The availability of SVE should be sufficient to enable scalable
auto-vectorization.
This patch adds a new TTI interface to query the target what style of
vectorization it wants when scalable vectors are available. For other
targets than AArch64, this currently defaults to 'FixedWidthOnly'.
Differential Revision: https://reviews.llvm.org/D115651
The basic idea to this is that a) having a single canonical type makes CSE easier, and b) many of our transforms are inconsistent about which types we end up with based on visit order.
I'm restricting this to constants as for non-constants, we'd have to decide whether the simplicity was worth extra instructions. For constants, there are no extra instructions.
We chose the canonical type as i64 arbitrarily. We might consider changing this to something else in the future if we have cause.
Differential Revision: https://reviews.llvm.org/D115387
Drop changes to consecutive-ptr-uniforms.ll since that test checks boths IR output and debug messages. I'd missed this in the original commit, and Florian pointed it out in post-commit review.
Original commit message:
These are the ones my first round of scripting couldn't handle that required a bit of manual messaging. This should be the last batch in llvm-check.
This reverts commit bbba86764a.
This reverts commit bbfaf0b170.
Post commit review noted a case where my manual update lost intentional check lines. Given I've abandoned the motivating patch, I'm just reverting the autogen prep.
For the simple copy loop (see test case) vectorizer selects VF equal to 32 while the loop is known to have 17 iterations only. Such behavior makes no sense to me since such vector loop will never be executed. The only case we may want to select VF large than TC is masked vectoriztion. So I haven't touched that case.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D114528
Given a MLA reduction from two different types (say i8 and i16), we were
previously failing to find the reduction pattern, often making us chose
the lower vector factor. This improves that by using the largest of the
two extension types, allowing us to use the larger VF as the type of the
reduction.
As per https://godbolt.org/z/KP549EEYM the backend handles this
valiantly, leading to better performance.
Differential Revision: https://reviews.llvm.org/D115432
This patch simplifies handling of redundant induction casts, by
removing dead cast instructions after initial VPlan construction.
This has the following benefits:
1. fixes a crash
(see @test_optimized_cast_induction_feeding_first_order_recurrence)
2. Simplifies VPWidenIntOrFpInduction to a single-def recipes
3. Retires recordVectorLoopValueForInductionCast.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D115112
This patch adds on an overhead cost for gathers and scatters, which
is a rough estimate based on performance investigations I have
performed on SVE hardware for various micro-benchmarks.
Differential Revision: https://reviews.llvm.org/D115143
I've added some tests that were previously missing for the gather-scatter costs
being calculated by the vectorizer for AArch64:
Transforms/LoopVectorize/AArch64/sve-gather-scatter-cost.ll
The costs are sometimes different to the ones in
Analysis/CostModel/AArch64/sve-gather.ll
because the vectorizer also adds on the address computation cost.
The default for min is changed to 1. The behaviour of -mvscale-{min,max}
in Clang is also changed such that 16 is the max vscale when targeting
SVE and no max is specified.
Reviewed By: sdesmalen, paulwalker-arm
Differential Revision: https://reviews.llvm.org/D113294
If the condition of a select is a compare, pass its predicate to
TTI::getCmpSelInstrCost to get a more accurate cost value instead
of passing BAD_ICMP_PREDICATE.
I noticed that the commit message from D90070 had a comment about the
vectorized select predicate possibly being composed of other compares with
different predicate values, but I wasn't able to construct an example
where this was an actual issue. If this is an issue, I guess we could
add another check that the block isn't predicated for any reason.
Reviewed By: dmgreen, fhahn
Differential Revision: https://reviews.llvm.org/D114646
MVE can treat v16i1, v8i1, v4i1 and v2i1 as different views onto the
same 16bit VPR.P0 register, with v2i1 holding two 8 bit values for the
two halves. This was never treated as a legal type in llvm in the past
as there are not many 64bit instructions and no 64bit compares. There
are a few instructions that could use it though, notably a VSELECT (as
it can handle any size using the underlying v16i8 VPSEL), AND/OR/XOR for
similar reasons, some gathers/scatter and long multiplies and VCTP64
instructions.
This patch goes through and makes v2i1 a legal type, handling all the
cases that fall out of that. It also makes VSELECT legal for v2i64 as a
side benefit. A lot of the codegen changes as a result - usually in way
that is a little better or a little worse, but still expensive. Costs
can change a little too in the process, again in a way that expensive
things remain expensive. A lot of the tests that changed are mainly to
ensure correctness - the code can hopefully be improved in the future
where it comes up in practice.
The intrinsics currently remain using the v4i1 they previously did to
emulate a v2i1. This will be changed in a followup patch but this one
was already large enough.
Differential Revision: https://reviews.llvm.org/D114449
We ask `TTI.getAddressComputationCost()` about the cost of computing vector address,
and then multiply it by the vector width. This doesn't make any sense,
it implies that we'd do a vector GEP and then scalarize the vector of pointers,
but there is no such thing in the vectorized IR, we perform scalar GEP's.
This is *especially* bad on X86, and was effectively prohibiting any scalarized
vectorization of gathers/scatters, because `X86TTIImpl::getAddressComputationCost()`
says that cost of vector address computation is `10` as compared to `1` for scalar.
The computed costs are similar to the ones with D111222+D111220,
but we end up without masked memory intrinsics that we'd then have to
expand later on, without much luck. (D111363)
Differential Revision: https://reviews.llvm.org/D111460
collectLoopScalars should only add non-uniform nodes to the list if they
are used by a load/store instruction that is marked as CM_Scalarize.
Before this patch, the LV incorrectly marked pointer induction variables
as 'scalar' when they required to be widened by something else,
such as a compare instruction, and weren't used by a node marked as
'CM_Scalarize'. This case is covered by sve-widen-phi.ll.
This change also allows removing some code where the LV tried to
widen the PHI nodes with a stepvector, even though it was marked as
'scalarAfterVectorization'. Now that this code is more careful about
marking instructions that need widening as 'scalar', this code has
become redundant.
Differential Revision: https://reviews.llvm.org/D114373
In VPRecipeBuilder::handleReplication if we believe the instruction
is predicated we then proceed to create new VP region blocks even
when the load is uniform and only predicated due to tail-folding.
I have updated isPredicatedInst to avoid treating a uniform load as
predicated when tail-folding, which means we can do a single scalar
load and a vector splat of the value.
Tests added here:
Transforms/LoopVectorize/AArch64/tail-fold-uniform-memops.ll
Differential Revision: https://reviews.llvm.org/D112552
This patch updates the cost model for ordered reductions so that a call
to the llvm.fmuladd intrinsic is modelled as a normal fmul instruction
plus the cost of an ordered fadd reduction.
Differential Revision: https://reviews.llvm.org/D111630
In-loop vector reductions which use the llvm.fmuladd intrinsic involve
the creation of two recipes; a VPReductionRecipe for the fadd and a
VPInstruction for the fmul. If the call to llvm.fmuladd has fast-math flags
these should be propagated through to the fmul instruction, so an
interface setFastMathFlags has been added to the VPInstruction class to
enable this.
Differential Revision: https://reviews.llvm.org/D113125
This patch fixes PR52111. The problem is that LV propagates poison-generating flags (`nuw`/`nsw`, `exact`
and `inbounds`) in instructions that contribute to the address computation of widen loads/stores that are
guarded by a condition. It may happen that when the code is vectorized and the control flow within the loop
is linearized, these flags may lead to generating a poison value that is effectively used as the base address
of the widen load/store. The fix drops all the integer poison-generating flags from instructions that
contribute to the address computation of a widen load/store whose original instruction was in a basic block
that needed predication and is not predicated after vectorization.
Reviewed By: fhahn, spatel, nlopes
Differential Revision: https://reviews.llvm.org/D111846
A first step towards modeling preheader and exit blocks in VPlan as well.
Keeping the vector loop in a region allows for changing the VF as we
traverse region boundaries.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D113182
checkOrderedReductions looks for Phi nodes which can be classified as in-order,
meaning they can be vectorised without unsafe math. In order to vectorise the
reduction it should also be classified as in-loop by getReductionOpChain, which
checks that the reduction has two uses.
In this patch, a similar check is added to checkOrderedReductions so that we
now return false if there are more than two uses of the FAdd instruction.
This fixes PR52515.
Reviewed By: fhahn, david-arm
Differential Revision: https://reviews.llvm.org/D114002
This patch adds a reduced version of the test case from PR52024.
Together with 764d9aa979 the test causes a crash, because LV expands a
SCEV expression during code generation, when the dominator tree is not
up-to-date.
When getTypeConversion returns TypeScalarizeScalableVector we were
sometimes returning a non-simple type from getTypeLegalizationCost.
However, many callers depend upon this being a simple type and will
crash if not. This patch changes getTypeLegalizationCost to ensure
that we always a return sensible simple VT. If the vector type
contains unusual integer types, e.g. <vscale x 2 x i3>, then we just
set the type to MVT::i64 as a reasonable default.
A test has been added here that demonstrates the vectoriser can
correctly calculate the cost of vectorising a "zext i3 to i64"
instruction with a VF=vscale x 1:
Transforms/LoopVectorize/AArch64/sve-inductions-unusual-types.ll
Differential Revision: https://reviews.llvm.org/D113777
When asking how many parts are required for a scalable vector type
there are occasions when it cannot be computed. For example, <vscale x 1 x i3>
is one such vector for AArch64+SVE because at the moment no matter how we
promote the i3 type we never end up with a legal vector. This means
that getTypeConversion returns TypeScalarizeScalableVector as the
LegalizeKind, and then getTypeLegalizationCost returns an invalid cost.
This then causes BasicTTImpl::getNumberOfParts to dereference an invalid
cost, which triggers an assert. This patch changes getNumberOfParts to
return 0 for such cases, since the definition of getNumberOfParts in
TargetTransformInfo.h states that we can use a return value of 0 to represent
an unknown answer.
Currently, LoopVectorize.cpp is the only place where we need to check for
0 as a return value, because all other instances will not currently
ask for the number of parts for <vscale x 1 x iX> types.
