews.llvm.org/D48958https://bugs.llvm.org/show_bug.cgi?id=21530
in unsigned case, therefore it is probably a good idea to improve it.
https://rise4fun.com/Alive/Rny
^ there are more opportunities for folds, i will follow up with them afterwards.
Caveat: this somehow exposes a missing opportunities
in `test/Transforms/InstCombine/icmp-logical.ll`
It seems, the problem is in `foldLogOpOfMaskedICmps()` in `InstCombineAndOrXor.cpp`.
But i'm not quite sure what is wrong, because it calls `getMaskedTypeForICmpPair()`,
which calls `decomposeBitTestICmp()` which should already work for these cases...
As @spatel notes in https://reviews.llvm.org/D49179#1158760,
that code is a rather complex mess, so we'll let it slide.
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: yamauchi, majnemer, t.p.northover, llvm-commits
Differential Revision: https://reviews.llvm.org/D49179
llvm-svn: 336834
This patch changes order of transform in InstCombineCompares to avoid
performing transforms based on ranges which produce complex bit arithmetics
before more simple things (like folding with constants) are done. See PR37636
for the motivating example.
Differential Revision: https://reviews.llvm.org/D48584
Reviewed By: spatel, lebedev.ri
llvm-svn: 336172
Summary:
When iterating users of a multiply in processUMulZExtIdiom, the
call to setOperand in the truncation case may replace the use
being visited; make sure the iterator has been advanced before
doing that replacement.
Reviewers: majnemer, davide
Reviewed By: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48192
llvm-svn: 334844
Inspired by r331508, I did a grep and found these.
Mostly just change from dyn_cast to cast. Some cases also showed a dyn_cast result being converted to bool, so those I changed to isa.
llvm-svn: 331577
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
Summary:
Folding patterns like:
%vec = shufflevector <4 x i8> %insvec, <4 x i8> undef, <4 x i32> zeroinitializer
%cast = bitcast <4 x i8> %vec to i32
%cond = icmp eq i32 %cast, 0
into:
%ext = extractelement <4 x i8> %insvec, i32 0
%cond = icmp eq i32 %ext, 0
Combined with existing rules, this allows us to fold patterns like:
%insvec = insertelement <4 x i8> undef, i8 %val, i32 0
%vec = shufflevector <4 x i8> %insvec, <4 x i8> undef, <4 x i32> zeroinitializer
%cast = bitcast <4 x i8> %vec to i32
%cond = icmp eq i32 %cast, 0
into:
%cond = icmp eq i8 %val, 0
When we construct a splat vector via a shuffle, and bitcast the vector into an integer type for comparison against an integer constant. Then we can simplify the the comparison to compare the splatted value against the integer constant.
Reviewers: spatel, anna, mkazantsev
Reviewed By: spatel
Subscribers: efriedma, rengolin, llvm-commits
Differential Revision: https://reviews.llvm.org/D44997
llvm-svn: 329087
Summary:
Presently, InstCombiner::foldICmpWithCastAndCast() implicitly assumes that it is
only invoked with icmp instructions of integer type. If that assumption is broken,
and it is called with an icmp of vector type, then it fails (asserts/crashes).
This patch addresses the deficiency. It allows it to simplify
icmp (ptrtoint x), (ptrtoint/c) of vector type into a compare of the inputs,
much as is done when the type is integer.
Reviewers: apilipenko, fedor.sergeev, mkazantsev, anna
Reviewed By: anna
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44063
llvm-svn: 326730
Making a width of GEP Index, which is used for address calculation, to be one of the pointer properties in the Data Layout.
p[address space]:size:memory_size:alignment:pref_alignment:index_size_in_bits.
The index size parameter is optional, if not specified, it is equal to the pointer size.
Till now, the InstCombiner normalized GEPs and extended the Index operand to the pointer width.
It works fine if you can convert pointer to integer for address calculation and all registered targets do this.
But some ISAs have very restricted instruction set for the pointer calculation. During discussions were desided to retrieve information for GEP index from the Data Layout.
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120416.html
I added an interface to the Data Layout and I changed the InstCombiner and some other passes to take the Index width into account.
This change does not affect any in-tree target. I added tests to cover data layouts with explicitly specified index size.
