a bot.
This reverts the commit which introduced a new implementation of the
fancy SROA pass designed to reduce its overhead. I'll skip the huge
commit log here, refer to r186316 if you're looking for how this all
works and why it works that way.
llvm-svn: 186332
different core implementation strategy.
Previously, SROA would build a relatively elaborate partitioning of an
alloca, associate uses with each partition, and then rewrite the uses of
each partition in an attempt to break apart the alloca into chunks that
could be promoted. This was very wasteful in terms of memory and compile
time because regardless of how complex the alloca or how much we're able
to do in breaking it up, all of the datastructure work to analyze the
partitioning was done up front.
The new implementation attempts to form partitions of the alloca lazily
and on the fly, rewriting the uses that make up that partition as it
goes. This has a few significant effects:
1) Much simpler data structures are used throughout.
2) No more double walk of the recursive use graph of the alloca, only
walk it once.
3) No more complex algorithms for associating a particular use with
a particular partition.
4) PHI and Select speculation is simplified and happens lazily.
5) More precise information is available about a specific use of the
alloca, removing the need for some side datastructures.
Ultimately, I think this is a much better implementation. It removes
about 300 lines of code, but arguably removes more like 500 considering
that some code grew in the process of being factored apart and cleaned
up for this all to work.
I've re-used as much of the old implementation as possible, which
includes the lion's share of code in the form of the rewriting logic.
The interesting new logic centers around how the uses of a partition are
sorted, and split into actual partitions.
Each instruction using a pointer derived from the alloca gets
a 'Partition' entry. This name is totally wrong, but I'll do a rename in
a follow-up commit as there is already enough churn here. The entry
describes the offset range accessed and the nature of the access. Once
we have all of these entries we sort them in a very specific way:
increasing order of begin offset, followed by whether they are
splittable uses (memcpy, etc), followed by the end offset or whatever.
Sorting by splittability is important as it simplifies the collection of
uses into a partition.
Once we have these uses sorted, we walk from the beginning to the end
building up a range of uses that form a partition of the alloca.
Overlapping unsplittable uses are merged into a single partition while
splittable uses are broken apart and carried from one partition to the
next. A partition is also introduced to bridge splittable uses between
the unsplittable regions when necessary.
I've looked at the performance PRs fairly closely. PR15471 no longer
will even load (the module is invalid). Not sure what is up there.
PR15412 improves by between 5% and 10%, however it is nearly impossible
to know what is holding it up as SROA (the entire pass) takes less time
than reading the IR for that test case. The analysis takes the same time
as running mem2reg on the final allocas. I suspect (without much
evidence) that the new implementation will scale much better however,
and it is just the small nature of the test cases that makes the changes
small and noisy. Either way, it is still simpler and cleaner I think.
llvm-svn: 186316
If an outside loop user of the reduction value uses the header phi node we
cannot just reduce the vectorized phi value in the vector code epilog because
we would loose VF-1 reductions.
lp:
p = phi (0, lv)
lv = lv + 1
...
brcond , lp, outside
outside:
usr = add 0, p
(Say the loop iterates two times, the value of p coming out of the loop is one).
We cannot just transform this to:
vlp:
p = phi (<0,0>, lv)
lv = lv + <1,1>
..
brcond , lp, outside
outside:
p_reduced = p[0] + [1];
usr = add 0, p_reduced
(Because the original loop iterated two times the vectorized loop would iterate
one time, but p_reduced ends up being zero instead of one).
We would have to execute VF-1 iterations in the scalar remainder loop in such
cases. For now, just disable vectorization.
PR16522
llvm-svn: 186256
In general, one should always complete CFG modifications first, update
CFG-based analyses, like Dominatores and LoopInfo, then generate
instruction sequences.
LoopVectorizer was creating a new loop, calling SCEVExpander to
generate checks, then updating LoopInfo. I just changed the order.
llvm-svn: 186241
Address calculation for gather/scather in vectorized code can incur a
significant cost making vectorization unbeneficial. Add infrastructure to add
cost.
Tests and cost model for targets will be in follow-up commits.
radar://14351991
llvm-svn: 186187
against a constant."
