Commit Graph

6035 Commits

Author SHA1 Message Date
Simon Pilgrim cfaf663a35 [X86] Combine zext(packus(x),packus(y)) -> concat(x,y) (PR39637)
Its proving tricky to combine shuffles across multiple vector sizes, so for now I'm adding this more specific combine - the pattern is common enough to be worth it as a first step.

llvm-svn: 354757
2019-02-24 19:57:52 +00:00
Craig Topper be3348573e [LegalizeTypes][AArch64][X86] Make type legalization of vector (S/U)ADD/SUB/MULO follow getSetCCResultType for the overflow bits. Make UnrollVectorOverflowOp properly convert from scalar boolean contents to vector boolean contents
Summary:
When promoting the over flow vector for these ops we should use the target's desired setcc result type. This way a v8i32 result type will use a v8i32 overflow vector instead of a v8i16 overflow vector. A v8i16 overflow vector will cause LegalizeDAG/LegalizeVectorOps to have to use v8i32 and truncate to v8i16 in its expansion. By doing this in type legalization instead, we get the truncate into the DAG earlier and give DAG combine more of a chance to optimize it.

We also have to fix unrolling to use the scalar setcc result type for the scalarized operation, and convert it to the required vector element type after the scalar operation. We have to observe the vector boolean contents when doing this conversion. The previous code was just taking the scalar result and putting it in the vector. But for X86 and AArch64 that would have only put a the boolean value in bit 0 of the element and left all other bits in the element 0. We need to ensure all bits in the element are the same. I'm using a select with constants here because that's what setcc unrolling in LegalizeVectorOps used.

Reviewers: spatel, RKSimon, nikic

Reviewed By: nikic

Subscribers: javed.absar, kristof.beyls, dmgreen, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D58567

llvm-svn: 354753
2019-02-24 19:23:36 +00:00
Simon Pilgrim 4f4f9abdfa [X86][AVX] Rename lowerShuffleByMerging128BitLanes to lowerShuffleAsLanePermuteAndRepeatedMask. NFC.
Name better matches the other similar 'lane permute' and 'repeated mask' functions we have.

llvm-svn: 354749
2019-02-24 17:30:06 +00:00
Craig Topper be9eeb5526 Recommit r354363 "[X86][SSE] Generalize X86ISD::BLENDI support to more value types"
And its follow ups r354511, r354640.

A follow patch will fix the issue that caused it to be reverted.

llvm-svn: 354737
2019-02-23 21:41:42 +00:00
Craig Topper ccc860cb81 Recommit r354647 and r354648 "[LegalizeTypes] When promoting the result of EXTRACT_SUBVECTOR, also check if the input needs to be promoted. Use that to determine the element type to extract"
r354648 was a follow up to fix a regression "[X86] Add a DAG combine for (aext_vector_inreg (aext_vector_inreg X)) -> (aext_vector_inreg X) to fix a regression from my previous commit."

These were reverted in r354713 as their context depended on other patches that were reverted for a bug.

llvm-svn: 354734
2019-02-23 19:51:32 +00:00
Simon Pilgrim f383a47b7d [X86][AVX] combineInsertSubvector - remove concat_vectors(load(x),load(x)) --> sub_vbroadcast(x)
D58053/rL354340 added this to EltsFromConsecutiveLoads directly

llvm-svn: 354732
2019-02-23 18:53:03 +00:00
Simon Pilgrim e08f177ea2 [X86][AVX] concat_vectors(scalar_to_vector(x),scalar_to_vector(x)) --> broadcast(x)
For AVX1, limit this to i32/f32/i64/f64 loading cases only.

llvm-svn: 354730
2019-02-23 18:34:05 +00:00
Simon Pilgrim 31793733a0 [X86][AVX] Shuffle->Permute+Blend if we have one v4f64/v4i64 shuffle input in place
Even on AVX1 we can pretty cheaply (VPERM2F128+VSHUFPD) permute a single v4f64/v4i64 input (on AVX2 its just a single VPERMPD), followed by a BLENDPD.

llvm-svn: 354729
2019-02-23 17:10:47 +00:00
Reid Kleckner e3876637cf Revert r354363 & co "[X86][SSE] Generalize X86ISD::BLENDI support to more value types"
r354363 caused https://crbug.com/934963#c1, which has a plain C reduced
test case.

