On SPARC, leaf function optimization omits the register window sliding (and the associated register name changes). This might result in miscompilation of procedures containing inline assembly, as some of the register constraints used may interfere with the register usage of optimized functions, so we disable leaf procedure optimization on those procedures to prevent it from happening.
This is a continuation of patch D102342 by @LemonBoy, the original comment is reproduced below:
> Leaf functions allow the compiler to omit the setup and teardown of a frame pointer, therefore avoiding the exchange of the in/out register. According to the SPARC architecture manual every reference to %i0-%i5 should be replaced with %o0-o5, if the target register is already in use a further remapping step to %g1-%g7 is required to free the output register.
>
> Add a simple check to make sure not to stomp on any output register that's already in use.
Reviewed By: dcederman
Differential Revision: https://reviews.llvm.org/D128263
MIR support is totally unusable for AMDGPU without this, since the set
of reserved registers is set from fields here.
Add a clone method to MachineFunctionInfo. This is a subtle variant of
the copy constructor that is required if there are any MIR constructs
that use pointers. Specifically, at minimum fields that reference
MachineBasicBlocks or the MachineFunction need to be adjusted to the
values in the new function.
This patch fixes:
llvm/lib/Target/Sparc/AsmParser/SparcAsmParser.cpp:910:5: error:
default label in switch which covers all enumeration values
[-Werror,-Wcovered-switch-default]
This patch introduces support for %hix, %lox, %gdop_hix22, %gdop_lox10 and %gdop.
An extra test is introduced to make sure the fixups are correctly applied.
Reviewed By: dcederman
Differential Revision: https://reviews.llvm.org/D102575
MCSymbolizer::tryAddingSymbolicOperand() overloaded the Size parameter
to specify either the instruction size or the operand size depending on
the architecture. However, for proper symbolic disassembly on X86, we
need to know both sizes, as an instruction can have two operands, and
the instruction size cannot be reliably calculated based on the operand
offset and its size. Hence, split Size into OpSize and InstSize.
For X86, the new interface allows to fix a couple of issues:
* Correctly adjust the value of PC-relative operands.
* Set operand size to zero when the operand is specified implicitly.
Differential Revision: https://reviews.llvm.org/D126101
Make sure that we really don't emit quad-precision unless the "hard-quad-float"
feature is available. Add missing replacement instruction patterns that are
needed to emit alternative code for conditional moves of quad-precision floats.
Test from koakuma.
Reviewed By: koakuma
Differential Revision: https://reviews.llvm.org/D119104
The name `MCFixedLenDisassembler.h` is out of date after D120958.
Rename it as `MCDecoderOps.h` to reflect the change.
Reviewed By: myhsu
Differential Revision: https://reviews.llvm.org/D124987
All LLVM backends use MCDisassembler as a base class for their
instruction decoders. Use "const MCDisassembler *" for the decoder
instead of "const void *". Remove unnecessary static casts.
Reviewed By: skan
Differential Revision: https://reviews.llvm.org/D122245
This patch adds tail call support to the 32-bit Sparc backend.
Two new instructions are defined, TAIL_CALL and TAIL_CALLri. They are
encoded the same as CALL and BINDri, but are marked with isReturn so
that the epilogue gets emitted. In contrast to CALL, TAIL_CALL is not
marked with isCall. This makes it possible to use the leaf function
optimization when the only call a function makes is a tail call.
TAIL_CALL modifies the return address in %o7, so for leaf functions
the value in %o7 needs to be restored after the call. For normal
functions which uses the restore instruction this is not necessary.
Reviewed By: koakuma
Differential Revision: https://reviews.llvm.org/D51206
As usual with that header cleanup series, some implicit dependencies now need to
be explicit:
llvm/MC/MCParser/MCAsmParser.h no longer includes llvm/MC/MCParser/MCAsmLexer.h
Preprocessed lines to build llvm on my setup:
after: 1068185081
before: 1068324320
So no compile time benefit to expect, but we still get the looser coupling
between files which is great.
Discourse thread: https://discourse.llvm.org/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D119359
There's a few relevant forward declarations in there that may require downstream
adding explicit includes:
llvm/MC/MCContext.h no longer includes llvm/BinaryFormat/ELF.h, llvm/MC/MCSubtargetInfo.h, llvm/MC/MCTargetOptions.h
llvm/MC/MCObjectStreamer.h no longer include llvm/MC/MCAssembler.h
llvm/MC/MCAssembler.h no longer includes llvm/MC/MCFixup.h, llvm/MC/MCFragment.h
Counting preprocessed lines required to rebuild llvm-project on my setup:
before: 1052436830
after: 1049293745
Which is significant and backs up the change in addition to the usual benefits of
decreasing coupling between headers and compilation units.
Discourse thread: https://discourse.llvm.org/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D119244
`instrprof-icall-promo.test` `FAIL`s on Solaris/sparcv9:
Profile-sparc :: instrprof-icall-promo.test
Profile-sparcv9 :: instrprof-icall-promo.test
when compiling `compiler-rt/test/profile/Inputs/instrprof-icall-promo_2.cpp` with
fatal error: error in backend: Relocation for CG Profile could not be created: unknown relocation name
This happens because the Sparc backend doesn't implement `BFD_RELOC_NONE`.
This patch fixes that, following what X86 does.
Tested on `sparcv9-sun-solaris2.11`.
Differential Revision: https://reviews.llvm.org/D118136
This reverts commit ef82063207.
- It conflicts with the existing llvm::size in STLExtras, which will now
never be called.
- Calling it without llvm:: breaks C++17 compat
Instead use either Type::getPointerElementType() or
Type::getNonOpaquePointerElementType().
This is part of D117885, in preparation for deprecating the API.