This reverts commit r186107. It didn't handle wrapping arithmetic in the
loop correctly and thus caused the following C program to count from
0 to UINT64_MAX instead of from 0 to 255 as intended:
#include <stdio.h>
int main() {
unsigned char first = 0, last = 255;
do { printf("%d\n", first); } while (first++ != last);
}
Full test case and instructions to reproduce with just the -indvars pass
sent to the original review thread rather than to r186107's commit.
llvm-svn: 186152
Before we could vectorize PHINodes scanning successors was a good way of finding candidates. Now we can vectorize the phinodes which is simpler.
llvm-svn: 186139
Patch by Michele Scandale!
Adds a special handling of the case where, during the loop exit
condition rewriting, the exit value is a constant of bitwidth lower
than the type of the induction variable: instead of introducing a
trunc operation in order to match correctly the operand types, it
allows to convert the constant value to an equivalent constant,
depending on the initial value of the induction variable and the trip
count, in order have an equivalent comparison between the induction
variable and the new constant.
llvm-svn: 186107
We can vectorize them because in the case where we wrap in the address space the
unvectorized code would have had to access a pointer value of zero which is
undefined behavior in address space zero according to the LLVM IR semantics.
(Thank you Duncan, for pointing this out to me).
Fixes PR16592.
llvm-svn: 186088
predecessors of the two blocks it is attempting to merge supply the
same incoming values to any phi in the successor block. This change
allows merging in the case where there is one or more incoming values
that are undef. The undef values are rewritten to match the non-undef
value that flows from the other edge. Patch by Mark Lacey.
llvm-svn: 186069
Without the changes introduced into this patch, if TRE saw any allocas at all,
TRE would not perform TRE *or* mark callsites with the tail marker.
Because TRE runs after mem2reg, this inadequacy is not a death sentence. But
given a callsite A without escaping alloca argument, A may not be able to have
the tail marker placed on it due to a separate callsite B having a write-back
parameter passed in via an argument with the nocapture attribute.
Assume that B is the only other callsite besides A and B only has nocapture
escaping alloca arguments (*NOTE* B may have other arguments that are not passed
allocas). In this case not marking A with the tail marker is unnecessarily
conservative since:
1. By assumption A has no escaping alloca arguments itself so it can not
access the caller's stack via its arguments.
2. Since all of B's escaping alloca arguments are passed as parameters with
the nocapture attribute, we know that B does not stash said escaping
allocas in a manner that outlives B itself and thus could be accessed
indirectly by A.
With the changes introduced by this patch:
1. If we see any escaping allocas passed as a capturing argument, we do
nothing and bail early.
2. If we do not see any escaping allocas passed as captured arguments but we
do see escaping allocas passed as nocapture arguments:
i. We do not perform TRE to avoid PR962 since the code generator produces
significantly worse code for the dynamic allocas that would be created
by the TRE algorithm.
ii. If we do not return twice, mark call sites without escaping allocas
with the tail marker. *NOTE* This excludes functions with escaping
nocapture allocas.
3. If we do not see any escaping allocas at all (whether captured or not):
i. If we do not have usage of setjmp, mark all callsites with the tail
marker.
ii. If there are no dynamic/variable sized allocas in the function,
attempt to perform TRE on all callsites in the function.
Based off of a patch by Nick Lewycky.
rdar://14324281.
llvm-svn: 186057
A special case list can now specify categories for specific globals,
which can be used to instruct an instrumentation pass to treat certain
functions or global variables in a specific way, such as by omitting
certain aspects of instrumentation while keeping others, or informing
the instrumentation pass that a specific uninstrumentable function
has certain semantics, thus allowing the pass to instrument callers
according to those semantics.
For example, AddressSanitizer now uses the "init" category instead of
global-init prefixes for globals whose initializers should not be
instrumented, but which in all other respects should be instrumented.
The motivating use case is DataFlowSanitizer, which will have a
number of different categories for uninstrumentable functions, such
as "functional" which specifies that a function has pure functional
semantics, or "discard" which indicates that a function's return
value should not be labelled.