In addition, I have changed the target-independent interface for
getNumberOfParts to return 1 and assume there is a single register
that can fit the type. The loop vectoriser has lots of tests that are
target-independent and they relied upon the 0 value to mean the
answer is known and that we are not scalarising the vector.
I have added tests here that show we correctly return an invalid cost
for VF=vscale x 1 when the loop contains unusual types such as i7:
Transforms/LoopVectorize/AArch64/sve-inductions-unusual-types.ll
Differential Revision: https://reviews.llvm.org/D113772
At the moment, computeRecurrenceType does not include any sign bits in
the maximum bit width. If the value can be negative, this means the sign
bit will be missing and the sext won't properly extend the value.
If the value can be negative, increment the bitwidth by one to make sure
there is at least one sign bit in the result value.
Note that the increment is also needed *if* the value is *known* to be
negative, as a sign bit needs to be preserved for the sext to work.
Note that this at the moment prevents vectorization, because the
analysis computes i1 as type for the recurrence when looking through the
AND in lookThroughAnd.
Fixes PR51794, PR52485.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D113056
This is one of those wonderful "in theory X doesn't matter, but in practice is does" changes. In this particular case, we shift the IVs inserted by the runtime unroller to clamp iteration count of the loops* from decrementing to incrementing.
Why does this matter? A couple of reasons:
* SCEV doesn't have a native subtract node. Instead, all subtracts (A - B) are represented as A + -1 * B and drops any flags invalidated by such. As a result, SCEV is slightly less good at reasoning about edge cases involving decrementing addrecs than incrementing ones. (You can see this in the inferred flags in some of the test cases.)
* Other parts of the optimizer produce incrementing IVs, and they're common in idiomatic source language. We do have support for reversing IVs, but in general if we produce one of each, the pair will persist surprisingly far through the optimizer before being coalesced. (You can see this looking at nearby phis in the test cases.)
Note that if the hardware prefers decrementing (i.e. zero tested) loops, LSR should convert back immediately before codegen.
* Mostly irrelevant detail: The main loop of the prolog case is handled independently and will simple use the original IV with a changed start value. We could in theory use this scheme for all iteration clamping, but that's a larger and more invasive change.
`collectElementTypesForWidening` collects the types of load, store and
reduction Phis in a loop. These types are later checked using
`isElementTypeLegalForScalableVector` to prevent vectorisation of
loops with instruction types that are unsupported.
This patch removes i1 from the list of types supported for scalable
vectors. This fixes an assert ("Cannot yet scalarize uniform stores") in
`setCostBasedWideningDecision` when we have a loop containing a uniform
i1 store and a scalable VF, which we cannot create a scatter for.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D113680
Unfortunately sinking recipes for first-order recurrences relies on
the original position of recipes. So if a recipes needs to be sunk after
an optimized induction, it needs to stay in the original position, until
sinking is done. This is causing PR52460.
To fix the crash, keep the recipes in the original position until
sink-after is done.
Post-commit follow-up to c45045bfd0 to address PR52460.
This reverts commit 7cd273c339.
Several patches with tests fixes have been applied:
0cada82f0a "[Test] Remove incorrect test in GVN"
97cb13615d "[Test] Separate IndVars test into AArch64 and X86 parts"
985cc490f1 "[Test] Remove separated test in IndVars",
and test failures caused by 5ec2386 should be resolved now.
When creating a splat of 0 for scalable vectors we tend to create them
with using a combination of shufflevector and insertelement, i.e.
shufflevector (<vscale x 4 x i32> insertelement (<vscale x 4 x i32> poison, i32 0, i32 0),
<vscale x 4 x i32> poison, <vscale x 4 x i32> zeroinitializer)
However, for the case of a zero splat we can actually just replace the
above with zeroinitializer instead. This makes the IR a lot simpler and
easier to read. I have changed ConstantFoldShuffleVectorInstruction to
use zeroinitializer when creating a splat of integer 0 or FP +0.0 values.
Differential Revision: https://reviews.llvm.org/D113394
Changes VPReplicateRecipe to extract the last lane from an unconditional,
uniform store instruction. collectLoopUniforms will also add stores to
the list of uniform instructions where Legal->isUniformMemOp is true.
setCostBasedWideningDecision now sets the widening decision for
all uniform memory ops to Scalarize, where previously GatherScatter
may have been chosen for scalable stores.
This fixes an assert ("Cannot yet scalarize uniform stores") in
setCostBasedWideningDecision when we have a loop containing a
uniform i1 store and a scalable VF, which we cannot create a scatter for.
Reviewed By: sdesmalen, david-arm, fhahn
Differential Revision: https://reviews.llvm.org/D112725
This reapplies patch db289340c8.
The test failures on build with expensive checks caused by the patch happened due
to the fact that we sorted loop Phis in replaceCongruentIVs using llvm::sort,
which shuffles the given container if the expensive checks are enabled,
so equivalent Phis in the sorted vector had different mutual order from run
to run. replaceCongruentIVs tries to replace narrow Phis with truncations
of wide ones. In some test cases there were several Phis with the same
width, so if their order differs from run to run, the narrow Phis would
be replaced with a different Phi, depending on the shuffling result.
The patch ae14fae0ff fixed this issue by
replacing llvm::sort with llvm::stable_sort.
All phi-like recipes should be at the beginning of a VPBasicBlock with
no other recipes in between. Ensure that the recurrence-splicing recipe
is not added between phi-like recipes, but after them.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D111301
When targeting a specific CPU with scalable vectorization, the knowledge
of that particular CPU's vscale value can be used to tune the cost-model
and make the cost per lane less pessimistic.
If the target implements 'TTI.getVScaleForTuning()', the cost-per-lane
is calculated as:
Cost / (VScaleForTuning * VF.KnownMinLanes)
Otherwise, it assumes a value of 1 meaning that the behavior
is unchanged and calculated as:
Cost / VF.KnownMinLanes
Reviewed By: kmclaughlin, david-arm
Differential Revision: https://reviews.llvm.org/D113209
In IndVarSimplify after simplifying and extending loop IVs we call 'replaceCongruentIVs'.
This function optionally takes a TTI argument to be able to replace narrow IVs uses
with truncates of the widest one.
For some reason the TTI wasn't passed to the function, so it couldn't perform such
transform.
This patch fixes it.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D113024
At the moment in LoopVectorizationCostModel::selectEpilogueVectorizationFactor
we bail out if the main vector loop uses a scalable VF. This patch adds
support for generating epilogue vector loops using a fixed-width VF when the
main vector loop uses a scalable VF.
I've changed LoopVectorizationCostModel::selectEpilogueVectorizationFactor
so that we convert the scalable VF into a fixed-width VF and do profitability
checks on that instead. In addition, since the scalable and fixed-width VFs
live in different VPlans that means I had to change the calls to
LVP.hasPlanWithVFs so that we only pass in the fixed-width VF.
New tests added here:
Transforms/LoopVectorize/AArch64/sve-epilog-vect.ll
Differential Revision: https://reviews.llvm.org/D109432
I've added a test for a loop containing a conditional uniform load for
a target that supports masked loads. The test just ensures that we
correctly use gather instructions and have the correct mask.
Differential Revision: https://reviews.llvm.org/D112619
This patch updates VPReductionRecipe::execute so that the fast-math
flags associated with the underlying instruction of the VPRecipe are
propagated through to the reductions which are created.
Differential Revision: https://reviews.llvm.org/D112548
We never expect the runtime VF to be negative so we should use
the uitofp instruction instead of sitofp.
Differential revision: https://reviews.llvm.org/D112610
This patch updates recipe creation to ensure all
VPWidenIntOrFpInductionRecipes are in the header block. At the moment,
new induction recipes can be created in different blocks when trying to
optimize casts and induction variables.
Having all induction recipes in the header makes it easier to
analyze/transform them in VPlan.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D111300
Upon further investigation and discussion,
this is actually the opposite direction from what we should be taking,
and this direction wouldn't solve the motivational problem anyway.
Additionally, some more (polly) tests have escaped being updated.
So, let's just take a step back here.
This reverts commit f3190dedee.
This reverts commit 749581d21f.
This reverts commit f3df87d57e.
This reverts commit ab1dbcecd6.
There's precedent for that in `CreateOr()`/`CreateAnd()`.
The motivation here is to avoid bloating the run-time check's IR
in `SCEVExpander::generateOverflowCheck()`.
Refs. https://reviews.llvm.org/D109368#3089809
It's a no-op, no overflow happens ever: https://alive2.llvm.org/ce/z/Zw89rZ
While generally i don't like such hacks,
we have a very good reason to do this: here we are expanding
a run-time correctness check for the vectorization,
and said `umul_with_overflow` will not be optimized out
before we query the cost of the checks we've generated.
Which means, the cost of run-time checks would be artificially inflated,
and after https://reviews.llvm.org/D109368 that will affect
the minimal trip count for which these checks are even evaluated.
And if they aren't even evaluated, then the vectorized code
certainly won't be run.
We could consider doing this in IRBuilder, but then we'd need to
also teach `CreateExtractValue()` to look into chain of `insertvalue`'s,
and i'm not sure there's precedent for that.
Refs. https://reviews.llvm.org/D109368#3089809
While we could emit such a tautological `select`,
it will stick around until the next instsimplify invocation,
which may happen after we count the cost of this redundant `select`.
Which is precisely what happens with loop vectorization legality checks,
and that artificially increases the cost of said checks,
which is bad.
There is prior art for this in `IRBuilderBase::CreateAnd()`/`IRBuilderBase::CreateOr()`.
Refs. https://reviews.llvm.org/D109368#3089809
I have removed LoopVectorizationPlanner::setBestPlan, since this
function is quite aggressive because it deletes all other plans
except the one containing the <VF,UF> pair required. The code is
currently written to assume that all <VF,UF> pairs will live in the
same vplan. This is overly restrictive, since scalable VFs live in
different plans to fixed-width VFS. When we add support for
vectorising epilogue loops when the main loop uses scalable vectors
then we will the vplan for the main loop will be different to the
epilogue.
Instead I have added a new function called
LoopVectorizationPlanner::getBestPlanFor
that returns the best vplan for the <VF,UF> pair requested and leaves
all the vplans untouched. We then pass this best vplan to
LoopVectorizationPlanner::executePlan
which now takes an additional VPlanPtr argument.
