GetTls is the range of
* thread control block and optional TLS_PRE_TCB_SIZE
* static TLS blocks plus static TLS surplus
On glibc, lsan requires the range to include
`pthread::{specific_1stblock,specific}` so that allocations only referenced by
`pthread_setspecific` can be scanned.
This patch uses `dl_iterate_phdr` to collect TLS ranges. Find the one
with `dlpi_tls_modid==1` as one of the initially loaded module, then find
consecutive ranges. The boundaries give us addr and size.
This allows us to drop the glibc internal `_dl_get_tls_static_info` and
`InitTlsSize` entirely. Use the simplified method with non-Android Linux for
now, but in theory this can be used with *BSD and potentially other ELF OSes.
In the future, we can move `ThreadDescriptorSize` code to lsan (and consider
intercepting `pthread_setspecific`) to avoid hacks in generic code.
See https://reviews.llvm.org/D93972#2480556 for analysis on GetTls usage
across various sanitizers.
Differential Revision: https://reviews.llvm.org/D98926
Go requires 47 bits VA for tsan.
Go will run race_detector testcases unless tsan warns about "unsupported VMA range"
Author: mzh (Meng Zhuo)
Reviewed-in: https://reviews.llvm.org/D98238
- Fixing VS compiler and other cases settings this time.
Reviewers: dmajor, hans
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D89759
Revert "Fix compiler-rt build on Windows after D89640"
This reverts commit a7acee89d6.
This reverts commit d09b08919c.
Reason: breaks Linux / x86_64 build.
Temporarily revert "tsan: fix leak of ThreadSignalContext for fibers"
because it breaks the LLDB bot on GreenDragon.
This reverts commit 93f7743851.
This reverts commit d8a0f76de7.
When creating and destroying fibers in tsan a thread state
is created and destroyed. Currently, a memory mapping is
leaked with each fiber (in __tsan_destroy_fiber).
This causes applications with many short running fibers
to crash or hang because of linux vm.max_map_count.
The root of this is that ThreadState holds a pointer to
ThreadSignalContext for handling signals. The initialization
and destruction of it is tied to platform specific events
in tsan_interceptors_posix and missed when destroying a fiber
(specifically, SigCtx is used to lazily create the
ThreadSignalContext in tsan_interceptors_posix). This patch
cleans up the memory by inverting the control from the
platform specific code calling the generic ThreadFinish to
ThreadFinish calling a platform specific clean-up routine
after finishing a thread.
The relevant code causing the leak with fibers is the fiber destruction:
void FiberDestroy(ThreadState *thr, uptr pc, ThreadState *fiber) {
FiberSwitchImpl(thr, fiber);
ThreadFinish(fiber);
FiberSwitchImpl(fiber, thr);
internal_free(fiber);
}
I would appreciate feedback if this way of fixing the leak is ok.
Also, I think it would be worthwhile to more closely look at the
lifecycle of ThreadState (i.e. it uses no constructor/destructor,
thus requiring manual callbacks for cleanup) and how OS-Threads/user
level fibers are differentiated in the codebase. I would be happy to
contribute more if someone could point me at the right place to
discuss this issue.
Reviewed-in: https://reviews.llvm.org/D76073
Author: Florian (Florian)