Differential Revision: http://llvm-reviews.chandlerc.com/D1092
llvm-svn: 185978
The following transforms are valid if -C is a power of 2:
(icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
(icmp ult (xor X, C), -C) -> (icmp uge X, C)
These are nice, they get rid of the xor.
llvm-svn: 185915
Commit 185883 fixes a bug in the IRBuilder that should fix the ASan bot. AssertingVH can help in exposing some RAUW problems.
Thanks Ben and Alexey!
llvm-svn: 185886
Back in r179493 we determined that two transforms collided with each
other. The fix back then was to reorder the transforms so that the
preferred transform would give it a try and then we would try the
secondary transform. However, it was noted that the best approach would
canonicalize one transform into the other, removing the collision and
allowing us to optimize IR given to us in that form.
llvm-svn: 185808
This is a complete re-write if the bottom-up vectorization class.
Before this commit we scanned the instruction tree 3 times. First in search of merge points for the trees. Second, for estimating the cost. And finally for vectorization.
There was a lot of code duplication and adding the DCE exposed bugs. The new design is simpler and DCE was a part of the design.
In this implementation we build the tree once. After that we estimate the cost by scanning the different entries in the constructed tree (in any order). The vectorization phase also works on the built tree.
llvm-svn: 185774
This is the first patch in a series of 3 patches which clean up how we create
runtime function declarations in the ARC optimizer when they do not exist
already in the IR.
Currently we have a bunch of duplicated code in ObjCARCOpts, ObjCARCContract
that does this. This patch refactors that code into a separate class called
ARCRuntimeEntryPoints which lazily creates the declarations for said
entrypoints.
The next two patches will consist of the work of refactoring
ObjCARCContract/ObjCARCOpts to use this new code.
llvm-svn: 185740
This transform was originally added in r185257 but later removed in
r185415. The original transform would create instructions speculatively
and then discard them if the speculation was proved incorrect. This has
been replaced with a scheme that splits the transform into two parts:
preflight and fold. While we preflight, we build up fold actions that
inform the folding stage on how to act.
llvm-svn: 185667
This allows us to create switches even if instcombine has munged two of the
incombing compares into one and some bit twiddling. This was motivated by enum
compares that are common in clang.
llvm-svn: 185632
This implies annotating it as nounwind and its arguments as nocapture. To be
conservative, we do not annotate the arguments with noalias since some platforms
do not have restrict on the declaration for gettimeofday.
llvm-svn: 185502
I'm reverting this commit because:
1. As discussed during review, it needs to be rewritten (to avoid creating and
then deleting instructions).
2. This is causing optimizer crashes. Specifically, I'm seeing things like
this:
While deleting: i1 %
Use still stuck around after Def is destroyed: <badref> = select i1 <badref>, i32 0, i32 1
opt: /src/llvm-trunk/lib/IR/Value.cpp:79: virtual llvm::Value::~Value(): Assertion `use_empty() && "Uses remain when a value is destroyed!"' failed.
I'd guess that these will go away once we're no longer creating/deleting
instructions here, but just in case, I'm adding a regression test.
Because the code is bring rewritten, I've just XFAIL'd the original regression test. Original commit message:
InstCombine: Be more agressive optimizing 'udiv' instrs with 'select' denoms
Real world code sometimes has the denominator of a 'udiv' be a
'select'. LLVM can handle such cases but only when the 'select'
operands are symmetric in structure (both select operands are a constant
power of two or a left shift, etc.). This falls apart if we are dealt a
'udiv' where the code is not symetric or if the select operands lead us
to more select instructions.