I also had to revert some dependent changes:
- r354648
- r354647
- r354640
- r354511

llvm-svn: 354713
2019-02-23 01:19:42 +00:00
Craig Topper a9697f24cf [X86] Enable custom splitting of v8i64/v16i32 sext/zext for avx/avx2 when input type will be promoted by the type legalize to 128-bits.
If the the input type will be promoted to 128 bits its better to put a sign_extend_inreg/and in the 128 bit register before the split occurs. Otherwise we end up doing it on each half in the wider register.

Some of the overflow arithmetic tests are regressions, but I think we can make some improvement using getSetccResultType in DAG combine and/or type legalization.

llvm-svn: 354709
2019-02-23 00:35:02 +00:00
Sanjay Patel a9e289174a [x86] allow narrowing of vector UINT_TO_FP
As discussed in:
D56864
D58197

Always use the narrow (128-bit) instruction when possible.
We already had the signed int version of this transform.

llvm-svn: 354675
2019-02-22 15:47:45 +00:00
Sanjay Patel 1baf7896cc [x86] simplify code in combineExtractSubvector; NFC
Only the 1st fold is attempted pre-legalization, but it requires
legal (simple) types too, so we don't need an EVT in any of the code.

llvm-svn: 354674
2019-02-22 15:28:22 +00:00
Craig Topper 3a391fc0e8 [X86] Add a DAG combine for (aext_vector_inreg (aext_vector_inreg X)) -> (aext_vector_inreg X) to fix a regression from my previous commit.
Type legalization is causing two nodes to be created here, but we can use a single node to extend from v8i16 to v2i64.

llvm-svn: 354648
2019-02-22 01:49:53 +00:00
Sanjay Patel 234a5e8ea4 [x86] vectorize more cast ops in lowering to avoid register file transfers
This is a follow-up to D56864.

If we're extracting from a non-zero index before casting to FP,
then shuffle the vector and optionally narrow the vector before doing the cast:

cast (extelt V, C) --> extelt (cast (extract_subv (shuffle V, [C...]))), 0

This might be enough to close PR39974:
https://bugs.llvm.org/show_bug.cgi?id=39974

Differential Revision: https://reviews.llvm.org/D58197

llvm-svn: 354619
2019-02-21 20:40:39 +00:00
Nirav Dave dce91c1edb [X86] Fix copy-paste error in @ccz flag.
@ccz operand should be equivalent to @cce.

llvm-svn: 354588
2019-02-21 15:28:31 +00:00
Simon Pilgrim e6b338cbef [X86][SSE] combineX86ShufflesRecursively - moved to generic op input index lookup. NFCI.
We currently bail if the target shuffle decodes to more than 2 input vectors, this change alters the input index to work for any number of inputs for when we drop that requirement.

llvm-svn: 354575
2019-02-21 12:24:49 +00:00
Nikita Popov c3b496de7a [SDAG] Support vector UMULO/SMULO
Second part of https://bugs.llvm.org/show_bug.cgi?id=40442.

This adds an extra UnrollVectorOverflowOp() method to SDAG, because
the general UnrollOverflowOp() method can't deal with multiple results.

Additionally we need to expand UMULO/SMULO during vector op
legalization, as it may result in unrolling, which may need additional
type legalization.

Differential Revision: https://reviews.llvm.org/D57997

llvm-svn: 354513
2019-02-20 20:41:44 +00:00
Simon Pilgrim dca47c659c [X86][SSE] combineX86ShufflesRecursively - begin generalizing the number of shuffle inputs. NFCI.
We currently bail if the target shuffle decodes to more than 2 input vectors, this is some initial cleanup that still has the limit but generalizes the opindices to an array that will be necessary when we drop the limit.

llvm-svn: 354489
2019-02-20 17:58:29 +00:00
Simon Pilgrim 0b3b9424ca [X86][SSE] Generalize X86ISD::BLENDI support to more value types
D42042 introduced the ability for the ExecutionDomainFixPass to more easily change between BLENDPD/BLENDPS/PBLENDW as the domains required.