Differential revision: https://reviews.llvm.org/D111125
The math here is:
Cost of 1 load = cost of n loads / n
Cost of live loads = num live loads * Cost of 1 load
Cost of live loads = num live loads * (cost of n loads / n)
Cost of live loads = cost of n loads * (num live loads / n)
But, all the variables here are integers,
and integer division rounds down,
but this calculation clearly expects float semantics.
Instead multiply upfront, and then perform round-up-division.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D112302
This patch introduces a new function:
AArch64Subtarget::getVScaleForTuning
that returns a value for vscale that can be used for tuning the cost
model when using scalable vectors. The VScaleForTuning option in
AArch64Subtarget is initialised according to the following rules:
1. If the user has specified the CPU to tune for we use that, else
2. If the target CPU was specified we use that, else
3. The tuning is set to "generic".
For CPUs of type "generic" I have assumed that vscale=2.
New tests added here:
Analysis/CostModel/AArch64/sve-gather.ll
Analysis/CostModel/AArch64/sve-scatter.ll
Transforms/LoopVectorize/AArch64/sve-strict-fadd-cost.ll
Differential Revision: https://reviews.llvm.org/D110259
Right now when we see -O# we add the corresponding 'default<O#>' into
the list of passes to run when translating legacy -pass-name. This has
the side effect of not using the default AA pipeline.
Instead, treat -O# as -passes='default<O#>', but don't allow any other
-passes or -pass-name. I think we can keep `opt -O#` as shorthand for
`opt -passes='default<O#>` but disallow anything more than just -O#.
Tests need to be updated to not use `opt -O# -pass-name`.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D112036
This simplifies the return value of addRuntimeCheck from a pair of
instructions to a single `Value *`.
The existing users of addRuntimeChecks were ignoring the first element
of the pair, hence there is not reason to track FirstInst and return
it.
Additionally all users of addRuntimeChecks use the second returned
`Instruction *` just as `Value *`, so there is no need to return an
`Instruction *`. Therefore there is no need to create a redundant
dummy `and X, true` instruction any longer.
Effectively this change should not impact the generated code because the
redundant AND will be folded by later optimizations. But it is easy to
avoid creating it in the first place and it allows more accurately
estimating the cost of the runtime checks.
These cases use the same codegen as AVX2 (pshuflw/pshufd) for the sub-128bit vector deinterleaving, and unpcklqdq for v2i64.
It's going to take a while to add full interleaved cost coverage, but since these are the same for SSE2 -> AVX2 it should be an easy win.
Fixes PR47437
Differential Revision: https://reviews.llvm.org/D111938
And another attempt to start untangling this ball of threads around gather.
There's `TTI::prefersVectorizedAddressing()`hoop, which confusingly defaults to `true`,
which tells LV to try to vectorize the addresses that lead to loads,
but X86 generally can not deal with vectors of addresses,
the only instructions that support that are GATHER/SCATTER,
but even those aren't available until AVX2, and aren't really usable until AVX512.
This specializes the hook for X86, to return true only if we have AVX512 or AVX2 w/ fast gather.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111546
While i've modelled most of the relevant tuples for AVX2,
that only covered fully-interleaved groups.
By definition, interleaving load of stride N means:
load N*VF elements, and shuffle them into N VF-sized vectors,
with 0'th vector containing elements `[0, VF)*stride + 0`,
and 1'th vector containing elements `[0, VF)*stride + 1`.
Example: https://godbolt.org/z/df561Me5E (i64 stride 4 vf 2 => cost 6)
Now, not fully interleaved load, is when not all of these vectors is demanded.
So at worst, we could just pretend that everything is demanded,
and discard the non-demanded vectors. What this means is that the cost
for not-fully-interleaved group should be not greater than the cost
for the same fully-interleaved group, but perhaps somewhat less.
Examples:
https://godbolt.org/z/a78dK5Geq (i64 stride 4 (indices 012u) vf 2 => cost 4)
https://godbolt.org/z/G91ceo8dM (i64 stride 4 (indices 01uu) vf 2 => cost 2)
https://godbolt.org/z/5joYob9rx (i64 stride 4 (indices 0uuu) vf 2 => cost 1)
As we have established over the course of last ~70 patches, (wow)
`BaseT::getInterleavedMemoryOpCos()` is absolutely bogus,
it is usually almost an order of magnitude overestimation,
so i would claim that we should at least use the hardcoded costs
of fully interleaved load groups.
We could go further and adjust them e.g. by the number of demanded indices,
but then i'm somewhat fearful of underestimating the cost.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111174
`X86TTIImpl::getGSScalarCost()` has (at least) two issues:
* it naively computes the cost of sequence of `insertelement`/`extractelement`.
If we are operating not on the XMM (but YMM/ZMM),
this widely overestimates the cost of subvector insertions/extractions.
* Gather/scatter takes a vector of pointers, and scalarization results in us performing
scalar memory operation for each of these pointers, but we never account for the cost
of extracting these pointers out of the vector of pointers.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111222
This patch fixes another crash revealed by PR51614:
when *deciding* to vectorize with masked interleave groups, check if the access
is reverse (which is currently not supported).
Differential Revision: https://reviews.llvm.org/D108900
collectLoopScalars collects pointer induction updates in ScalarPtrs, assuming
that the instruction will be scalar after vectorization. This may crash later
in VPReplicateRecipe::execute() if there there is another user of the instruction
other than the Phi node which needs to be widened.
This changes collectLoopScalars so that if there are any other users of
Update other than a Phi node, it is not added to ScalarPtrs.
Reviewed By: david-arm, fhahn
Differential Revision: https://reviews.llvm.org/D111294
At the moment, a VPValue is created for the backedge-taken count, which
is used by some recipes. To make it easier to identify the operands of
recipes using the backedge-taken count, print it at the beginning of the
VPlan if it is used.
Reviewed By: a.elovikov
Differential Revision: https://reviews.llvm.org/D111298
This patch adds further support for vectorisation of loops that involve
selecting an integer value based on a previous comparison. Consider the
following C++ loop:
int r = a;
for (int i = 0; i < n; i++) {
if (src[i] > 3) {
r = b;
}
src[i] += 2;
}
We should be able to vectorise this loop because all we are doing is
selecting between two states - 'a' and 'b' - both of which are loop
invariant. This just involves building a vector of values that contain
either 'a' or 'b', where the final reduced value will be 'b' if any lane
contains 'b'.
The IR generated by clang typically looks like this:
%phi = phi i32 [ %a, %entry ], [ %phi.update, %for.body ]
...
%pred = icmp ugt i32 %val, i32 3
%phi.update = select i1 %pred, i32 %b, i32 %phi
We already detect min/max patterns, which also involve a select + cmp.
However, with the min/max patterns we are selecting loaded values (and
hence loop variant) in the loop. In addition we only support certain
cmp predicates. This patch adds a new pattern matching function
(isSelectCmpPattern) and new RecurKind enums - SelectICmp & SelectFCmp.
We only support selecting values that are integer and loop invariant,
however we can support any kind of compare - integer or float.
Tests have been added here:
Transforms/LoopVectorize/AArch64/sve-select-cmp.ll
Transforms/LoopVectorize/select-cmp-predicated.ll
Transforms/LoopVectorize/select-cmp.ll
Differential Revision: https://reviews.llvm.org/D108136
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/n8aMKeo4E - for intels `Block RThroughput: =4.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `4`.
For store we have:
https://godbolt.org/z/n8aMKeo4E - for intels `Block RThroughput: =4.0`; for ryzens, `Block RThroughput: =2.0`
So pick cost of `4`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110755
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/EM5Ean7bd - for intels `Block RThroughput: =2.0`; for ryzens, `Block RThroughput: =1.0`
So pick cost of `2`.
For store we have:
https://godbolt.org/z/EM5Ean7bd - for intels `Block RThroughput: =2.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `2`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110754
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/4rY96hnGT - for intels `Block RThroughput: =2.0`; for ryzens, `Block RThroughput: =1.0`
So pick cost of `2`.
For store we have:
https://godbolt.org/z/vbo37Y3r9 - for intels `Block RThroughput: =1.0`; for ryzens, `Block RThroughput: =0.5`
So pick cost of `1`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110753
This patch adds further support for vectorisation of loops that involve
selecting an integer value based on a previous comparison. Consider the
following C++ loop:
int r = a;
for (int i = 0; i < n; i++) {
if (src[i] > 3) {
r = b;
}
src[i] += 2;
}
We should be able to vectorise this loop because all we are doing is
selecting between two states - 'a' and 'b' - both of which are loop
invariant. This just involves building a vector of values that contain
either 'a' or 'b', where the final reduced value will be 'b' if any lane
contains 'b'.
The IR generated by clang typically looks like this:
%phi = phi i32 [ %a, %entry ], [ %phi.update, %for.body ]
...
%pred = icmp ugt i32 %val, i32 3
%phi.update = select i1 %pred, i32 %b, i32 %phi
We already detect min/max patterns, which also involve a select + cmp.
However, with the min/max patterns we are selecting loaded values (and
hence loop variant) in the loop. In addition we only support certain
cmp predicates. This patch adds a new pattern matching function
(isSelectCmpPattern) and new RecurKind enums - SelectICmp & SelectFCmp.
We only support selecting values that are integer and loop invariant,
however we can support any kind of compare - integer or float.
Tests have been added here:
Transforms/LoopVectorize/AArch64/sve-select-cmp.ll
Transforms/LoopVectorize/select-cmp-predicated.ll
Transforms/LoopVectorize/select-cmp.ll
Differential Revision: https://reviews.llvm.org/D108136
The expansion for these was updated in https://reviews.llvm.org/D47927 but the cost model was not adjusted.
I believe the cost model was also incorrect for the old expansion.
The expansion prior to D47927 used 3 icmps using LHS, RHS, and Result
to calculate theirs signs. Then 2 icmps to compare the signs. Followed
by an And. The previous cost model was using 3 icmps and 2 selects.
