This patch adds functionality to compare for the equality between `InterfaceFile`s based on attributes specific to linking.
Reviewed By: cishida, steven_wu
Differential Revision: https://reviews.llvm.org/D96629
This fixes https://bugs.llvm.org/show_bug.cgi?id=49185
When `NDEBUG` is not set, `LPMUpdater` checks if the added loops have the same parent loop as the current one in `addSiblingLoops`.
If multiple loop passes are executed through `LoopPassManager`, `U.ParentL` will be the same across all passes.
However, the parent loop might change after running a loop pass, resulting in assertion failures in subsequent passes.
This patch resets `U.ParentL` after running individual loop passes in `LoopPassManager`.
Reviewed By: asbirlea, ychen
Differential Revision: https://reviews.llvm.org/D96727
Adjust generateFMAsInMachineCombiner to return false if SVE is present
in order to combine fmul+fadd into fma. Also add new pseudo instructions
so as to select the most appropriate of FMLA/FMAD depending on register
allocation.
Depends on D96599
Differential Revision: https://reviews.llvm.org/D96424
Rework template argument checking so that all arguments are type-checked
and cast if necessary.
Add a test.
Differential Revision: https://reviews.llvm.org/D96416
As discussed on the RFC [0], I am sharing the set of patches that
enables checking of original Debug Info metadata preservation in
optimizations. The proof-of-concept/proposal can be found at [1].
The implementation from the [1] was full of duplicated code,
so this set of patches tries to merge this approach into the existing
debugify utility.
For example, the utility pass in the original-debuginfo-check
mode could be invoked as follows:
$ opt -verify-debuginfo-preserve -pass-to-test sample.ll
Since this is very initial stage of the implementation,
there is a space for improvements such as:
- Add support for the new pass manager
- Add support for metadata other than DILocations and DISubprograms
[0] https://groups.google.com/forum/#!msg/llvm-dev/QOyF-38YPlE/G213uiuwCAAJ
[1] https://github.com/djolertrk/llvm-di-checker
Differential Revision: https://reviews.llvm.org/D82545
This patch makes StorageMappingClass/SymbolType member optional in
class MCSectionXCOFF.
Non-csect sections like debug sections have no such properties.
Reviewed By: hubert.reinterpretcast
Differential Revision: https://reviews.llvm.org/D96641
ST_Data is used to model BFD `BFD_OBJECT`.
A STT_TLS symbol does not have the `BFD_OBJECT` flag in BFD.
This makes sense because a STT_TLS symbol is like in a different address space,
normal data/object properties do not apply on them.
With this change, a STT_TLS symbol will not be displayed as 'O'.
This new behavior matches objdump.
Differential Revision: https://reviews.llvm.org/D96735
We are going to support debug sections for XCOFF. So the csect
properties are not necessary. This patch makes these properties
optional.
Reviewed By: hubert.reinterpretcast
Differential Revision: https://reviews.llvm.org/D95931
As discussed in D95511, this allows us to encode invalid BBAddrMap
sections to be used in more rigorous testing.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D96831
Apply the patch for the third time after fixing buildbot failures.
Refactor SampleProfile.cpp to use the core code in CodeGen.
The main changes are:
(1) Move SampleProfileLoaderBaseImpl class to a header file.
(2) Split SampleCoverageTracker to a head file and a cpp file.
(3) Move the common codes (common options and callsiteIsHot())
to the common cpp file.
(4) Add inline keyword to avoid duplicated symbols -- they will
be removed later when the class is changed to a template.
Differential Revision: https://reviews.llvm.org/D96455
This adds a G_ASSERT_SEXT opcode, similar to G_ASSERT_ZEXT. This instruction
signifies that an operation was already sign extended from a smaller type.
This is useful for functions with sign-extended parameters.
E.g.
```
define void @foo(i16 signext %x) {
...
}
```
This adds verifier, regbankselect, and instruction selection support for
G_ASSERT_SEXT equivalent to G_ASSERT_ZEXT.
Differential Revision: https://reviews.llvm.org/D96890
Revert "[SampleFDO] Add missing #includes to unbreak modules build after D96455"
This reverts commit c73cbf218a.
Revert "[SampleFDO] Fix MSVC "namespace uses itself" warning (NFC)"
This reverts commit a23e6b321c.
Revert "[SampleFDO] Reapply: Refactor SampleProfile.cpp"
This reverts commit 6fd5ccff72.
Still seeing link failures when building llc (or other tools), due to
the new SampleProfileLoaderBaseImpl.h containing definitions that get
duplicated across multiple TU's.
```
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::findEquivalenceClasses(llvm::Function&)' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::buildEdges(llvm::Function&)' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::computeDominanceAndLoopInfo(llvm::Function&)' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::getFunctionLoc(llvm::Function&)' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::getBlockWeight(llvm::BasicBlock const*)' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::printBlockWeight(llvm::raw_ostream&, llvm::BasicBlock const*) const' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::printBlockEquivalence(llvm::raw_ostream&, llvm::BasicBlock const*)' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::printEdgeWeight(llvm::raw_ostream&, std::__1::pair<llvm::BasicBlock const*, llvm::BasicBlock const*>)' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
```
Bot: http://green.lab.llvm.org/green/view/LLDB/job/lldb-cmake/28999
```
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/Transforms/Utils/SampleProfileLoaderBaseImpl.h:124:19: error: missing '#include "llvm/Analysis/PostDominators.h"'; 'PostDominatorTree' must be declared before it is used
std::unique_ptr<PostDominatorTree> PDT;
^
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/Analysis/PostDominators.h:28:7: note: declaration here is not visible
class PostDominatorTree : public PostDomTreeBase<BasicBlock> {
^
While building module 'LLVM_Transforms' imported from /Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/lib/Transforms/CFGuard/CFGuard.cpp:15:
In file included from <module-includes>:191:
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/Transforms/Utils/SampleProfileLoaderBaseImpl.h:125:19: error: missing '#include "llvm/Analysis/LoopInfo.h"'; 'LoopInfo' must be declared before it is used
std::unique_ptr<LoopInfo> LI;
^
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/Analysis/LoopInfo.h:1079:7: note: declaration here is not visible
class LoopInfo : public LoopInfoBase<BasicBlock, Loop> {
^
While building module 'LLVM_Transforms' imported from /Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/lib/Transforms/CFGuard/CFGuard.cpp:15:
In file included from <module-includes>:191:
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/Transforms/Utils/SampleProfileLoaderBaseImpl.h:149:3: error: missing '#include "llvm/Analysis/OptimizationRemarkEmitter.h"'; 'OptimizationRemarkEmitter' must be declared before it is used
OptimizationRemarkEmitter *ORE = nullptr;
^
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/Analysis/OptimizationRemarkEmitter.h:33:7: note: declaration here is not visible
class OptimizationRemarkEmitter {
^
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/lib/Transforms/CFGuard/CFGuard.cpp:15:10: fatal error: could not build module 'LLVM_Transforms'
```
Interval value
The II value was incremented before exiting the loop, and therefor when
used in the optimization remarks and debug dumps it did not reflect the
initiation interval actually used in Schedule.
Differential Revision: https://reviews.llvm.org/D95692
SROA does not correctly account for offsets in TBAA/TBAA struct metadata.
This patch creates functionality for generating new MD with the corresponding
offset and updates SROA to use this functionality.
Differential Revision: https://reviews.llvm.org/D95826
This is the preliminary patch of converting `LoopInterchange` pass to a loop-nest pass and has no intended functional change.
Changes that are not loop-nest related are split to D96650.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D96644
Otherwise they are not allocated as a single bit field and take 4
bytes instead of 2.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D95954
This allows the option to affect the LTO output. Module::Max helps to
generate debug info for all modules in the same format.
Differential Revision: https://reviews.llvm.org/D96597
We can't construct a working unique_function from an object that's not callable
with the right types, so don't allow deduction to succeed.
This avoids some ambiguous conversion cases, e.g. allowing to overload
on different unique_function types, and to conversion operators to
unique_function.
std::function and the any_invocable proposal have these.
This was added to llvm::function_ref in D88901 and followups
Differential Revision: https://reviews.llvm.org/D96794
Reapply patch after fixing buildbot failure.
Refactor SampleProfile.cpp to use the core code in CodeGen.
The main changes are:
(1) Move SampleProfileLoaderBaseImpl class to a header file.
(2) Split SampleCoverageTracker to a head file and a cpp file.
(3) Move the common codes (common options and callsiteIsHot())
to the common cpp file.
Differential Revision: https://reviews.llvm.org/D96455
Basic block sections enables function sections implicitly, this is not needed
and is inefficient with "=list" option.
We had basic block sections enable function sections implicitly in clang. This
is particularly inefficient with "=list" option as it places functions that do
not have any basic block sections in separate sections. This causes unnecessary
object file overhead for large applications.
This patch disables this implicit behavior. It only creates function sections
for those functions that require basic block sections.
Further, there was an inconistent behavior with llc as llc was not turning on
function sections by default. This patch makes llc and clang consistent and
tests are added to check the new behavior.
This is the first of two patches and this adds functionality in LLVM to
create a new section for the entry block if function sections is not
enabled.
Differential Revision: https://reviews.llvm.org/D93876
This change introduces support for zero flag ELF section groups to LLVM.
LLVM already supports COMDAT sections, which in ELF are a special type
of ELF section groups. These are generally useful to enable linker GC
where you want a group of sections to always travel together, that is to
be either retained or discarded as a whole, but without the COMDAT
semantics. Other ELF assemblers already support zero flag ELF section
groups and this change helps us reach feature parity.
Differential Revision: https://reviews.llvm.org/D95851
This reverts commit 310b35304c.