With this ability, we can avoid most bitcasts/scaling in the DAG that was occurring with X86ISD::BLENDI lowering/combining, blend with the vXi32/vXi64 vectors directly and use isel patterns to lower to the float vector equivalent vectors.

This helps the shuffle combining and SimplifyDemandedVectorElts be more aggressive as we lose track of fewer UNDEF elements than when we go up/down through bitcasts.

I've introduced a basic blend(bitcast(x),bitcast(y)) -> bitcast(blend(x,y)) fold, there are more generalizations I can do there (e.g. widening/scaling and handling the tricky v16i16 repeated mask case).

The vector-reduce-smin/smax regressions will be fixed in a future improvement to SimplifyDemandedBits to peek through bitcasts and support X86ISD::BLENDV.

Reapplied after reversion at rL353699 - AVX2 isel fix was applied at rL354358, additional test at rL354360/rL354361

Differential Revision: https://reviews.llvm.org/D57888

llvm-svn: 354363
2019-02-19 18:05:42 +00:00
Simon Pilgrim d6add74915 Cast from SDValue directly instead of superfluous getNode(). NFCI.
llvm-svn: 354343
2019-02-19 16:20:09 +00:00
Simon Pilgrim 952abcefe4 [X86][AVX] EltsFromConsecutiveLoads - Add BROADCAST lowering support
This patch adds scalar/subvector BROADCAST handling to EltsFromConsecutiveLoads.

It mainly shows codegen changes to 32-bit code which failed to handle i64 loads, although 64-bit code is also using this new path to more efficiently combine to a broadcast load.

Differential Revision: https://reviews.llvm.org/D58053

llvm-svn: 354340
2019-02-19 15:57:09 +00:00
Sanjay Patel d8b4efcb6b [CGP] form usub with overflow from sub+icmp
The motivating x86 cases for forming the intrinsic are shown in PR31754 and PR40487:
https://bugs.llvm.org/show_bug.cgi?id=31754
https://bugs.llvm.org/show_bug.cgi?id=40487
..and those are shown in the IR test file and x86 codegen file.

Matching the usubo pattern is harder than uaddo because we have 2 independent values rather than a def-use.

This adds a TLI hook that should preserve the existing behavior for uaddo formation, but disables usubo
formation by default. Only x86 overrides that setting for now although other targets will likely benefit
by forming usbuo too.

Differential Revision: https://reviews.llvm.org/D57789

llvm-svn: 354298
2019-02-18 23:33:05 +00:00
Sanjay Patel fff628274d [x86] split more v8f32/v8i32 shuffles in lowering
Similar to D57867 - this is a small patch with lots of test diffs.
With half-vector-width narrowing potential, using an extract + 128-bit vshufps
is a win because it replaces a 256-bit shuffle with a 128-bit shufle.

This seems like it should be a win even for targets with 'fast-variable-shuffle',
but we are intentionally deferring that to an independent change to make sure
that is true.

Differential Revision: https://reviews.llvm.org/D58181

llvm-svn: 354279
2019-02-18 16:46:12 +00:00
Craig Topper ce3c5ac6a6 [X86] In FP_TO_INTHelper, when moving data from SSE register to X87 register file via the stack, use the same stack slot we use for the integer conversion.
No need for a separate stack slot. The lifetimes don't overlap.

Also fix the MachinePointerInfo for the final load after the integer conversion to indicate it came from the stack slot.

llvm-svn: 354234
2019-02-17 19:23:49 +00:00
Craig Topper db5aa955cb [X86] When type legalizing the result of a i64 fp_to_uint on 32-bit targets. Generate all of the ops as i64 and let them be legalized.
No need to manually split everything. We can let the type legalizer work for us.