This reverts commit fd4808887e.
This patch causes gcc to issue a lot of warnings like:
warning: base class ‘class llvm::MCParsedAsmOperand’ should be
explicitly initialized in the copy constructor [-Wextra]
On SPARC, S/UMULO operation on 64-bit integers works by extending the value to 128-bit, then doing a multiplication and checking the upper half of the result.
This makes UMULO works correctly by putting a zero in the upper half rather than doing a sign extension.
Reviewed By: LemonBoy
Differential Revision: https://reviews.llvm.org/D110555
These compiler-rt-only symbols aren't available in libgcc. Similar to
D108842, D108844, and D108926.
Fixes: pr/52043
Reviewed By: craig.topper, rengolin
Differential Revision: https://reviews.llvm.org/D112750
This moves the registry higher in the LLVM library dependency stack.
Every client of the target registry needs to link against MC anyway to
actually use the target, so we might as well move this out of Support.
This allows us to ensure that Support doesn't have includes from MC/*.
Differential Revision: https://reviews.llvm.org/D111454
On some architectures such as Arm and X86 the encoding for a nop may
change depending on the subtarget in operation at the time of
encoding. This change replaces the per module MCSubtargetInfo retained
by the targets AsmBackend in favour of passing through the local
MCSubtargetInfo in operation at the time.
On Arm using the architectural NOP instruction can have a performance
benefit on some implementations.
For Arm I've deleted the copy of the AsmBackend's MCSubtargetInfo to
limit the chances of this causing problems in the future. I've not
done this for other targets such as X86 as there is more frequent use
of the MCSubtargetInfo and it looks to be for stable properties that
we would not expect to vary per function.
This change required threading STI through MCNopsFragment and
MCBoundaryAlignFragment.
I've attempted to take into account the in tree experimental backends.
Differential Revision: https://reviews.llvm.org/D45962
This is a mechanical change. This actually also renames the
similarly named methods in the SmallString class, however these
methods don't seem to be used outside of the llvm subproject, so
this doesn't break building of the rest of the monorepo.
Since this method can apply to cmpxchg operations, make sure it's clear
what value we're actually retrieving. This will help ensure we don't
accidentally ignore the failure ordering of cmpxchg in the future.
We could potentially introduce a getOrdering() method on AtomicSDNode
that asserts the operation isn't cmpxchg, but not sure that's
worthwhile.
Differential Revision: https://reviews.llvm.org/D103338
Lower truncations and expansions between fp128 and half values into libcalls.
Expand truncating stores into two separate truncation and a store operations.
Reviewed By: jrtc27
Differential Revision: https://reviews.llvm.org/D104185
Strictly speaking, the architecture manual no longer uses the st
mnemonic, but that's a much more intrusive change for little gain.
Differential Revision: https://reviews.llvm.org/D96313
These constraints are machine agnostic; there's no reason to handle
these per-arch. If arches don't support these constraints, then they
will fail elsewhere during instruction selection. We don't need virtual
calls to look these up; TargetLowering::getInlineAsmMemConstraint should
only be overridden by architectures with additional unique memory
constraints.
Reviewed By: echristo, MaskRay
Differential Revision: https://reviews.llvm.org/D100416
Such attributes can either be unset, or set to "true" or "false" (as string).
throughout the codebase, this led to inelegant checks ranging from
if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
to
if (Fn->hasAttribute("no-jump-tables") && Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
Introduce a getValueAsBool that normalize the check, with the following
behavior:
no attributes or attribute set to "false" => return false
attribute set to "true" => return true
Differential Revision: https://reviews.llvm.org/D99299
Currently needsStackRealignment returns false if canRealignStack returns false.
This means that the behavior of needsStackRealignment does not correspond to
it's name and description; a function might need stack realignment, but if it
is not possible then this function returns false. Furthermore,
needsStackRealignment is not virtual and therefore some backends have made use
of canRealignStack to indicate whether a function needs stack realignment.
This patch attempts to clarify the situation by separating them and introducing
new names:
- shouldRealignStack - true if there is any reason the stack should be
realigned
- canRealignStack - true if we are still able to realign the stack (e.g. we
can still reserve/have reserved a frame pointer)
- hasStackRealignment = shouldRealignStack && canRealignStack (not target
customisable)
Targets can now override shouldRealignStack to indicate that stack realignment
is required.
This change will make it easier in a future change to handle the case where we
need to realign the stack but can't do so (for example when the register
allocator creates an aligned spill after the frame pointer has been
eliminated).
Differential Revision: https://reviews.llvm.org/D98716
Change-Id: Ib9a4d21728bf9d08a545b4365418d3ffe1af4d87
Allow assembler expressions to start with an identifier. This allows for expressions such as
```
b symbol + 4
```
and
```
mov symEnd - symStart, %g1
```
The patch builds upon https://reviews.llvm.org/D47136.
Reviewed By: joerg
Differential Revision: https://reviews.llvm.org/D47458
Various *TargetStreamer.h need formatted_raw_ostream but rely on a
forward declaration of formatted_raw_ostream in MCStreamer.h. This
patch adds forward declarations right in *TargetStreamer.h.
While we are at it, this patch removes the one in MCStreamer.h, where
it is unnecessary.
The generated code for the split fp128 load/stores was missing a small yet important adjustment to the pointer metadata being fed into `getStore` and `getLoad`, making it out of sync with the effective memory address.
This problem often resulted in instructions being scheduled in the wrong order.
I also took this chance to clean up some "wrong" uses of `getAlignment` as done in D77687.
Thanks @jrtc27 for finding the problem and providing a patch.
Patch by LemonBoy and Jessica Clarke(jrtc27)
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D94345