Instead, we should treat the LHS and each select operand as a distinct
divide operation and try to optimize them independently. If we can
to simplify each operation, then we can replace the 'udiv' with, say, a
'lshr' that has a new select with a bunch of new operands for the
select.
llvm-svn: 185415
Math functions are mark as readonly because they read the floating point
rounding mode. Because we don't vectorize loops that would contain function
calls that set the rounding mode it is safe to ignore this memory read.
llvm-svn: 185299
Changing the sign when comparing the base pointer would introduce all
sorts of unexpected things like:
%gep.i = getelementptr inbounds [1 x i8]* %a, i32 0, i32 0
%gep2.i = getelementptr inbounds [1 x i8]* %b, i32 0, i32 0
%cmp.i = icmp ult i8* %gep.i, %gep2.i
%cmp.i1 = icmp ult [1 x i8]* %a, %b
%cmp = icmp ne i1 %cmp.i, %cmp.i1
ret i1 %cmp
into:
%cmp.i = icmp slt [1 x i8]* %a, %b
%cmp.i1 = icmp ult [1 x i8]* %a, %b
%cmp = xor i1 %cmp.i, %cmp.i1
ret i1 %cmp
By preserving the original sign, we now get:
ret i1 false
This fixes PR16483.
llvm-svn: 185259
Real world code sometimes has the denominator of a 'udiv' be a
'select'. LLVM can handle such cases but only when the 'select'
operands are symmetric in structure (both select operands are a constant
power of two or a left shift, etc.). This falls apart if we are dealt a
'udiv' where the code is not symetric or if the select operands lead us
to more select instructions.
Instead, we should treat the LHS and each select operand as a distinct
divide operation and try to optimize them independently. If we can
to simplify each operation, then we can replace the 'udiv' with, say, a
'lshr' that has a new select with a bunch of new operands for the
select.
llvm-svn: 185257
We may, after other optimizations, find ourselves with IR that looks
like:
%shl = shl i32 1, %y
%cmp = icmp ult i32 %shl, 32
Instead, we should just compare the shift count:
%cmp = icmp ult i32 %y, 5
llvm-svn: 185242
To support this we have to insert 'extractelement' instructions to pick the right lane.
We had this functionality before but I removed it when we moved to the multi-block design because it was too complicated.
llvm-svn: 185230
In this code we keep track of pointers that we are allowed to read from, if they are accessed by non-predicated blocks.
We use this list to allow vectorization of conditional loads in predicated blocks because we know that these addresses don't segfault.
llvm-svn: 185214
- Build debug metadata for 'bare' Modules using DIBuilder
- DebugIR can be constructed to generate an IR file (to be seen by a debugger)
or not in cases where the user already has an IR file on disk.
llvm-svn: 185193
I used the class to safely reset the state of the builder's debug location. I
think I have caught all places where we need to set the debug location to a new
one. Therefore, we can replace the class by a function that just sets the debug
location.
llvm-svn: 185165
No functionality change.
It should suffice to check the type of a debug info metadata, instead of
calling Verify. For cases where we know the type of a DI metadata, use
assert.
Also update testing cases to make them conform to the format of DI classes.
llvm-svn: 185135
This reverts commit r185099.
Looks like both the ppc-64 and mips bots are still failing after I reverted this
change.
Since:
1. The mips bot always performs a clean build,
2. The ppc64-bot failed again after a clean build (I asked the ppc-64
maintainers to clean the bot which they did... Thanks Will!),
I think it is safe to assume that this change was not the cause of the failures
that said builders were seeing. Thus I am recomitting.
llvm-svn: 185111
This reverts commit r185095. This is causing a FileCheck failure on
the 3dnow intrinsics on at least the mips/ppc bots but not on the x86
bots.
Reverting while I figure out what is going on.
llvm-svn: 185099
The category which an APFloat belongs to should be dependent on the
actual value that the APFloat has, not be arbitrarily passed in by the
user. This will prevent inconsistency bugs where the category and the
actual value in APFloat differ.
I also fixed up all of the references to this constructor (which were
only in LLVM).
llvm-svn: 185095
When we store values for reversed induction stores we must not store the
reversed value in the vectorized value map. Another instruction might use this
value.