The build is broken with -DBUILD_SHARED_LIBS=ON :
lib/ProfileData/CMakeFiles/LLVMProfileData.dir/SampleProfileLoaderBaseUtil.cpp.o: In function `llvm::sampleprofutil::callsiteIsHot(llvm::sampleprof::FunctionSamples const*, llvm::ProfileSummaryInfo*, bool)':
SampleProfileLoaderBaseUtil.cpp:(.text._ZN4llvm14sampleprofutil13callsiteIsHotEPKNS_10sampleprof15FunctionSamplesEPNS_18ProfileSummaryInfoEb+0x1a): undefined reference to `llvm::ProfileSummaryInfo::isColdCount(unsigned long) const'
SampleProfileLoaderBaseUtil.cpp:(.text._ZN4llvm14sampleprofutil13callsiteIsHotEPKNS_10sampleprof15FunctionSamplesEPNS_18ProfileSummaryInfoEb+0x28): undefined reference to `llvm::ProfileSummaryInfo::isHotCount(unsigned long) const'
...
This patch fixes a warning:
llvm-project/llvm/include/llvm/ProfileData/SampleProfileLoaderBaseImpl.h:69:7:
error: 'llvm::SampleProfileLoaderBaseImpl' has virtual functions but
non-virtual destructor [-Werror,-Wnon-virtual-dtor]
Differential Revision: https://reviews.llvm.org/D96810
Refactor SampleProfile.cpp to use the core code in CodeGen.
The main changes are:
(1) Move SampleProfileLoaderBaseImpl class to a header file.
(2) Split SampleCoverageTracker to a head file and a cpp file.
(3) Move the common codes (common options and callsiteIsHot())
to the common cpp file.
Differential Revision: https://reviews.llvm.org/D96455
The tile directive is in OpenMP's Technical Report 8 and foreseeably will be part of the upcoming OpenMP 5.1 standard.
This implementation is based on an AST transformation providing a de-sugared loop nest. This makes it simple to forward the de-sugared transformation to loop associated directives taking the tiled loops. In contrast to other loop associated directives, the OMPTileDirective does not use CapturedStmts. Letting loop associated directives consume loops from different capture context would be difficult.
A significant amount of code generation logic is taking place in the Sema class. Eventually, I would prefer if these would move into the CodeGen component such that we could make use of the OpenMPIRBuilder, together with flang. Only expressions converting between the language's iteration variable and the logical iteration space need to take place in the semantic analyzer: Getting the of iterations (e.g. the overload resolution of `std::distance`) and converting the logical iteration number to the iteration variable (e.g. overload resolution of `iteration + .omp.iv`). In clang, only CXXForRangeStmt is also represented by its de-sugared components. However, OpenMP loop are not defined as syntatic sugar. Starting with an AST-based approach allows us to gradually move generated AST statements into CodeGen, instead all at once.
I would also like to refactor `checkOpenMPLoop` into its functionalities in a follow-up. In this patch it is used twice. Once for checking proper nesting and emitting diagnostics, and additionally for deriving the logical iteration space per-loop (instead of for the loop nest).
Differential Revision: https://reviews.llvm.org/D76342
This patch enables scalable vectorization of loops with integer/fast reductions, e.g:
```
unsigned sum = 0;
for (int i = 0; i < n; ++i) {
sum += a[i];
}
```
A new TTI interface, isLegalToVectorizeReduction, has been added to prevent
reductions which are not supported for scalable types from vectorizing.
If the reduction is not supported for a given scalable VF,
computeFeasibleMaxVF will fall back to using fixed-width vectorization.
Reviewed By: david-arm, fhahn, dmgreen
Differential Revision: https://reviews.llvm.org/D95245
This patch changes costAndCollectOperands to use InstructionCost for
accumulated cost values.
isHighCostExpansion will return true if the cost has exceeded the budget.
Reviewed By: CarolineConcatto, ctetreau
Differential Revision: https://reviews.llvm.org/D92238
The GPUDivergenceAnalysis is now renamed to just "DivergenceAnalysis"
since there is no conflict with LegacyDivergenceAnalysis. In the
legacy PM, this analysis can only be used through the legacy DA
serving as a wrapper. It is now made available as a pass in the new
PM, and has no relation with the legacy DA.
The new DA currently cannot handle irreducible control flow; its
presence can cause the analysis to run indefinitely. The analysis is
now modified to detect this and report all instructions in the
function as divergent. This is super conservative, but allows the
analysis to be used without hanging the compiler.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D96615
The API is a bit awkward since you need to index into an array in the
passed struct. I guess an alternative would be to pass all of the
individual fields.
Return the best covering index, and additional needed to complete the
mask. This logically belongs in TargetRegisterInfo, although I ended
up not needing it for why I originally split this out.
If we're going to end up expanding anyway, we should do it early
so we don't create extra operations to handle the bytes added by
promotion.
Simlilar was done for BSWAP previously.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D96681
This commit fixes how metadata is handled in CloneModule to be sound,
and improves how it's handled in CloneFunctionInto (although the latter
is still awkward when called within a module).
Ruiling Song pointed out in PR48841 that CloneModule was changed to
unsoundly use the RF_ReuseAndMutateDistinctMDs flag (renamed in
fa35c1f80f for clarity). This flag papered
over a crash caused by other various changes made to CloneFunctionInto
over the past few years that made it unsound to use cloning between
different modules.
(This commit partially addresses PR48841, fixing the repro from
preprocessed source but not textual IR. MDNodeMapper::mapDistinctNode
became unsound in df763188c9 and this
commit does not address that regression.)
RF_ReuseAndMutateDistinctMDs is designed for the IRMover to use,
avoiding unnecessary clones of all referenced metadata when linking
between modules (with IRMover, the source module is discarded after
linking). It never makes sense to use when you're not discarding the
source. This commit drops its incorrect use in CloneModule.
Sadly, the right thing to do with metadata when cloning a function is
complicated, and this patch doesn't totally fix it.
The first problem is that there are two different types of referenceable
metadata and it's not obvious what to with one of them when remapping.
- `!0 = !{!1}` is metadata's version of a constant. Programatically it's
called "uniqued" (probably a better term would be "constant") because,
like `ConstantArray`, it's stored in uniquing tables. Once it's
constructed, it's illegal to change its arguments.
- `!0 = distinct !{!1}` is a bit closer to a global variable. It's legal
to change the operands after construction.
What should be done with distinct metadata when cloning functions within
the same module?
- Should new, cloned nodes be created?
- Should all references point to the same, old nodes?
The answer depends on whether that metadata is effectively owned by a
function.
And that's the second problem. Referenceable metadata's ownership model
is not clear or explicit. Technically, it's all stored on an
LLVMContext. However, any metadata that is `distinct`, that transitively
references a `distinct` node, or that transitively references a
GlobalValue is specific to a Module and is effectively owned by it. More
specifically, some metadata is effectively owned by a specific Function
within a module.
Effectively function-local metadata was introduced somewhere around
c10d0e5ccd, which made it illegal for two
functions to share a DISubprogram attachment.
When cloning a function within a module, you need to clone the
function-local debug info and suppress cloning of global debug info (the
status quo suppresses cloning some global debug info but not all). When
cloning a function to a new/different module, you need to clone all of
the debug info.
Here's what I think we should do (eventually? soon? not this patch
though):
- Distinguish explicitly (somehow) between pure constant metadata owned
by the LLVMContext, global metadata owned by the Module, and local
metadata owned by a GlobalValue (such as a function).
- Update CloneFunctionInto to trigger cloning of all "local" metadata
(only), perhaps by adding a bit to RemapFlag. Alternatively, split
out a separate function CloneFunctionMetadataInto to prime the
metadata map that callers are updated to call ahead of time as
appropriate.
Here's the somewhat more isolated fix in this patch:
- Converted the `ModuleLevelChanges` parameter to `CloneFunctionInto` to
an enum called `CloneFunctionChangeType` that is one of
LocalChangesOnly, GlobalChanges, DifferentModule, and ClonedModule.
- The code maintaining the "functions uniquely own subprograms"
invariant is now only active in the first two cases, where a function
is being cloned within a single module. That's necessary because this
code inhibits cloning of (some) "global" metadata that's effectively
owned by the module.
- The code maintaining the "all compile units must be explicitly
referenced by !llvm.dbg.cu" invariant is now only active in the
DifferentModule case, where a function is being cloned into a new
module in isolation.
- CoroSplit.cpp's call to CloneFunctionInto in CoroCloner::create
uses LocalChangeOnly, since fa635d730f
only set `ModuleLevelChanges` to trigger cloning of local metadata.
- CloneModule drops its unsound use of RF_ReuseAndMutateDistinctMDs
and special handling of !llvm.dbg.cu.
- Fixed some outdated header docs and left a couple of FIXMEs.
Differential Revision: https://reviews.llvm.org/D96531
This patch uses the function getShuffleCost with SK_Reverse to compute the cost
for experimental.vector.reverse.
For scalable vector type, it adds a table will the legal types on
AArch64TTIImpl::getShuffleCost to not assert in BasicTTIImpl::getShuffleCost,
and for fixed vector, it relies on the existing cost model in BasicTTIImpl.
Depends on D94883
Differential Revision: https://reviews.llvm.org/D95603
Currently, setting the `no-nans-fp-math` attribute to true will allow
loops with fmin/fmax to vectorize, though we should be requiring that
`no-signed-zeros-fp-math` is also set.
This patch adds the check for no-signed-zeros at the function level and includes
tests to make sure we don't vectorize functions with only one of the attributes
associated.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D96604
This patch adds a new intrinsic experimental.vector.reduce that takes a single
vector and returns a vector of matching type but with the original lane order
reversed. For example:
```
vector.reverse(<A,B,C,D>) ==> <D,C,B,A>
```
The new intrinsic supports fixed and scalable vectors types.
The fixed-width vector relies on shufflevector to maintain existing behaviour.
Scalable vector uses the new ISD node - VECTOR_REVERSE.
This new intrinsic is one of the named shufflevector intrinsics proposed on the
mailing-list in the RFC at [1].
Patch by Paul Walker (@paulwalker-arm).
[1] https://lists.llvm.org/pipermail/llvm-dev/2020-November/146864.html
Differential Revision: https://reviews.llvm.org/D94883
This refactors shouldFavorPostInc() and shouldFavorBackedgeIndex() into
getPreferredAddressingMode() so that we have one interface to steer LSR in
generating the preferred addressing mode.
Differential Revision: https://reviews.llvm.org/D96600
This version of the patch includes a fix for the cfi failures.