Digging back through git blame, those 2 selects in the cost model used to
be 2 icmps, but were changed in https://reviews.llvm.org/D90681
Differential Revision: https://reviews.llvm.org/D110739
getScalarizationOverhead() results in a somewhat better cost estimation than counting the insertion/extraction costs directly. Notably, this is still overestimating the costs.
Original Patch by: @lebedev.ri (Roman Lebedev)
Differential Revision: https://reviews.llvm.org/D110713
This reverts commit 8fdac7cb7a.
The issue causing the revert has been fixed a while ago in 60b852092c.
Original message:
Now that SCEVExpander can preserve LCSSA form,
we do not have to worry about LCSSA form when
trying to look through PHIs. SCEVExpander will take
care of inserting LCSSA PHI nodes as required.
This increases precision of the analysis in some cases.
Reviewed By: mkazantsev, bmahjour
Differential Revision: https://reviews.llvm.org/D71539
Update the costs to match the codegen from combineMulToPMADDWD - not only can we use PMADDWD is its zero-extended, but also if its a constant or sign-extended from a vXi16 (which can be replaced with a zero-extension).
As we're checking the cost debug analysis these should match the original IR line - so we shouldn't have any variable naming issues.
I'm investigating v4i32 mul -> PMADDDW costs handling (for PR47437) and these CHECK lines were proving tricky to keep track of
This patch fixes the crash found by PR51614:
whenever doing tail folding, interleave groups must be considered under mask.
Another fix D108900 follows for targets that support masked loads and stores:
when *deciding* to vectorize with masked interleave groups, check if the access
is reverse - which is currently not supported; rather than (only) asserting when
computing cost and generating code.
Differential Revision: https://reviews.llvm.org/D108891
In ValueTracking.cpp we use a function called
computeKnownBitsFromOperator to determine the known bits of a value.
For the vscale intrinsic if the function contains the vscale_range
attribute we can use the maximum and minimum values of vscale to
determine some known zero and one bits. This should help to improve
code quality by allowing certain optimisations to take place.
Tests added here:
Transforms/InstCombine/icmp-vscale.ll
Differential Revision: https://reviews.llvm.org/D109883
Mostly this fixes cases where !noalias or !alias.scope were passed
a scope rather than a scope list. In some cases I opted to drop
the metadata entirely instead, because it is not really relevant
to the test.
This extends the reduction logic in the vectorizer to handle intrinsic
versions of min and max, both the floating point variants already
created by instcombine under fastmath and the integer variants from
D98152.
As a bonus this allows us to match a chain of min or max operations into
a single reduction, similar to how add/mul/etc work.
Differential Revision: https://reviews.llvm.org/D109645
This is a first step towards addressing the last remaining limitation of
the VPlan version of sinkScalarOperands: the legacy version can
partially sink operands. For example, if a GEP has uniform users outside
the sink target block, then the legacy version will sink all scalar
GEPs, other than the one for lane 0.
This patch works towards addressing this case in the VPlan version by
detecting such cases and duplicating the sink candidate. All users
outside of the sink target will be updated to use the uniform clone.
Note that this highlights an issue with VPValue naming. If we duplicate
a replicate recipe, they will share the same underlying IR value and
both VPValues will have the same name ir<%gep>.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D104254
SCEV does not look through non-header PHIs inside the loop. Such phis
can be analyzed by adding separate accesses for each incoming pointer
value.
This results in 2 more loops vectorized in SPEC2000/186.crafty and
avoids regressions when sinking instructions before vectorizing.
Fixes PR50296, PR50288.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D102266
Users of VPValues are managed in a vector, so we need to be more
careful when iterating over users while updating them. For now, just
copy them.
Fixes 51798.
Currently, opaque pointers are supported in two forms: The
-force-opaque-pointers mode, where all pointers are opaque and
typed pointers do not exist. And as a simple ptr type that can
coexist with typed pointers.
This patch removes support for the mixed mode. You either get
typed pointers, or you get opaque pointers, but not both. In the
(current) default mode, using ptr is forbidden. In -opaque-pointers
mode, all pointers are opaque.
The motivation here is that the mixed mode introduces additional
issues that don't exist in fully opaque mode. D105155 is an example
of a design problem. Looking at D109259, it would probably need
additional work to support mixed mode (e.g. to generate GEPs for
typed base but opaque result). Mixed mode will also end up
inserting many casts between i8* and ptr, which would require
significant additional work to consistently avoid.
I don't think the mixed mode is particularly valuable, as it
doesn't align with our end goal. The only thing I've found it to
be moderately useful for is adding some opaque pointer tests in
between typed pointer tests, but I think we can live without that.
Differential Revision: https://reviews.llvm.org/D109290
For SVE, when scalarising the PHI instruction the whole vector part is
generated as opposed to creating instructions for each lane for fixed-
width vectors. However, in some cases the lane values may be needed
later (e.g for a load instruction) so we still need to calculate
these values to avoid extractelement being called on the vector part.
Differential Revision: https://reviews.llvm.org/D109445
Store the used element type in the InductionDescriptor. For typed
pointers, it remains the pointer element type. For opaque pointers,
we always use an i8 element type, such that the step is a simple
offset.
A previous version of this patch instead tried to guess the element
type from an induction GEP, but this is not reliable, as the GEP
may be hidden (see @both in iv_outside_user.ll).
Differential Revision: https://reviews.llvm.org/D104795
Reverted (manually due to merge conflicts) while regressions reported on PR51540 are investigated
As noticed on D106352, after we've folded "(select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0))" if the inner Ptr was also a (now one use) gep we could then merge the geps, using the sum of the indices instead.
I've limited this to basic 2-op geps - a more general case further down InstCombinerImpl.visitGetElementPtrInst doesn't have the one-use limitation but only creates the add if it can be created via SimplifyAddInst.
https://alive2.llvm.org/ce/z/f8pLfD (Thanks Roman!)
Differential Revision: https://reviews.llvm.org/D106450
Adjusting the reduction recipes still relies on references to the
original IR, which can become outdated by the first-order recurrence
handling. Until reduction recipe construction does not require IR
references, move it before first-order recurrence handling, to prevent a
crash as exposed by D106653.
This reverts commit f4122398e7 to
investigate a crash exposed by it.
The patch breaks building the code below with `clang -O2 --target=aarch64-linux`
int a;
double b, c;
void d() {
for (; a; a++) {
b += c;
c = a;
}
}
I have added a new TTI interface called enableOrderedReductions() that
controls whether or not ordered reductions should be enabled for a
given target. By default this returns false, whereas for AArch64 it
returns true and we rely upon the cost model to make sensible
vectorisation choices. It is still possible to override the new TTI
interface by setting the command line flag:
-force-ordered-reductions=true|false
I have added a new RUN line to show that we use ordered reductions by
default for SVE and Neon:
Transforms/LoopVectorize/AArch64/strict-fadd.ll
Transforms/LoopVectorize/AArch64/scalable-strict-fadd.ll
Differential Revision: https://reviews.llvm.org/D106653
For tight loops like this:
float r = 0;
for (int i = 0; i < n; i++) {
r += a[i];
}
it's better not to vectorise at -O3 using fixed-width ordered reductions
on AArch64 targets. Although the resulting number of instructions in the
generated code ends up being comparable to not vectorising at all, there
may be additional costs on some CPUs, for example perhaps the scheduling
is worse. It makes sense to deter vectorisation in tight loops.
Differential Revision: https://reviews.llvm.org/D108292
Removed AArch64 usage of the getMaxVScale interface, replacing it with
the vscale_range(min, max) IR Attribute.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D106277
LoopLoadElimination, LoopVersioning and LoopVectorize currently
fetch MemorySSA when construction LoopAccessAnalysis. However,
LoopAccessAnalysis does not actually use MemorySSA and we can pass
nullptr instead.
This saves one MemorySSA calculation in the default pipeline, and
thus improves compile-time.
Differential Revision: https://reviews.llvm.org/D108074
Previously we emitted a "does not support scalable vectors"
remark for all targets whenever vectorisation is attempted. This
pollutes the output for architectures that don't support scalable
vectors and is likely confusing to the user.
Instead this patch introduces a debug message that reports when
scalable vectorisation is allowed by the target and only issues
the previous remark when scalable vectorisation is specifically
requested, for example:
#pragma clang loop vectorize_width(2, scalable)
Differential Revision: https://reviews.llvm.org/D108028
I have added RUN lines to both:
Transforms/LoopVectorize/AArch64/strict-fadd.ll
Transforms/LoopVectorize/AArch64/scalable-strict-fadd.ll
to show the default behaviour is to not vectorise when the following
flag is unset:
-force-ordered-reductions
This patch updates ConstantVector::getSplat to use poison instead
of undef when using insertelement/shufflevector to splat.
This follows on from D93793.
Differential Revision: https://reviews.llvm.org/D107751
Teach LV to use masked-store to support interleave-store-group with
gaps (instead of scatters/scalarization).
The symmetric case of using masked-load to support
interleaved-load-group with gaps was introduced a while ago, by
https://reviews.llvm.org/D53668; This patch completes the store-scenario
leftover from D53668, and solves PR50566.
Reviewed by: Ayal Zaks
Differential Revision: https://reviews.llvm.org/D104750
This patch adds more instructions to the Uniforms list, for example certain
intrinsics that are uniform by definition or whose operands are loop invariant.
This list includes:
1. The intrinsics 'experimental.noalias.scope.decl' and 'sideeffect', which
are always uniform by definition.
2. If intrinsics 'lifetime.start', 'lifetime.end' and 'assume' have
loop invariant input operands then these are also uniform too.
Also, in VPRecipeBuilder::handleReplication we check if an instruction is
uniform based purely on whether or not the instruction lives in the Uniforms
list. However, there are certain cases where calls to some intrinsics can
be effectively treated as uniform too. Therefore, we now also treat the
following cases as uniform for scalable vectors:
1. If the 'assume' intrinsic's operand is not loop invariant, then we
are free to treat this as uniform anyway since it's only a performance
hint. We will get the benefit for the first lane.
2. When the input pointers for 'lifetime.start' and 'lifetime.end' are loop
variant then for scalable vectors we assume these still ultimately come
from the broadcast of an alloca. We do not support scalable vectorisation
of loops containing alloca instructions, hence the alloca itself would
be invariant. If the pointer does not come from an alloca then the
intrinsic itself has no effect.