This fixes 3 test cases of PR16455.
llvm-svn: 185051
The Builtin attribute is an attribute that can be placed on function call site that signal that even though a function is declared as being a builtin,
rdar://problem/13727199
llvm-svn: 185049
debug statements to add a missing newline. Also canonicalize to '\n' instead of
"\n"; the latter calls a function with a loop the former does not.
llvm-svn: 184897
When a 1-element vector alloca is promoted, a store instruction can often be
rewritten without converting the value to a scalar and using an insertelement
instruction to stuff it into the new alloca. This patch just adds a check
to skip that conversion when it is unnecessary. This turns out to be really
important for some ARM Neon operations where <1 x i64> is used to get around
the fact that i64 is not a legal type.
llvm-svn: 184870
This should hopefully have fixed the stage2/stage3 miscompare on the dragonegg
testers.
"LoopVectorize: Use the dependence test utility class
We now no longer need alias analysis - the cases that alias analysis would
handle are now handled as accesses with a large dependence distance.
We can now vectorize loops with simple constant dependence distances.
for (i = 8; i < 256; ++i) {
a[i] = a[i+4] * a[i+8];
}
for (i = 8; i < 256; ++i) {
a[i] = a[i-4] * a[i-8];
}
We would be able to vectorize about 200 more loops (in many cases the cost model
instructs us no to) in the test suite now. Results on x86-64 are a wash.
I have seen one degradation in ammp. Interestingly, the function in which we
now vectorize a loop is never executed so we probably see some instruction
cache effects. There is a 2% improvement in h264ref. There is one or the other
TSCV loop kernel that speeds up.
radar://13681598"
llvm-svn: 184724
CGSCC pass manager. This should insulate the inlining decisions from the
vectorization decisions, however it may have both compile time and code
size problems so it is just an experimental option right now.
Adding this based on a discussion with Arnold and it seems at least
worth having this flag for us to both run some experiments to see if
this strategy is workable. It may solve some of the regressions seen
with the loop vectorizer.
llvm-svn: 184698
We now no longer need alias analysis - the cases that alias analysis would
handle are now handled as accesses with a large dependence distance.
We can now vectorize loops with simple constant dependence distances.
for (i = 8; i < 256; ++i) {
a[i] = a[i+4] * a[i+8];
}
for (i = 8; i < 256; ++i) {
a[i] = a[i-4] * a[i-8];
}
We would be able to vectorize about 200 more loops (in many cases the cost model
instructs us no to) in the test suite now. Results on x86-64 are a wash.
I have seen one degradation in ammp. Interestingly, the function in which we
now vectorize a loop is never executed so we probably see some instruction
cache effects. There is a 2% improvement in h264ref. There is one or the other
TSCV loop kernel that speeds up.
radar://13681598
llvm-svn: 184685
This class checks dependences by subtracting two Scalar Evolution access
functions allowing us to catch very simple linear dependences.
The checker assumes source order in determining whether vectorization is safe.
We currently don't reorder accesses.
Positive true dependencies need to be a multiple of VF otherwise we impede
store-load forwarding.
llvm-svn: 184684
Sets of dependent accesses are built by unioning sets based on underlying
objects. This class will be used by the upcoming dependence checker.
llvm-svn: 184683
Untill now we detected the vectorizable tree and evaluated the cost of the
entire tree. With this patch we can decide to trim-out branches of the tree
that are not profitable to vectorizer.
Also, increase the max depth from 6 to 12. In the worse possible case where all
of the code is made of diamond-shaped graph this can bring the cost to 2**10,
but diamonds are not very common.
llvm-svn: 184681
Rewrote the SLP-vectorization as a whole-function vectorization pass. It is now able to vectorize chains across multiple basic blocks.
It still does not vectorize PHIs, but this should be easy to do now that we scan the entire function.
I removed the support for extracting values from trees.
We are now able to vectorize more programs, but there are some serious regressions in many workloads (such as flops-6 and mandel-2).
llvm-svn: 184647
This is apart of a series of patches to encapsulate PtrState.RRI and
make PtrState.RRI a private field of PtrState.