(undoes the revert commit 7db390cc77)
It also undoes reverts of follow-up patches that also needed reverting
originally:
* [LTO] Add option enable NewPM with LTOCodeGenerator.
(undoes revert commit 0a17664b47)
* [LTOCodeGenerator] Use lto::Config for options (NFC)."
(undoes revert commit b0a8e41cff)
In the future Windows will enable Control-flow Enforcement Technology (CET aka shadow stacks). To protect the path where the context is updated during exception handling, the binary is required to enumerate valid unwind entrypoints in a dedicated section which is validated when the context is being set during exception handling.
This change allows llvm to generate the section that contains the appropriate symbol references in the form expected by the msvc linker.
This feature is enabled through a new module flag, ehcontguard, which was modelled on the cfguard flag.
The change includes a test that when the module flag is enabled the section is correctly generated.
The set of exception continuation information includes returns from exceptional control flow (catchret in llvm).
In order to collect catchret we:
1) Includes an additional flag on machine basic blocks to indicate that the given block is the target of a catchret operation,
2) Introduces a new machine function pass to insert and collect symbols at the start of each block, and
3) Combines these targets with the other EHCont targets that were already being collected.
Change originally authored by Daniel Frampton <dframpto@microsoft.com>
For more details, see MSVC documentation for `/guard:ehcont`
https://docs.microsoft.com/en-us/cpp/build/reference/guard-enable-eh-continuation-metadata
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D94835
Add intrinsic which demotes all active lanes to helper lanes.
This is used to implement demote to helper Vulkan extension.
In practice demoting a lane to helper simply means removing it
from the mask of live lanes used for WQM/WWM/Exact mode.
Where the shader does not use WQM, demotes just become kills.
Additionally add llvm.amdgcn.live.mask intrinsic to complement
demote operations. In theory llvm.amdgcn.ps.live can be used
to detect helper lanes; however, ps.live can be moved by LICM.
The movement of ps.live cannot be remedied without changing
its type signature and such a change would require ps.live
users to update as well.
Reviewed By: piotr
Differential Revision: https://reviews.llvm.org/D94747
Adds an *unaudited* SHA-256 implementation to `llvm/Support`. The ongoing lld-macho effort needs this to emit an adhoc code signature for macho files on macOS Big Sur.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D96540
We currently detect GEPs that have exactly the same indexes by
comparing the Offsets and VarIndices. However, the latter implicitly
performs equality comparisons between two values, which is not
generally legal inside BasicAA, due to the possibility of comparisons
across phi cycles.
I believe that in this particular instance this actually ends up being
unproblematic, at least I wasn't able to come up with any cases that
could result in an incorrect root query result.
In the interest of being defensive, compute GetIndexDifference earlier
(which knows how to handle phi cycles properly) and use the result of
that to determine whether the offsets are identical.
This is a follow-up of D95238's LangRef update.
This patch updates `programUndefinedIfUndefOrPoison(V)` to return true if
`V` is used by any memory-accessing instruction.
Interestingly, this affected many tests in Attributors, mainly about adding noundefs.
The tests are updated using llvm/utils/update_test_checks.py. I checked that the diffs
are about updating noundefs.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D96642
This removes IRBuilder methods accepting unsigned alignments
in favor of their Align/MaybeAlign variants. These methods have
been deprecated for more than a year at this point, so they
should be safe to remove.
Instcombine will convert the nonnull and alignment assumption that use the boolean condtion
to an assumption that uses the operand bundles when knowledge retention is enabled.
Differential Revision: https://reviews.llvm.org/D82703
Perform DSOLocal propagation within summary list of every GV. This
avoids the repeated query of this information during function
importing.
Differential Revision: https://reviews.llvm.org/D96398
As of binutils 2.36, GNU strip calls chown(2) for "sudo strip foo" and
"sudo strip foo -o foo", but no "sudo strip foo -o bar" or "sudo strip
foo -o ./foo". In other words, while "sudo strip foo -o bar" creates a
new file bar with root access, "sudo strip foo" will keep the owner and
group of foo unchanged. Currently llvm-objcopy and llvm-strip behave
differently, always changing the owner and gropu to root. The
discrepancy prevents Chrome OS from migrating to llvm-objcopy and
llvm-strip as they change file ownership and cause intended users/groups
to lose access when invoked by sudo with the following sequence
(recommended in man page of GNU strip).
1.<Link the executable as normal.>
1.<Copy "foo" to "foo.full">
1.<Run "strip --strip-debug foo">
1.<Run "objcopy --add-gnu-debuglink=foo.full foo">
This patch makes llvm-objcopy and llvm-strip follow GNU's behavior.
Link: crbug.com/1108880
Rather than storing the query depth in AAResults, store it in AAQI.
This makes more sense, as it is a property of the query. This
sidesteps the issue of D94363, fixing slightly inaccurate AA
statistics. Additionally, I plan to use the Depth from BasicAA in
the future, where fetching it from AAResults would be unreliable.
This change is not quite as straightforward as it seems, because
we need to preserve the depth when creating a new AAQI for recursive
queries across phis. I'm adding a new method for this, as we may
need to preserve additional information here in the future.
This combine tries to do inter-block hoisting of extends of G_PHIs, into the
originating blocks of the phi's incoming value. The idea is to expose further
optimization opportunities that are normally obscured by the PHI.
Some basic heuristics, and a target hook for AArch64 is added, to allow tuning.
E.g. if the extend is used by a G_PTR_ADD, it doesn't perform this combine
since it may be folded into the addressing mode during selection.
There are very minor code size improvements on AArch64 -Os, but the real benefit
is that it unlocks optimizations like AArch64 conditional compares on some
benchmarks.
Differential Revision: https://reviews.llvm.org/D95703
This patch intended to provide additional interface to LLVMsymbolizer
such that they work directly on object files. There is an existing
method - symbolizecode which takes an object file, this patch provides
similar overloads for symbolizeInlinedCode, symbolizeData,
symbolizeFrame. This can be useful for clients who already have a
in-memory object files to symbolize for.
Patch By: pvellien (praveen velliengiri)
Reviewed By: scott.linder
Differential Revision: https://reviews.llvm.org/D95232
This allows for suspend point specific resume function types.
Return values from a suspend point can therefore be modelled as
arguments to the resume function. Allowing for directly passed return
types.
Differential Revision: https://reviews.llvm.org/D96136
This patch adds a pass to replace calls to vector intrinsics (i.e., LLVM
intrinsics operating on vector operands) with calls to a vector library.
Currently, calls to LLVM intrinsics are only replaced with calls to vector
libraries when scalar calls to intrinsics are vectorized by the Loop- or
SLP-Vectorizer.
With this pass, it is now possible to replace calls to LLVM intrinsics
already operating on vector operands, e.g., if such code was generated
by MLIR. For the replacement, information from the TargetLibraryInfo,
e.g., as specified via -vector-library is used.
This is a re-try of the original commit 2303e93e66 that was reverted
due to pass manager problems. Other minor changes have also been made.
Differential Revision: https://reviews.llvm.org/D95373
explicitly emitting retainRV or claimRV calls in the IR
Background:
This fixes a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end adds operand bundle "clang.arc.attachedcall" to calls,
which indicates the call is implicitly followed by a marker
instruction and an implicit retainRV/claimRV call that consumes the
call result. In addition, it emits a call to
@llvm.objc.clang.arc.noop.use, which consumes the call result, to
prevent the middle-end passes from changing the return type of the
called function. This is currently done only when the target is arm64
and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
with the operand bundle in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the call with the
operand bundle. It doesn't remove the operand bundle on the call since
the backend needs it to emit the marker instruction. The retainRV and
claimRV calls are emitted late in the pipeline to prevent optimization
passes from transforming the IR in a way that makes it harder for the
ARC middle-end passes to figure out the def-use relationship between
the call and the retainRV/claimRV calls (which is the cause of
PR31925).
- The function inliner removes an autoreleaseRV call in the callee if
nothing in the callee prevents it from being paired up with the
retainRV/claimRV call in the caller. It then inserts a release call if
claimRV is attached to the call since autoreleaseRV+claimRV is
equivalent to a release. If it cannot find an autoreleaseRV call, it
tries to transfer the operand bundle to a function call in the callee.
This is important since the ARC optimizer can remove the autoreleaseRV
returning the callee result, which makes it impossible to pair it up
with the retainRV/claimRV call in the caller. If that fails, it simply
emits a retain call in the IR if retainRV is attached to the call and
does nothing if claimRV is attached to it.
- SCCP refrains from replacing the return value of a call with a
constant value if the call has the operand bundle. This ensures the
call always has at least one user (the call to
@llvm.objc.clang.arc.noop.use).
- This patch also fixes a bug in replaceUsesOfNonProtoConstant where
multiple operand bundles of the same kind were being added to a call.
Future work:
- Use the operand bundle on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls with the operand bundles.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
The vector reduction intrinsics started life as experimental ops, so backend support
was lacking. As part of promoting them to 1st-class intrinsics, however, codegen
support was added/improved:
D58015
D90247
So I think it is safe to now remove this complication from IR.
Note that we still have an IR-level codegen expansion pass for these as discussed
in D95690. Removing that is another step in simplifying the logic. Also note that
x86 was already unconditionally forming reductions in IR, so there should be no
difference for x86.
I spot checked a couple of the tests here by running them through opt+llc and did
not see any asm diffs.
If we do find functional differences for other targets, it should be possible
to (at least temporarily) restore the shuffle IR with the ExpandReductions IR
pass.
Differential Revision: https://reviews.llvm.org/D96552
This patch changes the VecDesc struct to use ElementCount
instead of an unsigned VF value, in preparation for
future work that adds support for vectorized versions of
math functions using scalable vectors. Since all I'm doing
in this patch is switching the type I believe it's a
non-functional change. I changed getWidestVF to now return
both the widest fixed-width and scalable VF values, but
currently the widest scalable value will be zero.