I have updated the assume test for fixed width, since we now treat it
as uniform:
Transforms/LoopVectorize/assume.ll
I've also added new scalable vectorisation tests for other intriniscs:
Transforms/LoopVectorize/scalable-assume.ll
Transforms/LoopVectorize/scalable-lifetime.ll
Transforms/LoopVectorize/scalable-noalias-scope-decl.ll
Differential Revision: https://reviews.llvm.org/D107284
Since all operands to ExtractValue must be loop-invariant when we deem
the loop vectorizable, we can consider ExtractValue to be uniform.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D107286
This patch adds more instructions to the Uniforms list, for example certain
intrinsics that are uniform by definition or whose operands are loop invariant.
This list includes:
1. The intrinsics 'experimental.noalias.scope.decl' and 'sideeffect', which
are always uniform by definition.
2. If intrinsics 'lifetime.start', 'lifetime.end' and 'assume' have
loop invariant input operands then these are also uniform too.
Also, in VPRecipeBuilder::handleReplication we check if an instruction is
uniform based purely on whether or not the instruction lives in the Uniforms
list. However, there are certain cases where calls to some intrinsics can
be effectively treated as uniform too. Therefore, we now also treat the
following cases as uniform for scalable vectors:
1. If the 'assume' intrinsic's operand is not loop invariant, then we
are free to treat this as uniform anyway since it's only a performance
hint. We will get the benefit for the first lane.
2. When the input pointers for 'lifetime.start' and 'lifetime.end' are loop
variant then for scalable vectors we assume these still ultimately come
from the broadcast of an alloca. We do not support scalable vectorisation
of loops containing alloca instructions, hence the alloca itself would
be invariant. If the pointer does not come from an alloca then the
intrinsic itself has no effect.
I have updated the assume test for fixed width, since we now treat it
as uniform:
Transforms/LoopVectorize/assume.ll
I've also added new scalable vectorisation tests for other intriniscs:
Transforms/LoopVectorize/scalable-assume.ll
Transforms/LoopVectorize/scalable-lifetime.ll
Transforms/LoopVectorize/scalable-noalias-scope-decl.ll
Differential Revision: https://reviews.llvm.org/D107284
The tests previously had lots of unnecessary CHECK lines, where
all we really need to check is the presence (or absence) of the
assume intrinsic and the correct input operands.
Differential Revision: https://reviews.llvm.org/D107157
This change wasn't strictly necessary for D106164 and could be removed.
This patch addresses the post-commit comments from @fhahn on D106164, and
also changes sve-widen-gep.ll to use the same IR test as shown in
pointer-induction.ll.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D106878
The two tests (@testloopvariant and @testbitcast) are actually
identical as in both loops the bitcast gets widened, forcing the
lifetime marker to be replicated using each lane of the input
vector.
Differential Revision: https://reviews.llvm.org/D107150
I'm renaming the flag because a future patch will add a new
enableOrderedReductions() TTI interface and so the meaning of this
flag will change to be one of forcing the target to enable/disable
them. Also, since other places in LoopVectorize.cpp use the word
'Ordered' instead of 'strict' I changed the flag to match.
Differential Revision: https://reviews.llvm.org/D107264
This patch updates VPInterleaveRecipe::print to print the actual defined
VPValues for load groups and the store VPValue operands for store
groups.
The IR references may become outdated while transforming the VPlan and
the defined and stored VPValues always are up-to-date.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D107223
If a reduction Phi has a single user which `AND`s the Phi with a type mask,
`lookThroughAnd` will return the user of the Phi and the narrower type represented
by the mask. Currently this is only used for arithmetic reductions, whereas loops
containing logical reductions will create a reduction intrinsic using the widened
type, for example:
for.body:
%phi = phi i32 [ %and, %for.body ], [ 255, %entry ]
%mask = and i32 %phi, 255
%gep = getelementptr inbounds i8, i8* %ptr, i32 %iv
%load = load i8, i8* %gep
%ext = zext i8 %load to i32
%and = and i32 %mask, %ext
...
^ this will generate an and reduction intrinsic such as the following:
call i32 @llvm.vector.reduce.and.v8i32(<8 x i32>...)
The same example for an add instruction would create an intrinsic of type i8:
call i8 @llvm.vector.reduce.add.v8i8(<8 x i8>...)
This patch changes AddReductionVar to call lookThroughAnd for other integer
reductions, allowing loops similar to the example above with reductions such
as and, or & xor to vectorize.
Reviewed By: david-arm, dmgreen
Differential Revision: https://reviews.llvm.org/D105632
This makes a couple of changes to the costing of MLA reduction patterns,
to more accurately cost various patterns that can come up from
vectorization.
- The Arm implementation of getExtendedAddReductionCost is altered to
only provide costs for legal or smaller types. Larger than legal types
need to be split, which currently does not work very well, especially
for predicated reductions where the predicate may be legal but needs to
be split. Currently we limit it to legal or smaller input types.
- The getReductionPatternCost has learnt that reduce(ext(mul(ext, ext))
is a pattern that can come up, and can be treated the same as
reduce(mul(ext, ext)) providing the extension types match.
- And it has been adjusted to not count the ext in reduce(mul(ext, ext))
as part of a reduce(mul) pattern.
Together these changes help to more accurately cost the mla reductions
in cases such as where the extend types don't match or the extend
opcodes are different, picking better vector factors that don't result
in expanded reductions.
Differential Revision: https://reviews.llvm.org/D106166
It was writing to the source directory (which may not be writeable),
rather than using %t.
Fixes: a5dd6c6cf9 ("[LoopVectorize] Don't interleave scalar ordered reductions for inner loops")
Consider the following loop:
void foo(float *dst, float *src, int N) {
for (int i = 0; i < N; i++) {
dst[i] = 0.0;
for (int j = 0; j < N; j++) {
dst[i] += src[(i * N) + j];
}
}
}
When we are not building with -Ofast we may attempt to vectorise the
inner loop using ordered reductions instead. In addition we also try
to select an appropriate interleave count for the inner loop. However,
when choosing a VF=1 the inner loop will be scalar and there is existing
code in selectInterleaveCount that limits the interleave count to 2
for reductions due to concerns about increasing the critical path.
For ordered reductions this problem is even worse due to the additional
data dependency, and so I've added code to simply disable interleaving
for scalar ordered reductions for now.
Test added here:
Transforms/LoopVectorize/AArch64/strict-fadd-vf1.ll
Differential Revision: https://reviews.llvm.org/D106646
The Exit instruction passed in for checking if it's an ordered reduction need not be
an FPAdd operation. We need to bail out at that point instead of
assuming it is an FPAdd (and hence has two operands). See added testcase.
It crashes without the patch because the Exit instruction is a phi with
exactly one operand.
This latent bug was exposed by 95346ba which added support for
multi-exit loops for vectorization.
Reviewed-By: kmclaughlin
Differential Revision: https://reviews.llvm.org/D106843
The loop vectorizer may decide to use tail folding when the trip-count
is low. When that happens, scalable VFs are no longer a candidate,
since tail folding/predication is not yet supported for scalable vectors.
This can be re-enabled in a future patch.
Reviewed By: kmclaughlin
Differential Revision: https://reviews.llvm.org/D106657
Before MASSV only supported P8 and P9 on AIX ans Linux . This patch proposes
MASSV to add support of P7 and P10 only on AIX too.
Differential: https://reviews.llvm.org/D106678
Invalid costs can be used to avoid vectorization with a given VF, which is
used for scalable vectors to avoid things that the code-generator cannot
handle. If we override the cost using the -force-target-instruction-cost
option of the LV, we would override this mechanism, rendering the flag useless.
This change ensures the cost is only overriden when the original cost that
was calculated is valid. That allows the flag to be used in combination
with the -scalable-vectorization option.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D106677
This change moves most of `sve-inductions.ll` to non-AArch64 specific
LV tests using the `-target-supports-scalable-vectors` flag, because they're
not explicitly AArch64-specific. One test builds on AArch64-specific
knowledge regarding masked loads/stores, and remains in sve-inductions.ll.
Scalarization for scalable vectors is not (yet) supported, so the
LV discards a VF when scalarization is chosen as the widening
decision. It should therefore not assert that the VF is not scalable
when it computes the decision to scalarize.
The code can get here when both the interleave-cost, gather/scatter cost
and scalarization-cost are all illegal. This may e.g. happen for SVE
when the VF=1, to avoid generating `<vscale x 1 x eltty>` types that
the code-generator cannot yet handle.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D106656
This fixes an issue that was found in D105199, where a GEP instruction
is used both as the address of a store, as well as the value of a store.
For the former, the value is scalar after vectorization, but the latter
(as value) requires widening.
Other code in that function seems to prevent similar cases from happening,
but it seems this case was missed.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D106164
This reverts the revert commit b1777b04dc.
The patch originally got reverted due to a crash:
https://bugs.chromium.org/p/chromium/issues/detail?id=1232798#c2
The underlying issue was that we were not using the stored values from
the modified memory recipes, but the out-of-date values directly from
the IR (accessed via the VPlan). This should be fixed in d995d6376. A
reduced version of the reproducer has been added in 93664503be.
Add folds to instcombine to support the removal of select instruction when the masked_load is guaranteed to zero the same lanes, i.e. select(mask, mload(,,mask,0), 0) -> mload(,,mask,0).
Patch originally authored by @paulwalker-arm
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D106376
I have added a new FastMathFlags parameter to getArithmeticReductionCost
to indicate what type of reduction we are performing:
1. Tree-wise. This is the typical fast-math reduction that involves
continually splitting a vector up into halves and adding each
half together until we get a scalar result. This is the default
behaviour for integers, whereas for floating point we only do this
if reassociation is allowed.
2. Ordered. This now allows us to estimate the cost of performing
a strict vector reduction by treating it as a series of scalar
operations in lane order. This is the case when FP reassociation
is not permitted. For scalable vectors this is more difficult
because at compile time we do not know how many lanes there are,
and so we use the worst case maximum vscale value.