*NOTE* This is actually the second commit in the patch stream. I should
have put this note on the first such commit r184528.
llvm-svn: 184532
This commit completely removes what is left of the simplify-libcalls
pass. All of the functionality has now been migrated to the instcombine
and functionattrs passes. The following C API functions are now NOPs:
1. LLVMAddSimplifyLibCallsPass
2. LLVMPassManagerBuilderSetDisableSimplifyLibCalls
llvm-svn: 184459
We collect gather sequences when we vectorize basic blocks. Gather sequences are excellent
hints for vectorization of other basic blocks.
llvm-svn: 184444
Prior to this change, the considered addressing modes may be invalid since the
maximum and minimum offsets were not taking into account.
This was causing an assertion failure.
The added test case exercices that behavior.
<rdar://problem/14199725> Assertion failed: (CurScaleCost >= 0 && "Legal
addressing mode has an illegal cost!")
llvm-svn: 184341
The type <3 x i8> is a common in graphics and we want to be able to vectorize it.
This changes accelerates bullet by 12% and 471_omnetpp by 5%.
llvm-svn: 184317
This pass was assuming that if hasAddressTaken() returns false for a
function, the function's only uses are call sites. That's not true
because there can be references by BlockAddresses too.
Fix the pass to handle this case. Fix
BlockAddress::replaceUsesOfWithOnConstant() to allow a function's type
to be changed by RAUW'ing the function with a bitcast of the recreated
function.
Patch by Mark Seaborn.
llvm-svn: 183933
Instead of a custom implementation of replaceAllUsesWith, we just call
replaceAllUsesWith and recreate llvm.used and llvm.compiler-used.
This change is particularity interesting because it makes llvm see
through what clang is doing with static used functions in extern "C"
contexts. With this change, running clang -O2 in
extern "C" {
__attribute__((used)) static void foo() {}
}
produces
@llvm.used = appending global [1 x i8*] [i8* bitcast (void ()* @foo to
i8*)], section "llvm.metadata"
define internal void @foo() #0 {
entry:
ret void
}
llvm-svn: 183756
r183584 tries to derive some info from the code *AFTER* a call and apply
these derived info to the code *BEFORE* the call, which is not always safe
as the call in question may never return, and in this case, the derived
info is invalid.
Thank Duncan for pointing out this potential bug.
rdar://14073661
llvm-svn: 183606
The MemCpyOpt pass is capable of optimizing:
callee(&S); copy N bytes from S to D.
into:
callee(&D);
subject to some legality constraints.
Assertion is triggered when the compiler tries to evalute "sizeof(typeof(D))",
while D is an opaque-typed, 'sret' formal argument of function being compiled.
i.e. the signature of the func being compiled is something like this:
T caller(...,%opaque* noalias nocapture sret %D, ...)
The fix is that when come across such situation, instead of calling some
utility functions to get the size of D's type (which will crash), we simply
assume D has at least N bytes as implified by the copy-instruction.
rdar://14073661
llvm-svn: 183584
IndVarSimplify is willing to move divide instructions outside of their
loop bodies if they are invariant of the loop. However, it may not be
safe to expand them if we do not know if they can trap.
Instead, check to see if it is not safe to expand the instruction and
skip the expansion.
This fixes PR16041.
Testcase by Rafael Ávila de Espíndola.
llvm-svn: 183239
The problem this time seems to be a thinko. We were assuming that in the CFG
A
| \
| B
| /
C
speculating the basic block B would cause only the phi value for the B->C edge
to be speculated. That is not true, the phi's are semantically in the edges, so
if the A->B->C path is taken, any code needed for A->C is not executed and we
have to consider it too when deciding to speculate B.
llvm-svn: 183226
PR16069 is an interesting case where an incoming value to a PHI is a
trap value while also being a 'ConstantExpr'.
We do not consider this case when performing the 'HoistThenElseCodeToIf'
optimization.
Instead, make our modifications more conservative if we detect that we
cannot transform the PHI to a select.
llvm-svn: 183152
index greater than the size of the vector is invalid. The shuffle may be
shrinking the size of the vector. Fixes a crash!
Also drop the maximum recursion depth of the safety check for this
optimization to five.
llvm-svn: 183080
Use ScalarEvolution's getBackedgeTakenCount API instead of getExitCount since
that is really what we want to know. Using the more specific getExitCount was
safe because we made sure that there is only one exiting block.