Differential Revision: https://reviews.llvm.org/D96011
This fixes an overly restrictive assumption that the vector is a FixedVectorType,
in code that tries to calculate the cost of a cast operation when splitting
a too-wide vector. The algorithm works the same for scalable vectors, so this
patch removes the cast<FixedVectorType>.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D96253
COST(zext (<4 x i32> load(...) to <4 x i64>)) != 0 when
<4 x i64> is an illegal result type that requires splitting
of the operation.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D96250
Functions are currently processed by the sample profiler loader in a top-down order defined by the static call graph. The order is being adjusted to be a top-down order based on the input context-sensitive profile. One benefit is that the processing order of caller and callee in one SCC would follow the context order in the profile to favor more inlining. Another benefit is that the processing order of caller and callee through an indirect call (which is not on the static call graph) can be honored which in turn allows for more inlining.
The profile top-down order for SCC is also extended to support non-CS profiles.
Two switches `-mllvm -use-profile-indirect-call-edges` and `-mllvm -use-profile-top-down-order` are being introduced.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D95988
This reverts commit b7d870eae7 and the
subsequent fix "[Polly] Fix build after AssumptionCache change (D96168)"
(commit e6810cab09).
It caused indeterminism in the output, such that e.g. the
polly-x86_64-linux buildbot failed accasionally.
In addition to wall time etc. this should allow us to get less noisy
values for time measurements.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D96049
This will be needed in the loop-vectorizer where the minimum VF
requested may be a scalable VF. getMinimumVF now takes an additional
operand 'IsScalableVF' that indicates whether a scalable VF is required.
Reviewed By: kparzysz, rampitec
Differential Revision: https://reviews.llvm.org/D96020
Rename the `RF_MoveDistinctMDs` flag passed into `MapValue` and
`MapMetadata` to `RF_ReuseAndMutateDistinctMDs` in order to more
precisely describe its effect and clarify the header documentation.
Found this while helping to investigate PR48841, which pointed out an
unsound use of the flag in `CloneModule()`. For now I've just added a
FIXME there, but I'm hopeful that the new (more precise) name will
prevent other similar errors.
The IR/MIR pseudo probe intrinsics don't get materialized into real machine instructions and therefore they don't incur runtime cost directly. However, they come with indirect cost by blocking certain optimizations. Some of the blocking are intentional (such as blocking code merge) for better counts quality while the others are accidental. This change unblocks perf-critical optimizations that do not affect counts quality. They include:
1. IR InstCombine, sinking load operation to shorten lifetimes.
2. MIR LiveRangeShrink, similar to #1
3. MIR TwoAddressInstructionPass, i.e, opeq transform
4. MIR function argument copy elision
5. IR stack protection. (though not perf-critical but nice to have).
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D95982
It seems nicer to list passes given a flag rather than displaying all
passes in opt --help.
This is awkwardly structured because a PassBuilder is required, but
reusing the PassBuilder in runPassPipeline() doesn't work because we
read the input IR before getting to runPassPipeline(). So printing the
list of passes needs to happen before reading the input IR. If we remove
the legacy PM code in main() and move everything from NewPMDriver.cpp
into opt.cpp, we can create the PassBuilder before reading IR and check
if we should print the list of passes and exit. But until then this hack
seems fine.
Compared to the legacy PM, the new PM passes are lacking descriptions.
We'll need to figure out a way to add descriptions if we think this is
important.
Also, this only works for passes specified in PassRegistry.def. If we
want to print other custom registered passes, we'll need a different
mechanism.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D96101
Originally landed in ddc2f1e3fb and reverted in d32deaab4d because of
a Generic test objecting. That was fixed up in 013613964f. Original
landing commit message follows:
[DWARF] Location-less inlined variables should not have DW_TAG_variable
Discussed in this thread:
https://lists.llvm.org/pipermail/llvm-dev/2021-January/148139.html
DwarfDebug::collectEntityInfo accidentally distinguishes between variable
locations that never have a location specified, and variable locations that
have an empty location specified. The latter leads to the creation of an
empty variable referring to the abstract origin.
Fix this by seeking a non-empty location before producing a concrete
entity, to guarantee a DW_AT_location will be produced. Other loops in
collectEntityInfo and endFunctionImpl take care of examining the
retainedNodes collection and ensuring optimised-out variables are created.
Differential Revision: https://reviews.llvm.org/D95617
glibc deprecates `mallinfo` in the latest version of 2.33. This patch replaces the usage of `mallinfo` with the new `mallinfo2` when it's available.
Reviewed By: lattner
Differential Revision: https://reviews.llvm.org/D96359
This was taking the calling convention from the parent function,
instead of the callee. Avoids regressions in a future patch when the
caller and callee have different type breakdowns.
For some reason AArch64's lowerFormalArguments seems to intentionally
ignore the parent isVarArg.
Instcombine will convert the nonnull and alignment assumption that use the boolean condtion
to an assumption that uses the operand bundles when knowledge retention is enabled.
Differential Revision: https://reviews.llvm.org/D82703
The current support only printed coredump notes, but most binaries also
contain notes. This change adds names for four FreeBSD-specific notes and
pretty-prints three of them:
NT_FREEBSD_ABI_TAG:
This note holds a 32-bit (decimal) integer containing the value of the
__FreeBSD_version macro, which is defined in crt1.o and will hold a value
such as 1300076 for a binary build on a FreeBSD 13 system.
NT_FREEBSD_ARCH_TAG:
A string containing the value of the build-time MACHINE_ARCH
NT_FREEBSD_FEATURE_CTL: A 32-bit flag that indicates to the kernel that
the binary wants certain bevahiour. Examples include setting
NT_FREEBSD_FCTL_ASLR_DISABLE which tells the kernel to disable ASLR.
After this change llvm-readobj also no longer decodes coredump-only
FreeBSD notes in non-coredump files. I've also converted the
note-freebsd.s test to use yaml2obj instead of llvm-mc.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D74393
As of commit 284f2bffc9, the DAG Combiner gets rid of the masking of the
input to this node if the mask only keeps the bottom 16 bits. This is because
the underlying library function does not use the high order bits. However, on
PowerPC's ELFv2 ABI, it is the caller that is responsible for clearing the bits
from the register. Therefore, the library implementation of __gnu_h2f_ieee will
return an incorrect result if the bits aren't cleared.
This combine is desired for ARM (and possibly other targets) so this patch adds
a query to Target Lowering to check if this zeroing needs to be kept.
Fixes: https://bugs.llvm.org/show_bug.cgi?id=49092
Differential revision: https://reviews.llvm.org/D96283
References to functions are in program memory and need a `pm()` fixup. This should fix trait objects for Rust on AVR.
Differential Revision: https://reviews.llvm.org/D87631
Patch by Alex Mikhalev.
This patch implements generation of remaining codegen options and tests it by performing parse-generate-parse round trip.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D96056
This reverts commit 502a67dd7f.
This expose a failure in test-suite build on PowerPC,
revert to unblock buildbot first,
Dave will re-commit in https://reviews.llvm.org/D96287.
Thanks Dave.
On AArch64 (which seems to be the only target that supports it), this
attribute allows codegen to avoid saving/restoring the value in x0
across a call.
Gives a 0.1% geomean -Os code size improvement on CTMark.
Differential Revision: https://reviews.llvm.org/D96099
Summary:
Introduce base classes that hold a textual represent of the IR
based on basic blocks and a base class for comparing this
representation. A new change printer is introduced that uses these
classes to save and compare representations of the IR before and after
each pass. It only reports when changes are made by a pass (similar to
-print-changed) except that the changes are shown in a patch-like format
with those lines that are removed shown in red prefixed with '-' and those
added shown in green with '+'. This functionality was introduced in my
tutorial at the 2020 virtual developer's meeting.
Author: Jamie Schmeiser <schmeise@ca.ibm.com>
Reviewed By: aeubanks (Arthur Eubanks)
Differential Revision: https://reviews.llvm.org/D91890
Different targets might handle branch performance differently, so this patch allows for
targets to specify the TailDuplicateSize threshold. Said threshold defines how small a branch
can be and still be duplicated to generate straight-line code instead.
This patch also specifies said override values for the AArch64 subtarget.
Differential Revision: https://reviews.llvm.org/D95631
When running the tests on PowerPC and x86, the lit test GlobalISel/trunc.ll fails at the memory sanitize step. This seems to be due to wrong invalid logic (which matches even if it shouldn't) and likely missing variable initialisation."
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D95878
These headers can be in a Clang module like the rest. This also fixes the
modules build that is currently struggling with these headers being textually
included in several other modules.
PR49043 exposed a problem when it comes to RAUW llvm.assumes. While
D96106 would fix it for GVNSink, it seems a more general concern. To
avoid future problems this patch moves away from the vector of weak
reference model used in the assumption cache. Instead, we track the
llvm.assume calls with a callback handle which will remove itself from
the cache if the call is deleted.
Fixes PR49043.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D96168
This fixes PR49043 by invalidating the handle on RAUW. This will work
fine assuming all existing RAUW users add the new assumption to the
cache. That means, if a new llvm.assume call replaces an old one, you
need to add the new one now as a RAUW is not enough anymore.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D96208
GNU ld>=2.36 supports mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections in an
output section, so we can set SHF_LINK_ORDER if -fbinutils-version=2.36 or above.
If -fno-function-sections or older binutils, drop unique ID for -fno-unique-section-names.
The users can just specify -fbinutils-version=2.36 or above to allow GC with both GNU ld and LLD.
(LLD does not support garbage collection of non-group non-SHF_LINK_ORDER .gcc_except_table sections.)
Context-sensitive profile effectively split a function profile into many copies each representing the CFG profile of a particular calling context. That makes the count distribution looks more flat as we now have more function profiles each with lower counts, which in turn leads to lower hot thresholds. Now we tells threshold computation to merge context profile first before calculating percentile based cutoffs to compensate for seemingly flat context profile. This can be controlled by swtich `sample-profile-contextless-threshold`.
Earlier measurement showed ~0.4% perf boost with this tuning on spec2k6 for CSSPGO (with pseudo-probe and new inliner).
Differential Revision: https://reviews.llvm.org/D95980
Currently, the SmallPtrSet type allows inserting elements but it does
not support inserting elements with a positional hint. The lack of this
signature means that you cannot use SmallPtrSet with
std::insert_iterator or std::inserter(), which makes some code
constructs more awkward. This adds an overload of insert() that can be
used in these scenarios.