The test change seems to be caused by some DAG ordering issue that was previously circumventing a one use check in LowerSELECT where FP selects are turned into blends if the setcc has one use. But it was running after an integer select and the same setcc had been legalized to cmov and X86SISD::CMP. This dropped the use count of the setcc, but wasn't what was intended.

llvm-svn: 354197
2019-02-16 08:25:42 +00:00
Craig Topper db2f084aa9 [X86] Don't set exception mask bits when modifying FPCW to change rounding mode for fp->int conversion
When we need to do an fp->int conversion using x87 instructions, we need to temporarily change the rounding mode to 0b11 and perform a store. To do this we save the old value of the fpcw to the stack, then set the fpcw to 0xc7f, do the store, then restore fpcw. But the 0xc7f value forces the exception mask bits 1. While this is what they would be in the default FP environment, as we move to support changing the FP environments, we shouldn't make this assumption.

This patch changes the code to explicitly OR 0xc00 with the old value so that only the rounding mode is changed. Unfortunately, this requires two stack temporaries instead of one. One to hold the old value and one to hold the new value. Without two stack temporaries we would need an additional GPR. We already need one to do the OR operation in. This is similar to what gcc and icc do for this operation. Though they are both better at reusing the stack temporaries when there are multiple truncates in a function(or at least in a basic block)

Differential Revision: https://reviews.llvm.org/D57788

llvm-svn: 354178
2019-02-15 21:59:33 +00:00
Nirav Dave 7875841121 [X86] Fix LowerAsmOutputForConstraint.
Summary:
Update Flag when generating cc output.

Fixes PR40737.

Reviewers: rnk, nickdesaulniers, craig.topper, spatel

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D58283

llvm-svn: 354163
2019-02-15 20:01:55 +00:00
Craig Topper 9c6a9276da [X86] Move all the SSE legality checks out of FP_TO_INTHelper and up to LowerFP_TO_INT. NFCI
These checks aren't needed on the call to FP_TO_INTHelper from the type legalizer for splitting i64. We always want to use X87 FIST/FISTT to memory there.

Moving up the SSE checks will allow this routine to focus on what it cares about and makes its return semantics cleaner.

llvm-svn: 354161
2019-02-15 19:21:39 +00:00
Simon Pilgrim 6ce08672fb [X86][AVX] lowerShuffleAsLanePermuteAndPermute - fully populate the lane shuffle mask (PR40730)
As detailed on PR40730, we are not correctly filling in the lane shuffle mask (D53148/rL344446) - we fill in for the correct src lane but don't add it to the correct mask element, so any reference to the correct element is likely to see an UNDEF mask index.

This allows constant folding to propagate UNDEFs prior to the lane mask being (correctly) lowered to vperm2f128.

This patch fixes the issue by fully populating the lane shuffle mask - this is more than is necessary (if we only filled in the required mask elements we might be able to match other shuffle instructions - broadcasts etc.), but its the most cautious approach as this needs to be cherrypicked into the 8.0.0 release branch.

Differential Revision: https://reviews.llvm.org/D58237

llvm-svn: 354117
2019-02-15 11:39:21 +00:00
Nirav Dave 5ffdc43dc9 [X86] cleanup inline asm register generation. NFCI.
llvm-svn: 354042
2019-02-14 18:06:21 +00:00
Craig Topper 1d158dd930 [X86] Make (f80 (sint_to_fp (i16))) use fistps/fisttps instead of fistpl/fisttpl when SSE is enabled.
When SSE is enabled sint_to_fp with i16 is blindly promoted to i32, but that changes the behavior of f80 conversion.