No functionality change.
llvm-svn: 183047
Account for the cost of scaling factor in Loop Strength Reduce when rating the
formulae. This uses a target hook.
The default implementation of the hook is: if the addressing mode is legal, the
scaling factor is free.
<rdar://problem/13806271>
llvm-svn: 183045
We check that instructions in the loop don't have outside users (except if
they are reduction values). Unfortunately, we skipped this check for
if-convertable PHIs.
Fixes PR16184.
llvm-svn: 183035
Namely, check if the target allows to fold more that one register in the
addressing mode and if yes, adjust the cost accordingly.
Prior to this commit, reg1 + scale * reg2 accesses were artificially preferred
to reg1 + reg2 accesses. Indeed, the cost model wrongly assumed that reg1 + reg2
needs a temporary register for the computation, whereas it was correctly
estimated for reg1 + scale * reg2.
<rdar://problem/13973908>
llvm-svn: 183021
Before this change, each module defined a weak_odr global __msan_track_origins
with a value of 1 if origin tracking is enabled, 0 if disabled. If there are
modules with different values, any of them may win. If 0 wins, and there is at
least one module with 1, the program will most likely crash.
With this change, __msan_track_origins is only emitted if origin tracking is
on. Then runtime library detects if there is at least one module with origin
tracking, and enables runtime support for it.
llvm-svn: 182997
- llvm.loop.parallel metadata has been renamed to llvm.loop to be more generic
by making the root of additional loop metadata.
- Loop::isAnnotatedParallel now looks for llvm.loop and associated
llvm.mem.parallel_loop_access
- document llvm.loop and update llvm.mem.parallel_loop_access
- add support for llvm.vectorizer.width and llvm.vectorizer.unroll
- document llvm.vectorizer.* metadata
- add utility class LoopVectorizerHints for getting/setting loop metadata
- use llvm.vectorizer.width=1 to indicate already vectorized instead of
already_vectorized
- update existing tests that used llvm.loop.parallel and
llvm.vectorizer.already_vectorized
Reviewed by: Nadav Rotem
llvm-svn: 182802
Extend LinkModules to pass a ValueMaterializer to RemapInstruction and friends to lazily create Functions for lazily linked globals. This is a big win when linking small modules with large (mostly unused) library modules.
llvm-svn: 182776
as the BinaryOperator, *not* in the block where the IRBuilder is currently
inserting into. Fixes a bug where scalarizePHI would create instructions
that would not dominate all uses.
llvm-svn: 182639
- move AsmWriter.h from public headers into lib
- marked all AssemblyWriter functions as non-virtual; no need to override them
- DebugIR now "plugs into" AssemblyWriter with an AssemblyAnnotationWriter helper
- exposed flags to control hiding of a) debug metadata b) debug intrinsic calls
C/R: Paul Redmond
llvm-svn: 182617
We are not working on a DAG and I ran into a number of problems when I enabled the vectorizations of 'diamond-trees' (trees that share leafs).
* Imroved the numbering API.
* Changed the placement of new instructions to the last root.
* Fixed a bug with external tree users with non-zero lane.
* Fixed a bug in the placement of in-tree users.
llvm-svn: 182508
The earlier change list introduced the following inst combines:
B * (uitofp i1 C) —> select C, B, 0
A * (1 - uitofp i1 C) —> select C, 0, A
select C, 0, B + select C, A, 0 —> select C, A, B
Together these 3 changes would simplify :
A * (1 - uitofp i1 C) + B * uitofp i1 C
down to :
select C, B, A
In practice we found that the first two substitutions can have a
negative effect on performance, because they reduce opportunities to
use FMA contractions; between the two options FMAs are often the
better choice. This change list amends the previous one to enable
just these inst combines:
select C, B, 0 + select C, 0, A —> select C, B, A
A * (1 - uitofp i1 C) + B * uitofp i1 C —> select C, B, A
llvm-svn: 182499
The Value pointers we store in the induction variable list can be RAUW'ed by a
call to SCEVExpander::expandCodeFor, use a TrackingVH instead. Do the same thing
in some other places where we store pointers that could potentially be RAUW'ed.