The positional hint is unused by SmallPtrSet and the call is equivalent
to calling insert() without a hint.
This patch adds a pass to replace calls to vector intrinsics
(i.e., LLVM intrinsics operating on vector operands) with
calls to a vector library.
Currently, calls to LLVM intrinsics are only replaced with
calls to vector libraries when scalar calls to intrinsics are
vectorized by the Loop- or SLP-Vectorizer.
With this pass, it is now possible to replace calls to LLVM
intrinsics already operating on vector operands, e.g., if
such code was generated by MLIR. For the replacement,
information from the TargetLibraryInfo, e.g., as specified
via -vector-library is used.
Differential Revision: https://reviews.llvm.org/D95373
__builtin_isnan currently generates a floating-point compare operation
which triggers a trap when faced with a signaling NaN in StrictFP mode.
This commit uses integer operations instead to not generate any trap in
such a case.
Reviewed By: kpn
Differential Revision: https://reviews.llvm.org/D95948
emitting retainRV or claimRV calls in the IR
This reapplies 3fe3946d9a without the
changes made to lib/IR/AutoUpgrade.cpp, which was violating layering.
Original commit message:
Background:
This patch makes changes to the front-end and middle-end that are
needed to fix a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end adds operand bundle "clang.arc.rv" to calls, which
indicates the call is implicitly followed by a marker instruction and
an implicit retainRV/claimRV call that consumes the call result. In
addition, it emits a call to @llvm.objc.clang.arc.noop.use, which
consumes the call result, to prevent the middle-end passes from changing
the return type of the called function. This is currently done only when
the target is arm64 and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
with the operand bundle in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the call with the
operand bundle. It doesn't remove the operand bundle on the call since
the backend needs it to emit the marker instruction. The retainRV and
claimRV calls are emitted late in the pipeline to prevent optimization
passes from transforming the IR in a way that makes it harder for the
ARC middle-end passes to figure out the def-use relationship between
the call and the retainRV/claimRV calls (which is the cause of
PR31925).
- The function inliner removes an autoreleaseRV call in the callee if
nothing in the callee prevents it from being paired up with the
retainRV/claimRV call in the caller. It then inserts a release call if
the call is annotated with claimRV since autoreleaseRV+claimRV is
equivalent to a release. If it cannot find an autoreleaseRV call, it
tries to transfer the operand bundle to a function call in the callee.
This is important since ARC optimizer can remove the autoreleaseRV
returning the callee result, which makes it impossible to pair it up
with the retainRV/claimRV call in the caller. If that fails, it simply
emits a retain call in the IR if the implicit call is a call to
retainRV and does nothing if it's a call to claimRV.
Future work:
- Use the operand bundle on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls annotated with the operand bundles.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
emitting retainRV or claimRV calls in the IR
Background:
This patch makes changes to the front-end and middle-end that are
needed to fix a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end adds operand bundle "clang.arc.rv" to calls, which
indicates the call is implicitly followed by a marker instruction and
an implicit retainRV/claimRV call that consumes the call result. In
addition, it emits a call to @llvm.objc.clang.arc.noop.use, which
consumes the call result, to prevent the middle-end passes from changing
the return type of the called function. This is currently done only when
the target is arm64 and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
with the operand bundle in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the call with the
operand bundle. It doesn't remove the operand bundle on the call since
the backend needs it to emit the marker instruction. The retainRV and
claimRV calls are emitted late in the pipeline to prevent optimization
passes from transforming the IR in a way that makes it harder for the
ARC middle-end passes to figure out the def-use relationship between
the call and the retainRV/claimRV calls (which is the cause of
PR31925).
- The function inliner removes an autoreleaseRV call in the callee if
nothing in the callee prevents it from being paired up with the
retainRV/claimRV call in the caller. It then inserts a release call if
the call is annotated with claimRV since autoreleaseRV+claimRV is
equivalent to a release. If it cannot find an autoreleaseRV call, it
tries to transfer the operand bundle to a function call in the callee.
This is important since ARC optimizer can remove the autoreleaseRV
returning the callee result, which makes it impossible to pair it up
with the retainRV/claimRV call in the caller. If that fails, it simply
emits a retain call in the IR if the implicit call is a call to
retainRV and does nothing if it's a call to claimRV.
Future work:
- Use the operand bundle on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls annotated with the operand bundles.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
getIntrinsicInstrCost takes a IntrinsicCostAttributes holding various
parameters of the intrinsic being costed. It can either be called with a
scalar intrinsic (RetTy==Scalar, VF==1), with a vector instruction
(RetTy==Vector, VF==1) or from the vectorizer with a scalar type and
vector width (RetTy==Scalar, VF>1). A RetTy==Vector, VF>1 is considered
an error. Both of the vector modes are expected to be treated the same,
but because this is confusing many backends end up getting it wrong.
Instead of trying work with those two values separately this removes the
VF parameter, widening the RetTy/ArgTys by VF used called from the
vectorizer. This keeps things simpler, but does require some other
modifications to keep things consistent.
Most backends look like this will be an improvement (or were not using
getIntrinsicInstrCost). AMDGPU needed the most changes to keep the code
from c230965ccf working. ARM removed the fix in
dfac521da1, webassembly happens to get a fixup for an SLP cost
issue and both X86 and AArch64 seem to now be using better costs from
the vectorizer.
Differential Revision: https://reviews.llvm.org/D95291
The vrgather.vv instruction uses a vector of indices with the same
SEW as operand 0. The vrgather.vx instructions use a scalar index
operand of XLen bits.
By splitting this into 2 intrinsics we are able to use LLVMatchType
in the definition to avoid specifying the type for the index operand
when creating the IR for the intrinsic. For .vv it will match the
operand 0 type. And for .vx it will match the type of the vl operand
we already needed to specify a type for.
I'm considering splitting more intrinsics. This was a somewhat
odd one because the .vx doesn't use the element type, it always
use XLen.
Reviewed By: HsiangKai
Differential Revision: https://reviews.llvm.org/D95979
As mentioned in TODO comment, casting double to float causes NaNs to change bits.
To avoid the change, this patch adds support for single-floating-point immediate value on MachineCode.
Patch by Yuta Saito.
Differential Revision: https://reviews.llvm.org/D77384
The operator< in the previous attempt was incorrect. It is unfortunate
that this was only caught by the expensive checks.
This reverts commit ff1147c363.
These class methods simply return a new UnivariateLinearPolyBase
(e.g. ElementCount), and do not modify the object in any way or form,
so qualify for being 'const'.
This patch implements generation of remaining header search arguments.
It's done manually in C++ as opposed to TableGen, because we need the flexibility and don't anticipate reuse.
This patch also tests the generation of header search options via a round-trip. This way, the code gets exercised whenever Clang is built and tested in asserts mode. All `check-clang` tests pass.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D94472
As noted in https://reviews.llvm.org/D93459, the formatting of
multi-line descriptions of clEnumValN and the likes is unfavorable.
Thus this patch adds support for correctly indenting these.
Reviewed By: serge-sans-paille
Differential Revision: https://reviews.llvm.org/D93494
The collapseLoops method implements a transformations facilitating the implementation of the collapse-clause. It takes a list of loops from a loop nest and reduces it to a single loop that can be used by other methods that are implemented on just a single loop, such as createStaticWorkshareLoop.
This patch shares some changes with D92974 (such as adding some getters to CanonicalLoopNest), used by both patches.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D93268
Discussed in this thread:
https://lists.llvm.org/pipermail/llvm-dev/2021-January/148139.html
DwarfDebug::collectEntityInfo accidentally distinguishes between variable
locations that never have a location specified, and variable locations that
have an empty location specified. The latter leads to the creation of an
empty variable referring to the abstract origin.
Fix this by seeking a non-empty location before producing a concrete
entity, to guarantee a DW_AT_location will be produced. Other loops in
collectEntityInfo and endFunctionImpl take care of examining the
retainedNodes collection and ensuring optimised-out variables are created.
Differential Revision: https://reviews.llvm.org/D95617
This reverts commits 62af0305b7cc..677a3529d3e6 from D93708.
They cause failures in the sanitizer builds because of uninitialized
values.
A fix is in D95878, but it might take some time until this is pushed,
so reverting the changes for now.
C identifier name input sections such as __llvm_prf_* are GC roots so
they cannot be discarded. In LLD, the SHF_LINK_ORDER flag overrides the
C identifier name semantics.
The !associated metadata may be attached to a global object declaration
with a single argument that references another global object, and it
gets lowered to SHF_LINK_ORDER flag. When a function symbol is discarded
by the linker, setting up !associated metadata allows linker to discard
counters, data and values associated with that function symbol.
Note that !associated metadata is only supported by ELF, it does not have
any effect on non-ELF targets.
Differential Revision: https://reviews.llvm.org/D76802
GCC warning:
```
In file included from /llvm-project/llvm/lib/Support/VirtualFileSystem.cpp:13:
/llvm-project/llvm/include/llvm/Support/VirtualFileSystem.h: In static member function ‘static bool llvm::vfs::RedirectingFileSystem::RemapEntry::classof(const llvm::vfs::RedirectingFileSystem::Entry*)’:
/llvm-project/llvm/include/llvm/Support/VirtualFileSystem.h:681:5: warning: control reaches end of non-void function [-Wreturn-type]
681 | }
| ^
```
Previously we'd hit UB due to an invalid left shift operand.
Also fix the WASM emitter to properly use SLEB128 encoding instead of
ULEB128 encoding for signed fields so that negative numbers don't
result in overly-large values that we can't read back any more.
In passing, don't diagnose a non-canonical ULEB128 that fits in a uint64_t but
has redundant trailing zero bytes.