I have also fixed getTypeBasedIntrinsicInstrCost to pass in the
FastMathFlags, which meant fixing up some X86 tests where we always
assumed the vector.reduce.fadd/mul intrinsics were 'fast'.
New tests have been added here:
Analysis/CostModel/AArch64/reduce-fadd.ll
Analysis/CostModel/AArch64/sve-intrinsics.ll
Transforms/LoopVectorize/AArch64/strict-fadd-cost.ll
Transforms/LoopVectorize/AArch64/sve-strict-fadd-cost.ll
Differential Revision: https://reviews.llvm.org/D105432
This patch avoids computing discounts for predicated instructions when the
VF is scalable.
There is no support for vectorization of loops with division because the
vectorizer cannot guarantee that zero divisions will not happen.
This loop now does not use VF scalable
```
for (long long i = 0; i < n; i++)
if (cond[i])
a[i] /= b[i];
```
Differential Revision: https://reviews.llvm.org/D101916
As noticed on D106352, after we've folded "(select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0))" if the inner Ptr was also a (now one use) gep we could then merge the geps, using the sum of the indices instead.
I've limited this to basic 2-op geps - a more general case further down InstCombinerImpl.visitGetElementPtrInst doesn't have the one-use limitation but only creates the add if it can be created via SimplifyAddInst.
https://alive2.llvm.org/ce/z/f8pLfD (Thanks Roman!)
Differential Revision: https://reviews.llvm.org/D106450
If a reduction Phi has a single user which `AND`s the Phi with a type mask,
`lookThroughAnd` will return the user of the Phi and the narrower type represented
by the mask. Currently this is only used for arithmetic reductions, whereas loops
containing logical reductions will create a reduction intrinsic using the widened
type, for example:
for.body:
%phi = phi i32 [ %and, %for.body ], [ 255, %entry ]
%mask = and i32 %phi, 255
%gep = getelementptr inbounds i8, i8* %ptr, i32 %iv
%load = load i8, i8* %gep
%ext = zext i8 %load to i32
%and = and i32 %mask, %ext
...
^ this will generate an and reduction intrinsic such as the following:
call i32 @llvm.vector.reduce.and.v8i32(<8 x i32>...)
The same example for an add instruction would create an intrinsic of type i8:
call i8 @llvm.vector.reduce.add.v8i8(<8 x i8>...)
This patch changes AddReductionVar to call lookThroughAnd for other integer
reductions, allowing loops similar to the example above with reductions such
as and, or & xor to vectorize.
Reviewed By: david-arm, dmgreen
Differential Revision: https://reviews.llvm.org/D105632
This patch adds a VPFirstOrderRecurrencePHIRecipe, to further untangle
VPWidenPHIRecipe into distinct recipes for distinct use cases/lowering.
See D104989 for a new recipe for reduction phis.
This patch also introduces a new `FirstOrderRecurrenceSplice`
VPInstruction opcode, which is used to make the forming of the vector
recurrence value explicit in VPlan. This more accurately models def-uses
in VPlan and also simplifies code-generation. Now, the vector recurrence
values are created at the right place during VPlan-codegeneration,
rather than during post-VPlan fixups.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D105008
This fixes the lower and upper bound calculation of a
RuntimeCheckingPtrGroup when it has more than one loop
invariant pointers. Resolves PR50686.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D104148
This patch returns an Invalid cost from getInstructionCost() for alloca
instructions if the VF is scalable, as otherwise loops which contain
these instructions will crash when attempting to scalarize the alloca.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D105824
The original patch was:
https://reviews.llvm.org/D105806
There were some issues with undeterministic behaviour of the sorting
function, which led to scalable-call.ll passing and/or failing. This
patch fixes the issue by numbering all instructions in the array first,
and using that number as the order, which should provide a consistent
ordering.
This reverts commit a607f64118.
This change enables vectorization of multiple exit loops when the exit count is statically computable. That requirement - shared with the rest of LV - in turn requires each exit to be analyzeable and to dominate the latch.
The majority of work to support this was done in a set of previous patches. In particular,, 72314466 avoids having multiple edges from the middle block to the exits, and 4b33b2387 which added support for non-latch single exit and multiple exits with a single exiting block. As a result, this change is basically just removing a bailout and adjusting some tests now that the prerequisite work is done and has stuck in tree for a bit.
Differential Revision: https://reviews.llvm.org/D105817
The sort function for emitting an OptRemark was not deterministic,
which caused scalable-call.ll to fail on some buildbots. This patch
fixes that.
This patch also fixes an issue where `Instruction::comesBefore()`
is called when two Instructions are in different basic blocks,
which would otherwise cause an assertion failure.
This patch emits remarks for instructions that have invalid costs for
a given set of vectorization factors. Some example output:
t.c:4:19: remark: Instruction with invalid costs prevented vectorization at VF=(vscale x 1): load
dst[i] = sinf(src[i]);
^
t.c:4:14: remark: Instruction with invalid costs prevented vectorization at VF=(vscale x 1, vscale x 2, vscale x 4): call to llvm.sin.f32
dst[i] = sinf(src[i]);
^
t.c:4:12: remark: Instruction with invalid costs prevented vectorization at VF=(vscale x 1): store
dst[i] = sinf(src[i]);
^
Reviewed By: fhahn, kmclaughlin
Differential Revision: https://reviews.llvm.org/D105806
At the moment, <vscale x 1 x eltty> are not yet fully handled by the
code-generator, so to avoid vectorizing loops with that VF, we mark the
cost for these types as invalid.
The reason for not adding a new "TTI::getMinimumScalableVF" is because
the type is supposed to be a type that can be legalized. It partially is,
although the support for these types need some more work.
Reviewed By: paulwalker-arm, dmgreen
Differential Revision: https://reviews.llvm.org/D103882
Update (mainly) vXf32/vXf64 -> vXi8/vXi16 fptosi/fptoui costs based on the worst case costs from the script in D103695.
Move to using legalized types wherever possible, which allows us to prune the cost tables.
Revived D101297 in its original form + added some changes in X86
legalization cehcking for masked gathers.
This solution is the most stable and the most correct one. We have to
check the legality before trying to build the masked gather in SLP.
Without this check we have incorrect cost (for SLP) in case if the masked gather
is not legal/slower than the gather. And we're missing some
vectorization opportunities.
This can be fixed in the cost model, but in this case we need to add
special checks for the cost of GEPs for ScatterVectorize node, add
special check for small trees, etc., i.e. there are a lot of corner
cases here and there, which insrease code base and make it harder to
maintain the code.
> Can't we rely on cost model to deal with this? This can be profitable for futher vectorization, when we can start from such gather loads as seed.
The question from D101297. Actually, no, it can't. Actually, simple
gather may give us better result, especially after we started
vectorization of insertelements. Plus, like I said before, the cost for
non-legal masked gathers leads to missed vectorization opportunities.
Differential Revision: https://reviews.llvm.org/D105042
Resubmit after the following changes:
* Fix a latent bug related to unrolling with required epilogue (see e49d65f). I believe this is the cause of the prior PPC buildbot failure.
* Disable non-latch exits for epilogue vectorization to be safe (9ffa90d)
* Split out assert movement (600624a) to reduce churn if this gets reverted again.
Previous commit message (try 3)
Resubmit after fixing test/Transforms/LoopVectorize/ARM/mve-gather-scatter-tailpred.ll
Previous commit message...
This is a resubmit of 3e5ce4 (which was reverted by 7fe41ac). The original commit caused a PPC build bot failure we never really got to the bottom of. I can't reproduce the issue, and the bot owner was non-responsive. In the meantime, we stumbled across an issue which seems possibly related, and worked around a latent bug in 80e8025. My best guess is that the original patch exposed that latent issue at higher frequency, but it really is just a guess.
Original commit message follows...
If we know that the scalar epilogue is required to run, modify the CFG to end the middle block with an unconditional branch to scalar preheader. This is instead of a conditional branch to either the preheader or the exit block.
The motivation to do this is to support multiple exit blocks. Specifically, the current structure forces us to identify immediate dominators and *which* exit block to branch from in the middle terminator. For the multiple exit case - where we know require scalar will hold - these questions are ill formed.
This is the last change needed to support multiple exit loops, but since the diffs are already large enough, I'm going to land this, and then enable separately. You can think of this as being NFCIish prep work, but the changes are a bit too involved for me to feel comfortable tagging the review that way.
Differential Revision: https://reviews.llvm.org/D94892
This reverts commit 706bbfb35b.
The committed version moves the definition of VPReductionPHIRecipe out
of an ifdef only intended for ::print helpers. This should resolve the
build failures that caused the revert
This patch adds a TTI function, isElementTypeLegalForScalableVector, to query
whether it is possible to vectorize a given element type. This is called by
isLegalToVectorizeInstTypesForScalable to reject scalable vectorization if
any of the instruction types in the loop are unsupported, e.g:
int foo(__int128_t* ptr, int N)
#pragma clang loop vectorize_width(4, scalable)
for (int i=0; i<N; ++i)
ptr[i] = ptr[i] + 42;
This example currently crashes if we attempt to vectorize since i128 is not a
supported type for scalable vectorization.
Reviewed By: sdesmalen, david-arm
Differential Revision: https://reviews.llvm.org/D102253
This reverts commit 3fed6d443f,
bbcbf21ae6 and
6c3451cd76.
The changes causing build failures with certain configurations, e.g.
https://lab.llvm.org/buildbot/#/builders/67/builds/3365/steps/6/logs/stdio
lib/libLLVMVectorize.a(LoopVectorize.cpp.o): In function `llvm::VPRecipeBuilder::tryToCreateWidenRecipe(llvm::Instruction*, llvm::ArrayRef<llvm::VPValue*>, llvm::VFRange&, std::unique_ptr<llvm::VPlan, std::default_delete<llvm::VPlan> >&) [clone .localalias.8]':
LoopVectorize.cpp:(.text._ZN4llvm15VPRecipeBuilder22tryToCreateWidenRecipeEPNS_11InstructionENS_8ArrayRefIPNS_7VPValueEEERNS_7VFRangeERSt10unique_ptrINS_5VPlanESt14default_deleteISA_EE+0x63b): undefined reference to `vtable for llvm::VPReductionPHIRecipe'
collect2: error: ld returned 1 exit status
This patch is a first step towards splitting up VPWidenPHIRecipe into
separate recipes for the 3 distinct cases they model:
1. reduction phis,
2. first-order recurrence phis,
3. pointer induction phis.