Fixes PR16073.
llvm-svn: 182485
Other passes, PPC counter-loop formation for example, also need to add loop
preheaders outside of the regular loop simplification pass. This makes
InsertPreheaderForLoop a global function so that it can be used by other
passes.
No functionality change intended.
llvm-svn: 182299
We only want to check this once, not for every conditional block in the loop.
No functionality change (except that we don't perform a check redudantly
anymore).
llvm-svn: 181942
InstCombine can be uncooperative to vectorization and sink loads into
conditional blocks. This prevents vectorization.
Undo this optimization if there are unconditional memory accesses to the same
addresses in the loop.
radar://13815763
llvm-svn: 181860
CXAAtExitFn was set outside a loop and before optimizations where functions
can be deleted. This patch will set CXAAtExitFn inside the loop and after
optimizations.
Seg fault when running LTO because of accesses to a deleted function.
rdar://problem/13838828
llvm-svn: 181838
We used to give up if we saw two integer inductions. After this patch, we base
further induction variables on the chosen one like we do in the reverse
induction and pointer induction case.
Fixes PR15720.
radar://13851975
llvm-svn: 181746
In the presense of a block being initialized, the frontend will emit the
objc_retain on the original pointer and the release on the pointer loaded from
the alloca. The optimizer will through the provenance analysis realize that the
two are related (albiet different), but since we only require KnownSafe in one
direction, will match the inner retain on the original pointer with the guard
release on the original pointer. This is fixed by ensuring that in the presense
of allocas we only unconditionally remove pointers if both our retain and our
release are KnownSafe (i.e. we are KnownSafe in both directions) since we must
deal with the possibility that the frontend will emit what (to the optimizer)
appears to be unbalanced retain/releases.
An example of the miscompile is:
%A = alloca
retain(%x)
retain(%x) <--- Inner Retain
store %x, %A
%y = load %A
... DO STUFF ...
release(%y)
call void @use(%x)
release(%x) <--- Guarding Release
getting optimized to:
%A = alloca
retain(%x)
store %x, %A
%y = load %A
... DO STUFF ...
release(%y)
call void @use(%x)
rdar://13750319
llvm-svn: 181743
This makes the statistics gathering completely independent of the actual
optimization occuring, preventing any sort of bleeding over from occuring.
Additionally, it simplifies a switch statement in the non-statistic gathering case.
llvm-svn: 181719
The external user does not have to be in lane #0. We have to save the lane for each scalar so that we know which vector lane to extract.
llvm-svn: 181674
There are two transforms in visitUrem that conflict with each other.
*) One, if a divisor is a power of two, subtracts one from the divisor
and turns it into a bitwise-and.
*) The other unwraps both operands if they are surrounded by zext
instructions.
Flipping the order allows the subtraction to go beneath the sign
extension.
llvm-svn: 181668
Use the widest induction type encountered for the cannonical induction variable.
We used to turn the following loop into an empty loop because we used i8 as
induction variable type and truncated 1024 to 0 as trip count.
int a[1024];
void fail() {
int reverse_induction = 1023;
unsigned char forward_induction = 0;
while ((reverse_induction) >= 0) {
forward_induction++;
a[reverse_induction] = forward_induction;
--reverse_induction;
}
}
radar://13862901
llvm-svn: 181667
The shift amount may be larger than the type leading to undefined behavior.
Limit the transform to constant shift amounts. While there update the bits to
clear in the result which may enable additional optimizations.
PR15959.
llvm-svn: 181604
iteration.
This on step toward non-iterative GVN. My local hack suggests that getting rid
of iteration will speedup GVN by 30%+ on a medium sized input (2k LOC, C++).
I cannot explain why not 2x or more at this moment.
llvm-svn: 181532
That's obviously wrong. Conservatively restrict it to the sign bit, which
matches the original intention of this analysis. Fixes PR15940.
llvm-svn: 181518
A computable loop exit count does not imply the presence of an induction
variable. Scalar evolution can return a value for an infinite loop.
Fixes PR15926.
llvm-svn: 181495