Reviewed By: dblaikie, aardappel
Differential Revision: https://reviews.llvm.org/D95510
Sample re-annotation is required in LTO time to achieve a reasonable post-inline profile quality. However, we have seen that such LTO-time re-annotation degrades profile quality. This is mainly caused by preLTO code duplication that is done by passes such as loop unrolling, jump threading, indirect call promotion etc, where samples corresponding to a source location are aggregated multiple times due to the duplicates. In this change we are introducing a concept of distribution factor for pseudo probes so that samples can be distributed for duplicated probes scaled by a factor. We hope that optimizations duplicating code well-maintain the branch frequency information (BFI) based on which probe distribution factors are calculated. Distribution factors are updated at the end of preLTO pipeline to reflect an estimated portion of the real execution count.
This change also introduces a pseudo probe verifier that can be run after each IR passes to detect duplicated pseudo probes.
A saturated distribution factor stands for 1.0. A pesudo probe will carry a factor with the value ranged from 0.0 to 1.0. A 64-bit integral distribution factor field that represents [0.0, 1.0] is associated to each block probe. Unfortunately this cannot be done for callsite probes due to the size limitation of a 32-bit Dwarf discriminator. A 7-bit distribution factor is used instead.
Changes are also needed to the sample profile inliner to deal with prorated callsite counts. Call sites duplicated by PreLTO passes, when later on inlined in LTO time, should have the callees’s probe prorated based on the Prelink-computed distribution factors. The distribution factors should also be taken into account when computing hotness for inline candidates. Also, Indirect call promotion results in multiple callisites. The original samples should be distributed across them. This is fixed by adjusting the callisites' distribution factors.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D93264
Previously, operator== would consider the actual equality of the pairs
(lhs.Value, lhs.State) == (rhs.Value, rhs.State). However, if an invalid
cost was involved in a call to operator<, only the state would be
compared. Thus, it was not the case that ({2, Invalid} < {3, Invalid} ||
{2, Invalid} > {3, Invalid} || {2, Invalid} == {3, Invalid}).
This patch implements a true total ordering, where cost state is
considered first, then value. While it's not really imporant that
{2, Invalid} be considered to be less than {3, Invalid}, it's not a
problem either. This patch also implements operator== in terms of
operator<, so the two definitions will be kept in sync.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D95803
Add per-reloc-type attribute bits and migrate code from per-target file into target independent code, driven by reloc attributes.
Many cleanups
Differential Revision: https://reviews.llvm.org/D95121
In binutils, the flag is defined for ELFOSABI_GNU and ELFOSABI_FREEBSD.
It can be used to mark a section as a GC root.
In practice, the flag has generic semantics and can be applied to many
EI_OSABI values, so we consider it generic.
Differential Revision: https://reviews.llvm.org/D95728
This change implemented call site prioritized BFS profile guided inlining for sample profile loader. The new inlining strategy maximize the benefit of context-sensitive profile as mentioned in the follow up discussion of CSSPGO RFC. The change will not affect today's AutoFDO as it's opt-in. CSSPGO now defaults to the new FDO inliner, but can fall back to today's replay inliner using a switch (`-sample-profile-prioritized-inline=0`).
Motivation
With baseline AutoFDO, the inliner in sample profile loader only replays previous inlining, and the use of profile is only for pruning previous inlining that turned out to be cold. Due to the nature of replay, the FDO inliner is simple with hotness being the only decision factor. It has the following limitations that we're improving now for CSSPGO.
- It doesn't take inline candidate size into account. Since it's doing replay, the size growth is bounded by previous CGSCC inlining. With context-sensitive profile, FDO inliner is no longer limited by previous inlining, so we need to take size into account to avoid significant size bloat.
- The way it looks at hotness is not accurate. It uses total samples in an inlinee as proxy for hotness, while what really matters for an inline decision is the call site count. This is an unfortunate fall back because call site count and callee entry count are not reliable due to dwarf based correlation, especially for inlinees. Now paired with pseudo-probe, we have accurate call site count and callee's entry count, so we can use that to gauge hotness more accurately.
- It treats all call sites from a block as hot as long as there's one call site considered hot. This is normally true, but since total samples is used as hotness proxy, this transitiveness within block magnifies the inacurate hotness heuristic. With pseduo-probe and the change above, this is no longer an issue for CSSPGO.
New FDO Inliner
Putting all the requirement for CSSPGO together, we need a top-down call site prioritized BFS inliner. Here're reasons why each component is needed.
- Top-down: We need a top-down inliner to better leverage context-sensitive profile, so inlining is driven by accurate context profile, and post-inline is also accurate. This is already implemented in https://reviews.llvm.org/D70655.
- Size Cap: For top-down inliner, taking function size into account for inline decision alone isn't sufficient to control size growth. We also need to explicitly cap size growth because with top-down inlining, we can grow inliner size significantly with large number of smaller inlinees even if each individually passes the cost/size check.
- Prioritize call sites: With size cap, inlining order also becomes important, because if we stop inlining due to size budget limit, we'd want to use budget towards the most beneficial call sites.
- BFS inline: Same as call site prioritization, if we stop inlining due to size budget limit, we want a balanced inline tree, rather than going deep on one call path.
Note that the new inliner avoids repeatedly evaluating same set of call site, so it should help with compile time too. For this reason, we could transition today's FDO inliner to use a queue with equal priority to avoid wasted reevaluation of same call site (TODO).
Speculative indirect call promotion and inlining is also supported now with CSSPGO just like baseline AutoFDO.
Tunings and knobs
I created tuning knobs for size growth/cap control, and for hot threshold separate from CGSCC inliner. The default values are selected based on initial tuning with CSSPGO.
Results
Evaluated with an internal LLVM fork couple months ago, plus another change to adjust hot-threshold cutoff for context profile (will send up after this one), the new inliner show ~1% geomean perf win on spec2006 with CSSPGO, while reducing code size too. The measurement was done using train-train setup, MonoLTO w/ new pass manager and pseudo-probe. Note that this is just a starting point - we hope that the new inliner will open up more opportunity with CSSPGO, but it will certainly take more time and effort to make it fully calibrated and ready for bigger workloads (we're working on it).
Differential Revision: https://reviews.llvm.org/D94001
Extend applyLoopGuards() to take into account conditions/assumes proving some
value %v to be divisible by D by rewriting %v to (%v / D) * D. This lets the
loop unroller and the loop vectorizer identify more loops as not requiring
remainder loops.
Differential Revision: https://reviews.llvm.org/D95521
Previously file entries in the -ivfsoverlay yaml could map to a file in the
external file system, but directories had to list their contents in the form of
other file entries or directories. Allowing directory entries to map to a
directory in the external file system makes it possible to present an external
directory's contents in a different location and (in combination with the
'fallthrough' option) overlay one directory's contents on top of another.
rdar://problem/72485443
Differential Revision: https://reviews.llvm.org/D94844
This patch let the yaml encoding use Hex64 values for NumBlocks, BB AddressOffset, BB Size, and BB Metadata.
Additionally, it changes the decoded values in elf2yaml to uint64_t to match DataExtractor::getULEB128 return type.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D95767
C identifier name input sections such as __llvm_prf_* are GC roots so
they cannot be discarded. In LLD, the SHF_LINK_ORDER flag overrides the
C identifier name semantics.
The !associated metadata may be attached to a global object declaration
with a single argument that references another global object, and it
gets lowered to SHF_LINK_ORDER flag. When a function symbol is discarded
by the linker, setting up !associated metadata allows linker to discard
counters, data and values associated with that function symbol.
Note that !associated metadata is only supported by ELF, it does not have
any effect on non-ELF targets.
Differential Revision: https://reviews.llvm.org/D76802
This is another step (see D95452) towards correcting fast-math-flags
bugs in vector reductions.
There are multiple bugs visible in the test diffs, and this is still
not working as it should. We still use function attributes (rather
than FMF) to drive part of the logic, but we are not checking for
the correct FP function attributes.
Note that FMF may not be propagated optimally on selects (example
in https://llvm.org/PR35607 ). That's why I'm proposing to union the
FMF of a fcmp+select pair and avoid regressions on existing vectorizer
tests.
Differential Revision: https://reviews.llvm.org/D95690
This is a (rather delayed) follow up to commit 0129cd5. This commit is entirely NFC, the semantic change to leverage the new information will be submitted separate with a test case.
If we instantiate self-referenced anonymous records in foreach and
multiclass, the NAME value will point to incorrect record. It's because
anonymous name is resolved too early.
This patch adds AnonymousNameInit to represent an anonymous record name.
When instantiating an anonymous record, it will update the referred name.
Differential Revision: https://reviews.llvm.org/D95309
The AArch64 DAG combine added by D90945 & D91433 extends the index
of a scalable masked gather or scatter to i32 if necessary.
This patch removes the combine and instead adds shouldExtendGSIndex, which
is used by visitMaskedGather/Scatter in SelectionDAGBuilder to query whether
the index should be extended before calling getMaskedGather/Scatter.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D94525
To set non-default rounding mode user usually calls function 'fesetround'
from standard C library. This way has some disadvantages.
* It creates unnecessary dependency on libc. On the other hand, setting
rounding mode requires few instructions and could be made by compiler.
Sometimes standard C library even is not available, like in the case of
GPU or AI cores that execute small kernels.
* Compiler could generate more effective code if it knows that a particular
call just sets rounding mode.
This change introduces new IR intrinsic, namely 'llvm.set.rounding', which
sets current rounding mode, similar to 'fesetround'. It however differs
from the latter, because it is a lower level facility:
* 'llvm.set.rounding' does not return any value, whereas 'fesetround'
returns non-zero value in the case of failure. In glibc 'fesetround'
reports failure if its argument is invalid or unsupported or if floating
point operations are unavailable on the hardware. Compiler usually knows
what core it generates code for and it can validate arguments in many
cases.
* Rounding mode is specified in 'fesetround' using constants like
'FE_TONEAREST', which are target dependent. It is inconvenient to work
with such constants at IR level.
C standard provides a target-independent way to specify rounding mode, it
is used in FLT_ROUNDS, however it does not define standard way to set
rounding mode using this encoding.
This change implements only IR intrinsic. Lowering it to machine code is
target-specific and will be implemented latter. Mapping of 'fesetround'
to 'llvm.set.rounding' is also not implemented here.
