As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
In order to set breakpoints on labels and list source code around
labels, we need collect debug information for labels, i.e., label
name, the function label belong, line number in the file, and the
address label located. In order to keep these information in LLVM
IR and to allow backend to generate debug information correctly.
We create a new kind of metadata for labels, DILabel. The format
of DILabel is
!DILabel(scope: !1, name: "foo", file: !2, line: 3)
We hope to keep debug information as much as possible even the
code is optimized. So, we create a new kind of intrinsic for label
metadata to avoid the metadata is eliminated with basic block.
The intrinsic will keep existing if we keep it from optimized out.
The format of the intrinsic is
llvm.dbg.label(metadata !1)
It has only one argument, that is the DILabel metadata. The
intrinsic will follow the label immediately. Backend could get the
label metadata through the intrinsic's parameter.
We also create DIBuilder API for labels to be used by Frontend.
Frontend could use createLabel() to allocate DILabel objects, and use
insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR.
Differential Revision: https://reviews.llvm.org/D45024
Patch by Hsiangkai Wang.
llvm-svn: 331841
The register usage algorithm incorrectly treats instructions whose value is
not used within the loop (e.g. those that do not produce a value).
The algorithm first calculates the usages within the loop. It iterates over
the instructions in order, and records at which instruction index each use
ends (in fact, they're actually recorded against the next index, as this is
when we want to delete them from the open intervals).
The algorithm then iterates over the instructions again, adding each
instruction in turn to a list of open intervals. Instructions are then
removed from the list of open intervals when they occur in the list of uses
ended at the current index.
The problem is, instructions which are not used in the loop are skipped.
However, although they aren't used, the last use of a value may have been
recorded against that instruction index. In this case, the use is not deleted
from the open intervals, which may then bump up the estimated register usage.
This patch fixes the issue by simply moving the "is used" check after the loop
which erases the uses at the current index.
Differential Revision: https://reviews.llvm.org/D26554
llvm-svn: 286969