This allows untangling the code generation and allows us to reduce the
reliance on LoopVectorizationCostModel during VPlan code generation.
Discussed/suggested in D100102, D100113, D104197.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D104989
Loads of <4 x i8> vectors were modeled as extremely expensive. And while we
don't have a load instruction that supports this, it isn't that expensive to
create a vector of i8 elements. The codegen for this was fixed/optimised in
D105110. This now tweaks the cost model and enables SLP vectorisation of my
motivating case loadi8.ll.
Differential Revision: https://reviews.llvm.org/D103629
Update v4i64 -> v4f32/v4f64 uitofp costs based on the worst case costs from the script in D103695.
Fixes a few regressions before we start adding AVX costs for legalized types.
If we unroll a loop in the vectorizer (without vectorizing), and the cost model requires a epilogue be generated for correctness, the code generation must actually do so.
The included test case on an unmodified opt will access memory one past the expected bound. As a result, this patch is fixing a latent miscompile.
Differential Revision: https://reviews.llvm.org/D103700
This patch fixes a crash when the target instruction for sinking is
dead. In that case, no recipe is created and trying to get the recipe
for it results in a crash. To ensure all sink targets are alive, find &
use the first previous alive instruction.
Note that the case where the sink source is dead is already handled.
Found by
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=35320
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D104603
Previously in setCostBasedWideningDecision if we encountered an
invariant store we just assumed that we could scalarize the store
and called getUniformMemOpCost to get the associated cost.
However, for scalable vectors this is not an option because it is
not currently possibly to scalarize the store. At the moment we
crash in VPReplicateRecipe::execute when trying to scalarize the
store.
Therefore, I have changed setCostBasedWideningDecision so that if
we are storing a scalable vector out to a uniform address and the
target supports scatter instructions, then we should use those
instead.
Tests have been added here:
Transforms/LoopVectorize/AArch64/sve-inv-store.ll
Differential Revision: https://reviews.llvm.org/D104624
Currently we will allow loops with a fixed width VF of 1 to vectorize
if the -enable-strict-reductions flag is set. However, the loop vectorizer
will not use ordered reductions if `VF.isScalar()` and the resulting
vectorized loop will be out of order.
This patch removes `VF.isVector()` when checking if ordered reductions
should be used. Also, instead of converting the FAdds to reductions if the
VF = 1, operands of the FAdds are changed such that the order is preserved.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D104533
Sinking scalar operands into predicated-triangle regions may allow
merging regions. This patch adds a VPlan-to-VPlan transform that tries
to merge predicate-triangle regions after sinking.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D100260
This patch updates VPWidenPHI recipes for first-order recurrences to
also track the incoming value from the back-edge. Similar to D99294,
which did the same for reductions.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D104197
A backedge-taken count doesn't refer to memory; returning a pointer type
is nonsense. So make sure we always return an integer.
The obvious way to do this would be to just convert the operands of the
icmp to integers, but that doesn't quite work out at the moment:
isLoopEntryGuardedByCond currently gets confused by ptrtoint operations.
So we perform the ptrtoint conversion late for lt/gt operations.
The test changes are mostly innocuous. The most interesting changes are
more complex SCEV expressions of the form "(-1 * (ptrtoint i8* %ptr to
i64)) + %ptr)". This is expected: we can't fold this to zero because we
need to preserve the pointer base.
The call to isLoopEntryGuardedByCond in howFarToZero is less precise
because of ptrtoint operations; this shows up in the function
pr46786_c26_char in ptrtoint.ll. Fixing it here would require more
complex refactoring. It should eventually be fixed by future
improvements to isImpliedCond.
See https://bugs.llvm.org/show_bug.cgi?id=46786 for context.
Differential Revision: https://reviews.llvm.org/D103656
This can be seen as a follow up to commit 0ee439b705,
that changed the second argument of __powidf2, __powisf2 and
__powitf2 in compiler-rt from si_int to int. That was to align with
how those runtimes are defined in libgcc.
One thing that seem to have been missing in that patch was to make
sure that the rest of LLVM also handle that the argument now depends
on the size of int (not using the si_int machine mode for 32-bit).
When using __builtin_powi for a target with 16-bit int clang crashed.
And when emitting libcalls to those rtlib functions, typically when
lowering @llvm.powi), the backend would always prepare the exponent
argument as an i32 which caused miscompiles when the rtlib was
compiled with 16-bit int.
The solution used here is to use an overloaded type for the second
argument in @llvm.powi. This way clang can use the "correct" type
when lowering __builtin_powi, and then later when emitting the libcall
it is assumed that the type used in @llvm.powi matches the rtlib
function.
One thing that needed some extra attention was that when vectorizing
calls several passes did not support that several arguments could
be overloaded in the intrinsics. This patch allows overload of a
scalar operand by adding hasVectorInstrinsicOverloadedScalarOpd, with
an entry for powi.
Differential Revision: https://reviews.llvm.org/D99439
As noted in https://bugs.llvm.org/show_bug.cgi?id=46666, the current behavior of assuming if-conversion safety if a loop is annotated parallel (`!llvm.loop.parallel_accesses`), is not expectable, the documentation for this behavior was since removed from the LangRef again, and can lead to invalid reads.
This was observed in POCL (https://github.com/pocl/pocl/issues/757) and would require similar workarounds in current work at hipSYCL.
The question remains why this was initially added and what the implications of removing this optimization would be.
Do we need an alternative mechanism to propagate the information about legality of if-conversion?
Or is the idea that conditional loads in `#pragma clang loop vectorize(assume_safety)` can be executed unmasked without additional checks flawed in general?
I think this implication is not part of what a user of that pragma (and corresponding metadata) would expect and thus dangerous.
Only two additional tests failed, which are adapted in this patch. Depending on the further direction force-ifcvt.ll should be removed or further adapted.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D103907
Fixes getTypeConversion to return `TypeScalarizeScalableVector` when a scalable vector
type cannot be legalized by widening/splitting. When this is the method of legalization
found, getTypeLegalizationCost will return an Invalid cost.
The getMemoryOpCost, getMaskedMemoryOpCost & getGatherScatterOpCost functions already call
getTypeLegalizationCost and will now also return an Invalid cost for unsupported types.
Reviewed By: sdesmalen, david-arm
Differential Revision: https://reviews.llvm.org/D102515
If the `-enable-strict-reductions` flag is set to true, then currently we will
always choose to vectorize the loop with strict in-order reductions. This is
not necessary where we allow the reordering of FP operations, such as
when loop hints are passed via metadata.
This patch moves useOrderedReductions so that we can also check whether
loop hints allow reordering, in which case we should use the default
behaviour of vectorizing with unordered reductions.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D103814
Noticed via code inspection. We changed the semantics of the IR when we added mustprogress, and we appear to have not updated this location.
Differential Revision: https://reviews.llvm.org/D103834
The non-DOT printing does not include the successors of VPregionBlocks.
This patch use the same style for printing successors as for
VPBasicBlock.
I think the printing of successors could be a bit improved further, as
at the moment it is hard to ensure a check line matches all successors.
But that can be done as follow-up.
Reviewed By: a.elovikov
Differential Revision: https://reviews.llvm.org/D103515
This patch marks the induction increment of the main induction variable
of the vector loop as NUW when not folding the tail.
If the tail is not folded, we know that End - Start >= Step (either
statically or through the minimum iteration checks). We also know that both
Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
%Step == %End. Hence we must exit the loop before %IV + %Step unsigned
overflows and we can mark the induction increment as NUW.
This should make SCEV return more precise bounds for the created vector
loops, used by later optimizations, like late unrolling.
At the moment quite a few tests still need to be updated, but before
doing so I'd like to get initial feedback to make sure I am not missing
anything.
Note that this could probably be further improved by using information
from the original IV.
Attempt of modeling of the assumption in Alive2:
https://alive2.llvm.org/ce/z/H_DL_g
Part of a set of fixes required for PR50412.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D103255
This patch uses the calculated maximum scalable VFs to build VPlans,
cost them and select a suitable scalable VF.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D98722
Update isFirstOrderRecurrence to explore all uses of a recurrence phi
and check if we can sink them. If there are multiple users to sink, they
are all mapped to the previous instruction.
Fixes PR44286 (and another PR or two).
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D84951
This is a patch that replaces shufflevector and insertelement's placeholder value with poison.
Underlying motivation is to fix the semantics of shufflevector with undef mask to return poison instead
(D93818)
The consensus has been made in the late 2020 via mailing list as well as the thread in https://bugs.llvm.org/show_bug.cgi?id=44185 .
This patch is a simple syntactic change to the existing code, hence directly pushed as a commit.
This reverts commit 1ed7f8ede5.
This change can cause loop-distribute to crash in some cases. Revert
until I have more time to wrap up a fix.
See PR50296, PR5028 and D102266.
For uniform ReplicateRecipes, only the first lane should be used, so
sinking them would mean we have to compute the value of the first lane
multiple times. Also, at the moment, sinking them causes a crash because
the value of the first lane is re-used by all users.
Reported post-commit for D100258.
When loop hints are passed via metadata, the allowReordering function
in LoopVectorizationLegality will allow the order of floating point
operations to be changed:
bool allowReordering() const {
// When enabling loop hints are provided we allow the vectorizer to change
// the order of operations that is given by the scalar loop. This is not
// enabled by default because can be unsafe or inefficient.
The -enable-strict-reductions flag introduced in D98435 will currently only
vectorize reductions in-loop if hints are used, since canVectorizeFPMath()
will return false if reordering is not allowed.
This patch changes canVectorizeFPMath() to query whether it is safe to
vectorize the loop with ordered reductions if no hints are used. For
testing purposes, an additional flag (-hints-allow-reordering) has been
added to disable the reordering behaviour described above.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D101836
An additional RUN line has been added to both strict-fadd.ll &
scalable-strict-fadd.ll to ensure the correct behaviour of these
tests where `-enable-strict-reductions` is false.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D103015
This patch adds a first VPlan-based implementation of sinking of scalar
operands.