Differential Revision: https://reviews.llvm.org/D74729
If we're going to end up expanding anyway, we should do it early
so we don't create extra operations to handle the bytes added by
promotion.
This is helfpul on RISCV where we might have to promote i16 all
the way to i64.
Differential Revision: https://reviews.llvm.org/D95756
This patch removes some options that have been duplicated in
LTOCodeGenerator and instead use lto::Config directly to manage the
options.
This is a cleanup after 6a59f05606.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D95738
Current dsymutil implementation of hasLiveMemoryLocation()/hasLiveAddressRange()
and applyValidRelocs() assume that calls should be done in certain order
(from first Dies to last). Multi-thread implementation might call these methods
in other order(it might process compilation units in order other than they are physically
located), so we remove restriction that searching for relocations should be done
in ascending order. This change does not introduce noticable performance degradation.
The testing results for clang binary:
golden-dsymutil/dsymutil 23787992
clang MD5: 5efa8fd9355ebf81b65f24db5375caa2
elapsed time=91sec
build-Release/bin/dsymutil 23855616
clang MD5: 5efa8fd9355ebf81b65f24db5375caa2
elapsed time=91sec
Differential Revision: https://reviews.llvm.org/D93106
This patch adds an option to enable the new pass manager in
LTOCodeGenerator. It also updates a few tests with legacy PM specific
tests, which started failing after 6a59f05606 when
LLVM_ENABLE_NEW_PASS_MANAGER=true.
This patch updates LTOCodeGenerator to use the utilities provided by
LTOBackend to run middle-end optimizations and backend code generation.
This is a first step towards unifying the code used by libLTO's C API
and the newer, C++ interface (see PR41541).
The immediate motivation is to allow using the new pass manager when
doing LTO using libLTO's C API, which is used on Darwin, among others.
With the changes, there are no codegen/stats differences when building
MultiSource/SPEC2000/SPEC2006 on Darwin X86 with LTO, compared
to without the patch.
Reviewed By: steven_wu
Differential Revision: https://reviews.llvm.org/D94487
As a fixme notes, both of these directory iterator implementations are
conceptually similar and duplicate the functionality of returning and uniquing
entries across two or more directories. This patch combines them into a single
class 'CombiningDirIterImpl'.
This also drops the 'Redirecting' prefix from RedirectingDirEntry and
RedirectingFileEntry to save horizontal space. There's no loss of clarity as
they already have to be prefixed with 'RedirectingFileSystem::' whenever
they're referenced anyway.
rdar://problem/72485443
Differential Revision: https://reviews.llvm.org/D94857
Remove the call to setFlags in favour of creating the instruction with
the correct flags in the first place, so we don't have to explicitly
notify the observer.
Differential Revision: https://reviews.llvm.org/D95681
splitCodeGen does not need to take ownership of the module, as it
currently clones the original module for each split operation.
There is an ~4 year old fixme to change that, but until this is
addressed, the function can just take a reference to the module.
This makes the transition of LTOCodeGenerator to use LTOBackend a bit
easier, because under some circumstances, LTOCodeGenerator needs to
write the original module back after codegen.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D95222
Various *TargetStreamer.h need formatted_raw_ostream but rely on a
forward declaration of formatted_raw_ostream in MCStreamer.h. This
patch adds forward declarations right in *TargetStreamer.h.
While we are at it, this patch removes the one in MCStreamer.h, where
it is unnecessary.
This patch allows targets to define multiple cost
values for each register so that the cost model
can be more flexible and better used during the
register allocation as per the target requirements.
For AMDGPU the VGPR allocation will be more efficient
if the register cost can be associated dynamically
based on the calling convention.
Reviewed By: qcolombet
Differential Revision: https://reviews.llvm.org/D86836
Add an `enable_if` to the generic `IntrusiveRefCntPtr` constructors so
that std::is_convertible gives an honest answer when the underlying
pointers cannot be converted. Added `static_assert`s to the test suite
to verify.
Also combine generic constructors from `IntrusiveRefCntPtr<X>&&` and
`const IntrusiveRefCntPtr<X>&`. At first glance this appears to be an
infinite loop, but the real copy/move constructors are spelled out
separately above. Added a unit test to verify.
Differential Revision: https://reviews.llvm.org/D95498
Treat hint instructions like G_ASSERT_ZEXT like COPY instructions in helpers
which walk through copies.
This ensures that instructions like G_ASSERT_ZEXT won't impact any optimizations
that rely on these helpers.
Differential Revision: https://reviews.llvm.org/D95577
These are widened to a wider UADDE/USUBE, with the overflow value
unused, and with the same synthesis of a new overflow value as for the
O operations.
Reviewed By: paquette
Differential Revision: https://reviews.llvm.org/D95326
This adds a generic opcode which communicates that a type has already been
zero-extended from a narrower type.
This is intended to be similar to AssertZext in SelectionDAG.
For example,
```
%x_was_extended:_(s64) = G_ASSERT_ZEXT %x, 16
```
Signifies that the top 48 bits of %x are known to be 0.
This is useful in cases like this:
```
define i1 @zeroext_param(i8 zeroext %x) {
%cmp = icmp ult i8 %x, -20
ret i1 %cmp
}
```
In AArch64, `%x` must use a 32-bit register, which is then truncated to a 8-bit
value.
If we know that `%x` is already zero-ed out in the relevant high bits, we can
avoid the truncate.
Currently, in GISel, this looks like this:
```
_zeroext_param:
and w8, w0, #0xff ; We don't actually need this!
cmp w8, #236
cset w0, lo
ret
```
While SDAG does not produce the truncation, since it knows that it's
unnecessary:
```
_zeroext_param:
cmp w0, #236
cset w0, lo
ret
```
This patch
- Adds G_ASSERT_ZEXT
- Adds MIRBuilder support for it
- Adds MachineVerifier support for it
- Documents it
It also puts G_ASSERT_ZEXT into its own class of "hint instruction." (There
should be a G_ASSERT_SEXT in the future, maybe a G_ASSERT_ALIGN as well.)
This allows us to skip over hints in the legalizer etc. These can then later
be selected like COPY instructions or removed.
Differential Revision: https://reviews.llvm.org/D95564
This patch adds the ability to evaluate the state machine for CIE and FDE unwind objects and produce a UnwindTable with all UnwindRow objects needed to unwind registers. It will also dump the UnwindTable for each CIE and FDE when dumping DWARF .debug_frame or .eh_frame sections in llvm-dwarfdump or llvm-objdump. This allows users to see what the unwind rows actually look like for a given CIE or FDE instead of just seeing a list of opcodes.
This patch adds new classes: UnwindLocation, RegisterLocations, UnwindRow, and UnwindTable.
UnwindLocation is a class that describes how to unwind a register or Call Frame Address (CFA).
RegisterLocations is a class that tracks registers and their UnwindLocations. It gets populated when parsing the DWARF call frame instruction opcodes for a unwind row. The registers are mapped from their register numbers to the UnwindLocation in a map.
UnwindRow contains the result of evaluating a row of DWARF call frame instructions for the CIE, or a row from a FDE. The CIE can produce a set of initial instructions that each FDE that points to that CIE will use as the seed for the state machine when parsing FDE opcodes. A UnwindRow for a CIE will not have a valid address, whille a UnwindRow for a FDE will have a valid address.
The UnwindTable is a class that contains a sorted (by address) vector of UnwindRow objects and is the result of parsing all opcodes in a CIE, or FDE. Parsing a CIE should produce a UnwindTable with a single row. Parsing a FDE will produce a UnwindTable with one or more UnwindRow objects where all UnwindRow objects have valid addresses. The rows in the UnwindTable will be sorted from lowest Address to highest after parsing the state machine, or an error will be returned if the table isn't sorted. To parse a UnwindTable clients can use the following methods:
static Expected<UnwindTable> UnwindTable::create(const CIE *Cie);
static Expected<UnwindTable> UnwindTable::create(const FDE *Fde);
A valid table will be returned if the DWARF call frame instruction opcodes have no encoding errors. There are a few things that can go wrong during the evaluation of the state machine and these create functions will catch and return them.
Differential Revision: https://reviews.llvm.org/D89845
The header would include OrcJIT headers in OrcTargetProcess, which is not desired. All common declarations should be in OrcShared.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D95606
Currently we don't allow the following definition:
```
Sections:
- Type: SectionHeaderTable
- Name: .foo
Type: SHT_PROGBITS
```
We report an error: "SectionHeaderTable can't be empty. Use 'NoHeaders' key to drop the section header table".
It was implemented in this way earlier, when `SectionHeaderTable`
was a dedicated key outside of the `Sections` list. And we did not
allow to select where the table is written.
Currently it makes sense to allow it, because a user might
want to place the default section header table at an arbitrary position,
e.g. before other sections. In this case it is not convenient and error prone
to require specifying all sections:
```
Sections:
- Type: SectionHeaderTable
Sections:
- Name: .foo
- Name: .strtab
- Name: .shstrtab
- Name: .foo
Type: SHT_PROGBITS
```
This patch allows empty SectionHeaderTable definitions.
Differential revision: https://reviews.llvm.org/D95341
NativeEnumInjectedSources.h needs PDBFile but relies on a
forward declaration of PDBFile in InjectedSourceStream.h.
This patch adds a forward declaration right in
NativeEnumInjectedSources.h.
While we are at it, this patch removes the one in
InjectedSourceStream.h, where it is unnecessary.
This change brings up support of context-sensitive profiles in the format of extended binary. Existing sample profile reader/writer/merger code is being tweaked to reflect the fact of bracketed input contexts, like (`[...]`). The paired brackets are also needed in extbinary profiles because we don't yet have an otherwise good way to tell calling contexts apart from regular function names since the context delimiter `@` can somehow serve as a part of the C++ mangled names.
Reviewed By: wmi, wenlei
Differential Revision: https://reviews.llvm.org/D95547
Identify dynamically exported symbols (--export-dynamic[-symbol=],
--dynamic-list=, or definitions needed to preempt shared objects) and
prevent their LTO visibility from being upgraded.
This helps avoid use of whole program devirtualization when there may
be overrides in dynamic libraries.