Move the promotion to i16 to LowerFP_TO_INT so we can limit it based on the floating point type.

llvm-svn: 354003
2019-02-14 01:41:43 +00:00
Craig Topper 9b61f48e4b [X86] Use default expansion for (i64 fp_to_uint f80) when avx512 is enabled on 64-bit targets to match what happens without avx512.
In 64-bit mode prior to avx512 we use Expand, but with avx512 we need to make f32/f64 conversions Legal so we use Custom and then do our own expansion for f80. But this seems to produce codegen differences relative to avx2. This patch corrects this.

llvm-svn: 353921
2019-02-13 07:42:34 +00:00
Craig Topper 3099e442a6 [X86] Refactor the FP_TO_INTHelper interface. NFCI
-Pull the final stack load creation from the two callers into the helper.
-Return a single SDValue instead of a std::pair.
-Remove the Replace flag which isn't really needed.

llvm-svn: 353920
2019-02-13 07:42:31 +00:00
Simon Pilgrim 5338f41ced [X86][AVX] Enable shuffle combining support for zero_extend
A more limited version of rL352997 that had to be disabled in rL353198 - allow extension of any 128/256/512 bit vector that at least uses byte sized scalars.

llvm-svn: 353860
2019-02-12 17:22:35 +00:00
Craig Topper 7670ede434 [X86] Collapse FP_TO_INT16_IN_MEM/FP_TO_INT32_IN_MEM/FP_TO_INT64_IN_MEM into a single opcode using memory VT to distinquish. NFC
llvm-svn: 353798
2019-02-12 06:14:18 +00:00
Craig Topper d7303ecd0b [X86] Remove the value type operand from the floating point load/store MemIntrinsicSDNodes. Use the MemoryVT instead. NFCI
We already have the memory VT, we can just match from that during isel.

llvm-svn: 353797
2019-02-12 06:14:16 +00:00
Craig Topper 75eb0af874 [X86] Correct the memory operand for the FLD emitted in FP_TO_INTHelper for 32-bit SSE targets.
We were using DstTy, but that represents the integer type we are converting to which is i64 in this
case. The FLD is part of an intermediate step to get from the SSE registers to the x87 registers.
If the floating point type is f32, the memory operand should reflect a 4 byte access not an 8 byte
access. The store we used to get from SSE to the stack is using the corect size.

While there, consistenly use TheVT in place of Op.getOperand(0).getValueType() throughout the function.

llvm-svn: 353745
2019-02-11 20:38:10 +00:00
Sam McCall e825ba9165 Revert "[X86][SSE] Generalize X86ISD::BLENDI support to more value types"
This reverts commit r353610.
It causes a miscompile visible in macro expansion in a bootstrapped clang.

http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20190211/626590.html

llvm-svn: 353699
2019-02-11 14:05:36 +00:00
Simon Pilgrim f6e6c369c0 [X86] EltsFromConsecutiveLoads - replace SmallBitVector with APInt (NFC).
Minor refactor to simplify some incoming patches to improve broadcast loads.

llvm-svn: 353655
2019-02-10 22:45:48 +00:00
Sanjay Patel 833550fc74 [x86] narrow 256-bit horizontal ops via demanded elements
256-bit horizontal math ops are an x86 monstrosity (and thankfully have
not been extended to 512-bit AFAIK).

The two 128-bit halves operate on separate halves of the inputs. So if we
don't demand anything in the upper half of the result, we can extract the
low halves of the inputs, do the math, and then insert that result into a
256-bit output.

All of the extract/insert is free (ymm<-->xmm), so we're left with a
narrower (cheaper) version of the original op.

In the affected tests based on:
https://bugs.llvm.org/show_bug.cgi?id=33758
https://bugs.llvm.org/show_bug.cgi?id=38971
...we see that the h-op narrowing can result in further narrowing of other
math via existing generic transforms.

I originally drafted this patch as an exact pattern match starting from
extract_vector_elt, but I thought we might see diffs starting from
extract_subvector too, so I changed it to a more general demanded elements
solution. There are no extra existing regression test improvements from
that switch though, so we could go back.