The current version traverse a VPlan once and processes all operands of
a predicated REPLICATE recipe. If one of those operands can be sunk,
it is moved to the block containing the predicated REPLICATE recipe.
Continue with processing the operands of the sunk recipe.
The initial version does not re-process candidates after other recipes
have been sunk. It also cannot partially sink induction increments at
the moment. The VPlan only contains WIDEN-INDUCTION recipes and if the
induction is used for example in a GEP, only the first lane is used and
in the lowered IR the adds for the other lanes can be sunk into the
predicated blocks.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D100258
* Removes unnecessary loop hints.
* Use RUN line with '-scalable-vectorization=preferred' instead of 'on'
for the maximize-bandwidth behaviour. This prepares the test for enabling
scalable vectorization; With a forced instruction-cost of 1, 'on' will
always favour fixed-width VF to be chosen, whereas with 'preferred'
we can check that the maximize-bandwidth option in combination with
scalable-vectorization=preferred actually picks a scalable VF.
* Renamed to scalable-vectorization.ll, because a follow-up patch will
test more than just analysis.
This patch adds a new option to the LoopVectorizer to control how
scalable vectors can be used.
Initially, this suggests three levels to control scalable
vectorization, although other more aggressive options can be added in
the future.
The possible options are:
- Disabled: Disables vectorization with scalable vectors.
- Enabled: Vectorize loops using scalable vectors or fixed-width
vectors, but favors fixed-width vectors when the cost
is a tie.
- Preferred: Like 'Enabled', but favoring scalable vectors when the
cost-model is inconclusive.
Reviewed By: paulwalker-arm, vkmr
Differential Revision: https://reviews.llvm.org/D101945
This patch introduces a new class, MaxVFCandidates, that holds the
maximum vectorization factors that have been computed for both scalable
and fixed-width vectors.
This patch is intended to be NFC for fixed-width vectors, although
considering a scalable max VF (which is disabled by default) pessimises
tail-loop elimination, since it can no longer determine if any chosen VF
(less than fixed/scalable MaxVFs) is guaranteed to handle all vector
iterations if the trip-count is known. This issue will be addressed in
a future patch.
Reviewed By: fhahn, david-arm
Differential Revision: https://reviews.llvm.org/D98721
This reverts commit 6d3e3ae8a9.
Still seeing PPC build bot failures, and one arm self host bot failing. I'm officially stumped, and need help from a bot owner to reduce.
Resubmit after fixing test/Transforms/LoopVectorize/ARM/mve-gather-scatter-tailpred.ll
Previous commit message...
This is a resubmit of 3e5ce4 (which was reverted by 7fe41ac). The original commit caused a PPC build bot failure we never really got to the bottom of. I can't reproduce the issue, and the bot owner was non-responsive. In the meantime, we stumbled across an issue which seems possibly related, and worked around a latent bug in 80e8025. My best guess is that the original patch exposed that latent issue at higher frequency, but it really is just a guess.
Original commit message follows...
If we know that the scalar epilogue is required to run, modify the CFG to end the middle block with an unconditional branch to scalar preheader. This is instead of a conditional branch to either the preheader or the exit block.
The motivation to do this is to support multiple exit blocks. Specifically, the current structure forces us to identify immediate dominators and *which* exit block to branch from in the middle terminator. For the multiple exit case - where we know require scalar will hold - these questions are ill formed.
This is the last change needed to support multiple exit loops, but since the diffs are already large enough, I'm going to land this, and then enable separately. You can think of this as being NFCIish prep work, but the changes are a bit too involved for me to feel comfortable tagging the review that way.
Differential Revision: https://reviews.llvm.org/D94892
This is a resubmit of 3e5ce4 (which was reverted by 7fe41ac). The original commit caused a PPC build bot failure we never really got to the bottom of. I can't reproduce the issue, and the bot owner was non-responsive. In the meantime, we stumbled across an issue which seems possibly related, and worked around a latent bug in 80e8025. My best guess is that the original patch exposed that latent issue at higher frequency, but it really is just a guess.
Original commit message follows...
If we know that the scalar epilogue is required to run, modify the CFG to end the middle block with an unconditional branch to scalar preheader. This is instead of a conditional branch to either the preheader or the exit block.
The motivation to do this is to support multiple exit blocks. Specifically, the current structure forces us to identify immediate dominators and *which* exit block to branch from in the middle terminator. For the multiple exit case - where we know require scalar will hold - these questions are ill formed.
This is the last change needed to support multiple exit loops, but since the diffs are already large enough, I'm going to land this, and then enable separately. You can think of this as being NFCIish prep work, but the changes are a bit too involved for me to feel comfortable tagging the review that way.
Differential Revision: https://reviews.llvm.org/D94892
In InnerLoopVectorizer::widenPHIInstruction there are cases where we have
to scalarise a pointer induction variable after vectorisation. For scalable
vectors we already deal with the case where the pointer induction variable
is uniform, but we currently crash if not uniform. For fixed width vectors
we calculate every lane of the scalarised pointer induction variable for a
given VF, however this cannot work for scalable vectors. In this case I
have added support for caching the whole vector value for each unrolled
part so that we can always extract an arbitrary element. Additionally, we
still continue to cache the known minimum number of lanes too in order
to improve code quality by avoiding an extractelement operation.
I have adapted an existing test `pointer_iv_mixed` from the file:
Transforms/LoopVectorize/consecutive-ptr-uniforms.ll
and added it here for scalable vectors instead:
Transforms/LoopVectorize/AArch64/sve-widen-phi.ll
Differential Revision: https://reviews.llvm.org/D101294
If the simplified VPValue is a recipe, we need to register it for Instr,
in case it needs to be recorded. The way this is handled in general may
change soon, following some post-commit comments.
This fixes PR50298.
This patch adds support for Darwin's libsystem math vector functions to
TLI. Darwin's libsystem provides a range of vector functions for libm
functions.
This initial patch only adds the 2 x double and 4 x float versions,
which are available on both X86 and ARM64. On X86, wider vector versions
are supported as well.
Reviewed By: jroelofs
Differential Revision: https://reviews.llvm.org/D101856
The function fixReduction used to assert/crash for scalable vector when
a vector reduce could be done with a smaller vector.
This patch removes this assertion as it is safe to use scalable vector for
vector reduce and truncate.
Differential Revision: https://reviews.llvm.org/D101260
The loop vectorizer will currently assume a large trip count when
calculating which of several vectorization factors are more profitable.
That is often not a terrible assumption to make as small trip count
loops will usually have been fully unrolled. There are cases however
where we will try to vectorize them, and especially when folding the
tail by masking can incorrectly choose to vectorize loops that are not
beneficial, due to the folded tail rounding the iteration count up for
the vectorized loop.
The motivating example here has a trip count of 5, so either performs 5
scalar iterations or 2 vector iterations (with VF=4). At a high enough
trip count the vectorization becomes profitable, but the rounding up to
2 vector iterations vs only 5 scalar makes it unprofitable.
This adds an alternative cost calculation when we know the max trip
count and are folding tail by masking, rounding the iteration count up
to the correct number for the vector width. We still do not account for
anything like setup cost or the mixture of vector and scalar loops, but
this is at least an improvement in a few cases that we have had
reported.
Differential Revision: https://reviews.llvm.org/D101726
Adds support for scalable vectorization of loops containing first-order recurrences, e.g:
```
for(int i = 0; i < n; i++)
b[i] = a[i] + a[i - 1]
```
This patch changes fixFirstOrderRecurrence for scalable vectors to take vscale into
account when inserting into and extracting from the last lane of a vector.
CreateVectorSplice has been added to construct a vector for the recurrence, which
returns a splice intrinsic for scalable types. For fixed-width the behaviour
remains unchanged as CreateVectorSplice will return a shufflevector instead.
The tests included here are the same as test/Transform/LoopVectorize/first-order-recurrence.ll
Reviewed By: david-arm, fhahn
Differential Revision: https://reviews.llvm.org/D101076
This is a patch that disables the poison-unsafe select -> and/or i1 folding.
It has been blocking D72396 and also has been the source of a few miscompilations
described in llvm.org/pr49688 .
D99674 conditionally blocked this folding and successfully fixed the latter one.
The former one was still blocked, and this patch addresses it.
Note that a few test functions that has `_logical` suffix are now deoptimized.
These are created by @nikic to check the impact of disabling this optimization
by copying existing original functions and replacing and/or with select.
I can see that most of these are poison-unsafe; they can be revived by introducing
freeze instruction. I left comments at fcmp + select optimizations (or-fcmp.ll, and-fcmp.ll)
because I think they are good targets for freeze fix.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D101191
LoopVectorize has a fairly deeply baked in design problem where it will try to query analysis (primarily SCEV, but also ValueTracking) in the midst of mutating IR. In particular, the intermediate IR state does not represent the semantics of the original (or final) program.
Fixing this for real is hard, but all of the cases seen so far share a common symptom. In cases seen to date, the analysis being queried is the computation of the original loop's trip count. We can fix this particular instance of the issue by simply computing the trip count early, and caching it.
I want to be really clear that this is nothing but a workaround. It does nothing to fix the root issue, and at best, delays the time until we have to fix this for real. Florian and I have discussed an eventual solution in the review comments for https://reviews.llvm.org/D100663, but it's a lot of work.
Test taken from https://reviews.llvm.org/D100663.
Differential Revision: https://reviews.llvm.org/D101487
This patch updates the code that sinks recipes required for first-order
recurrences to properly handle replicate-regions. At the moment, the
code would just move the replicate recipe out of its replicate-region,
producing an invalid VPlan.
When sinking a recipe in a replicate-region, we have to sink the whole
region. To do that, we first need to split the block at the target
recipe and move the region in between.
This patch also adds a splitAt helper to VPBasicBlock to split a
VPBasicBlock at a given iterator.
Fixes PR50009.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D100751
This patch updates the code handling reduction recipes to also keep
track of the incoming value from the latch in the recipe. This is needed
to model the def-use chains completely in VPlan, so that it is possible
to replace the incoming value with an arbitrary VPValue.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D99294