Differential Revision: https://reviews.llvm.org/D42123
llvm-svn: 325102
Because of potential UB (known bits conflicts with an llvm.assume),
we have to check rather than assert here because InstSimplify doesn't
kill the compare:
https://bugs.llvm.org/show_bug.cgi?id=35846
llvm-svn: 322104
Summary:
This patch adds an early out to visitICmpInst if we are looking at a compare as part of an integer absolute value idiom. Similar is already done for min/max.
In the particular case I observed in a benchmark we had an absolute value of a load from an indexed global. We simplified the compare using foldCmpLoadFromIndexedGlobal into a magic bit vector, a shift, and an and. But the load result was still used for the select and the negate part of the absolute valute idiom. So we overcomplicated the code and lost the ability to recognize it as an absolute value.
I've chosen a simpler case for the test here.
Reviewers: spatel, davide, majnemer
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D39766
llvm-svn: 317994
Summary:
The following transformation for cmp instruction:
icmp smin(x, PositiveValue), 0 -> icmp x, 0
should only be done after checking for min/max to prevent infinite
looping caused by a reverse canonicalization. That is why this
transformation was moved to place after the mentioned check.
Reviewers: spatel, efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38934
Patch by: Artur Gainullin <artur.gainullin@intel.com>
llvm-svn: 315895
We can support ashr similar to lshr, if we know that none of the shifted in bits are used. In that case SimplifyDemandedBits would normally convert it to lshr. But that conversion doesn't happen if the shift has additional users.
Differential Revision: https://reviews.llvm.org/D38521
llvm-svn: 314945
Apparently this works by virtue of the fact that the pointers are pointers to the APInts stored inside of the ConstantInt objects. But I really don't think we should be relying on that.
llvm-svn: 314761
Summary: This currently uses ConstantExpr to do its math, but as noted in a TODO it can all be done directly on APInt.
Reviewers: spatel, majnemer
Reviewed By: majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38440
llvm-svn: 314640
This reverts r314017 and similar code added in later commits. It seems to not work for pointer compares and is causing a bot failure for the last several days.
llvm-svn: 314360
If this transformation succeeds, we're going to remove our dependency on the shift by rewriting the and. So it doesn't matter how many uses the shift has.
This distributes the one use check to other transforms in foldICmpAndConstConst that do need it.
Differential Revision: https://reviews.llvm.org/D38206
llvm-svn: 314233
All this optimization cares about is knowing how many low bits of LHS is known to be zero and whether that means that the result is 0 or greater than the RHS constant. It doesn't matter where the zeros in the low bits came from. So we don't need to specifically look for an AND. Instead we can use known bits.
Differential Revision: https://reviews.llvm.org/D38195
llvm-svn: 314153
The result of the isSignBitCheck isn't used anywhere else and this allows us to share the m_APInt call in the likely case that it isn't a sign bit check.
llvm-svn: 314018
We already did (X & C2) > C1 --> (X & C2) != 0, if any bit set in (X & C2) will produce a result greater than C1. But there is an equivalent inverse condition with <= C1 (which will be canonicalized to < C1+1)
Differential Revision: https://reviews.llvm.org/D38065
llvm-svn: 313819
This is a preliminary step towards solving the remaining part of PR27145 - IR for isfinite():
https://bugs.llvm.org/show_bug.cgi?id=27145
In order to solve that one more generally, we need to add matching for and/or of fcmp ord/uno
with a constant operand.
But while looking at those patterns, I realized we were missing a canonicalization for nonzero
constants. Rather than limiting to just folds for constants, we're adding a general value
tracking method for this based on an existing DAG helper.
By transforming everything to 0.0, we can simplify the existing code in foldLogicOfFCmps()
and pick up missing vector folds.
Differential Revision: https://reviews.llvm.org/D37427
llvm-svn: 312591
Previously the InstCombiner class contained a pointer to an IR builder that had been passed to the constructor. Sometimes this would be passed to helper functions as either a pointer or the pointer would be dereferenced to be passed by reference.
This patch makes it a reference everywhere including the InstCombiner class itself so there is more inconsistency. This a large, but mechanical patch. I've done very minimal formatting changes on it despite what clang-format wanted to do.
llvm-svn: 307451
We assumed the constant was a scalar when creating the replacement operand.
Also, improve tests for this fold and move the tests for this fold to their own file.
I'll move the related and missing tests to this file as a follow-up.
llvm-svn: 306985
I noticed this missed bswap optimization in the CGP memcmp() expansion,
and then I saw that we don't have the fold in InstCombine.
Differential Revision: https://reviews.llvm.org/D34763
llvm-svn: 306980