Differential Revision: https://reviews.llvm.org/D57841

llvm-svn: 353641
2019-02-10 15:22:06 +00:00
Simon Pilgrim 6bf7b30b10 [X86] CombineOr - fold to generic funnel shifts
As discussed on D57389, this is a first step towards moving the SHLD/SHRD matching code to DAGCombiner using FSHL/FSHR instead.

There's a bit of work to do before I can do that, so this just folds to FSHL/FSHR in the existing code (handling the different SHRD/FSHR argument ordering), which fixes the issue we had with i16 shift amounts not being correctly masked.

llvm-svn: 353626
2019-02-09 20:34:59 +00:00
Simon Pilgrim 690a2889d8 [X86][SSE] Generalize X86ISD::BLENDI support to more value types
D42042 introduced the ability for the ExecutionDomainFixPass to more easily change between BLENDPD/BLENDPS/PBLENDW as the domains required.

With this ability, we can avoid most bitcasts/scaling in the DAG that was occurring with X86ISD::BLENDI lowering/combining, blend with the vXi32/vXi64 vectors directly and use isel patterns to lower to the float vector equivalent vectors.

This helps the shuffle combining and SimplifyDemandedVectorElts be more aggressive as we lose track of fewer UNDEF elements than when we go up/down through bitcasts.

I've introduced a basic blend(bitcast(x),bitcast(y)) -> bitcast(blend(x,y)) fold, there are more generalizations I can do there (e.g. widening/scaling and handling the tricky v16i16 repeated mask case).

The vector-reduce-smin/smax regressions will be fixed in a future improvement to SimplifyDemandedBits to peek through bitcasts and support X86ISD::BLENDV.

Differential Revision: https://reviews.llvm.org/D57888

llvm-svn: 353610
2019-02-09 13:13:59 +00:00
Sanjay Patel e9cc26a56a [x86] fix formatting; NFC
(test commit #2 migrating to git)

llvm-svn: 353533
2019-02-08 16:48:40 +00:00
Craig Topper 738180cc7f Fix the lowering issue of intrinsics llvm.localaddress on X86
Patch by Yuanke Luo

Reviewers: craig.topper, annita.zhang, smaslov, rnk, wxiao3

Reviewed By: rnk

Subscribers: efriedma, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D57501

llvm-svn: 353492
2019-02-08 01:14:12 +00:00
Sanjay Patel 81f859d169 [x86] fix formatting; NFC
llvm-svn: 353477
2019-02-07 22:36:55 +00:00
Simon Pilgrim fe3ac70b18 [DAGCombiner] (add (umax X, C), -C) --> (usubsat X, C) (PR40111)
Move the (add (umax X, C), -C) --> (usubsat X, C) X86 combine into generic DAGCombiner

First of a number of saturated arithmetic folds that can be moved out of X86-specific code for PR40111.

Differential Revision: https://reviews.llvm.org/D57754

llvm-svn: 353457
2019-02-07 20:14:43 +00:00
Sanjay Patel a5c4a5e958 [x86] split more 256/512-bit shuffles in lowering
This is intentionally a small step because it's hard to know exactly 
where we might introduce a conflicting transform with the code that 
tries to form wider shuffles. But I think this is safe - if we have 
a wide shuffle with 2 operands, then we should do better with an 
extract + narrow shuffle.

Differential Revision: https://reviews.llvm.org/D57867

llvm-svn: 353427
2019-02-07 17:10:49 +00:00
Nirav Dave 84e5bf0c95 [X86] Simplify casing. NFC.
llvm-svn: 353417
2019-02-07 15:43:40 +00:00
Nirav Dave c6bfa103a5 [X86][DAG] Avoid creating dangling bitcast.
combineExtractWithShuffle may leave a dangling bitcast which may
prevent further optimization in later passes. Avoid constructing it
unless it is used.

llvm-svn: 353333
2019-02-06 19:45:47 +00:00
Nirav Dave e5c37958f9 [InlineAsm][X86] Add backend support for X86 flag output parameters.
Allow custom handling of inline assembly output parameters and add X86
flag parameter support.

llvm-svn: 353307
2019-02-06 15:26:29 +00:00