Differential Revision: https://reviews.llvm.org/D91583
The two operations have acted differently since Clang 8, but were
unfortunately mangled the same. The new mangling uses new "vendor
extended expression" syntax proposed in
https://github.com/itanium-cxx-abi/cxx-abi/issues/112
GCC had the same mangling problem, https://gcc.gnu.org/PR88115, and
will hopefully be switching to the same mangling as implemented here.
Additionally, fix the mangling of `__uuidof` to use the new extension
syntax, instead of its previous nonstandard special-case.
Adjusts the demangler accordingly.
Differential Revision: https://reviews.llvm.org/D93922
Previously, Clang was able to mangle the Swift calling
convention but 'MicrosoftDemangle.cpp' was not able to demangle it.
Reviewed By: compnerd, rnk
Differential Revision: https://reviews.llvm.org/D95053
I am trying to untangle the fast-math-flags propagation logic
in the vectorizers (see a6f022127 for SLP).
The loop vectorizer has a mix of checking FP function attributes,
IR-level FMF, and just wrong assumptions.
I am trying to avoid regressions while fixing this, and I think
the IR-level logic is good enough for that, but it's hard to say
for sure. This would be the 1st step in the clean-up.
The existing test that I changed to include 'fast' actually shows
a miscompile: the function only had the equivalent of nnan, but we
created new instructions that had fast (all FMF set). This is
similar to the example in https://llvm.org/PR35538
Differential Revision: https://reviews.llvm.org/D95452
Imported functions and variable get the visibility from the module supplying the
definition. However, non-imported definitions do not get the visibility from
(ELF) the most constraining visibility among all modules (Mach-O) the visibility
of the prevailing definition.
This patch
* adds visibility bits to GlobalValueSummary::GVFlags
* computes the result visibility and propagates it to all definitions
Protected/hidden can imply dso_local which can enable some optimizations (this
is stronger than GVFlags::DSOLocal because the implied dso_local can be
leveraged for ELF -shared while default visibility dso_local has to be cleared
for ELF -shared).
Note: we don't have summaries for declarations, so for ELF if a declaration has
the most constraining visibility, the result visibility may not be that one.
Differential Revision: https://reviews.llvm.org/D92900
FaultsMapParser lived in CodeGen and was forcing llvm-objdump to
link CodeGen and everything CodeGen depends on.
This was previously attempted in r240364 to fix a link failure.
The CodeGen dependency was independently added to fix the same
link failure, and that ended up being kept.
Removing the dependency seems like the correct layering for
llvm-objdump.
Reviewed By: MaskRay, jhenderson
Differential Revision: https://reviews.llvm.org/D95414
kernels loop and enter data had a too restrictive constraint for the wait clause.
The wait clause is allowed multiple times and not only once. This patch fix this problem.
Reviewed By: SouraVX
Differential Revision: https://reviews.llvm.org/D95469
This gives the user control over which expander to use, which in turn
allows the user to decide what to do with the expanded instructions.
Used in D75980.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D94295
Restriction on clauses for the EXIT DATA directive were not fully correct.
This patch fixes the situation. The async, if and finalize clauses are allowed
only once.
Reviewed By: SouraVX
Differential Revision: https://reviews.llvm.org/D95470
Restriction on clauses for the HOST_DATA directive were not fully correct.
This patch fixes the situation. The if and if_present clauses are allowed
only once.
Reviewed By: SouraVX
Differential Revision: https://reviews.llvm.org/D95473
AMDGPUInstructionSelector.h needs TargetRegisterClass but relies on a
forward declaration of TargetRegisterClass in InstructionSelector.h.
This patch adds a forward declaration right in
AMDGPUInstructionSelector.h.
While we are at it, this patch removes the one in
InstructionSelector.h, where it is unnecessary.
This change implements support for applying profile instrumentation
only to selected files or functions. The implementation uses the
sanitizer special case list format to select which files and functions
to instrument, and relies on the new noprofile IR attribute to exclude
functions from instrumentation.
Differential Revision: https://reviews.llvm.org/D94820
Add a new `raw_pwrite_ostream` variant, `buffer_unique_ostream`, which
is like `buffer_ostream` but with unique ownership of the stream it's
wrapping. Use this in CompilerInstance to simplify the ownership of
non-seeking output streams, avoiding logic sprawled around to deal with
them specially.
This also simplifies future work to encapsulate output files in a
different class.
Differential Revision: https://reviews.llvm.org/D93260
Before this change, when reading ELF file, elfabi determines number of
entries in .dynsym by reading the .gnu.hash section. This change makes
elfabi read section headers directly first. This change allows elfabi
works on ELF files which do not have .gnu.hash sections.
Differential Revision: https://reviews.llvm.org/D93362
There are two use cases.
Assembler
We have accrued some code gated on MCAsmInfo::useIntegratedAssembler(). Some
features are supported by latest GNU as, but we have to use
MCAsmInfo::useIntegratedAs() because the newer versions have not been widely
adopted (e.g. SHF_LINK_ORDER 'o' and 'unique' linkage in 2.35, --compress-debug-sections= in 2.26).
Linker
We want to use features supported only by LLD or very new GNU ld, or don't want
to work around older GNU ld. We currently can't represent that "we don't care
about old GNU ld". You can find such workarounds in a few other places, e.g.
Mips/MipsAsmprinter.cpp PowerPC/PPCTOCRegDeps.cpp X86/X86MCInstrLower.cpp
AArch64 TLS workaround for R_AARCH64_TLSLD_MOVW_DTPREL_* (PR ld/18276),
R_AARCH64_TLSLE_LDST8_TPREL_LO12 (https://bugs.llvm.org/show_bug.cgi?id=36727https://sourceware.org/bugzilla/show_bug.cgi?id=22969)
Mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER components (supported by LLD in D84001;
GNU ld feature request https://sourceware.org/bugzilla/show_bug.cgi?id=16833 may take a while before available).
This feature allows to garbage collect some unused sections (e.g. fragmented .gcc_except_table).
This patch adds `-fbinutils-version=` to clang and `-binutils-version` to llc.
It changes one codegen place in SHF_MERGE to demonstrate its usage.
`-fbinutils-version=2.35` means the produced object file does not care about GNU
ld<2.35 compatibility. When `-fno-integrated-as` is specified, the produced
assembly can be consumed by GNU as>=2.35, but older versions may not work.
`-fbinutils-version=none` means that we can use all ELF features, regardless of
GNU as/ld support.
Both clang and llc need `parseBinutilsVersion`. Such command line parsing is
usually implemented in `llvm/lib/CodeGen/CommandFlags.cpp` (LLVMCodeGen),
however, ClangCodeGen does not depend on LLVMCodeGen. So I add
`parseBinutilsVersion` to `llvm/lib/Target/TargetMachine.cpp` (LLVMTarget).
Differential Revision: https://reviews.llvm.org/D85474
This change implements support for applying profile instrumentation
only to selected files or functions. The implementation uses the
sanitizer special case list format to select which files and functions
to instrument, and relies on the new noprofile IR attribute to exclude
functions from instrumentation.
Differential Revision: https://reviews.llvm.org/D94820
Loop peeling removes conditions from loop bodies that become invariant
after a small number of iterations. When triggered, this leads to fewer
compares and possibly PHIs in loop bodies, enabling further
optimizations. The current cost-model of loop peeling should be quite
conservative/safe, i.e. only peel if a condition in the loop becomes
known after peeling.
For example, see PR47671, where loop peeling enables vectorization by
removing a PHI the vectorizer does not understand. Granted, the
loop-vectorizer could also be taught about constant PHIs, but loop
peeling is likely to enable other optimizations as well.
This has an impact on quite a few benchmarks from
MultiSource/SPEC2000/SPEC2006 on X86 with -O3 -flto, for example
Same hash: 186 (filtered out)
Remaining: 51
Metric: loop-vectorize.LoopsVectorized
Program base patch diff
test-suite...ve-susan/automotive-susan.test 8.00 9.00 12.5%
test-suite...nal/skidmarks10/skidmarks.test 35.00 31.00 -11.4%
test-suite...lications/sqlite3/sqlite3.test 41.00 43.00 4.9%
test-suite...s/ASC_Sequoia/AMGmk/AMGmk.test 25.00 26.00 4.0%
test-suite...006/450.soplex/450.soplex.test 88.00 89.00 1.1%
test-suite...TimberWolfMC/timberwolfmc.test 120.00 119.00 -0.8%
test-suite.../CINT2006/403.gcc/403.gcc.test 215.00 216.00 0.5%
test-suite...006/447.dealII/447.dealII.test 957.00 958.00 0.1%
test-suite...ternal/HMMER/hmmcalibrate.test 75.00 75.00 0.0%
Same hash: 186 (filtered out)
Remaining: 51
Metric: loop-vectorize.LoopsAnalyzed
Program base patch diff
test-suite...ks/Prolangs-C/agrep/agrep.test 440.00 434.00 -1.4%
test-suite...nal/skidmarks10/skidmarks.test 312.00 308.00 -1.3%
test-suite...marks/7zip/7zip-benchmark.test 6399.00 6323.00 -1.2%
test-suite...lications/minisat/minisat.test 134.00 135.00 0.7%
test-suite...rks/FreeBench/pifft/pifft.test 295.00 297.00 0.7%
test-suite...TimberWolfMC/timberwolfmc.test 1879.00 1869.00 -0.5%
test-suite...pplications/treecc/treecc.test 689.00 691.00 0.3%
test-suite...T2000/300.twolf/300.twolf.test 1593.00 1597.00 0.3%
test-suite.../Benchmarks/Bullet/bullet.test 1394.00 1392.00 -0.1%
test-suite...ications/JM/ldecod/ldecod.test 1431.00 1429.00 -0.1%
test-suite...6/464.h264ref/464.h264ref.test 2229.00 2230.00 0.0%
test-suite...lications/sqlite3/sqlite3.test 2590.00 2589.00 -0.0%
test-suite...ications/JM/lencod/lencod.test 2732.00 2733.00 0.0%
test-suite...006/453.povray/453.povray.test 3395.00 3394.00 -0.0%
Note the -11% regression in number of loops vectorized for skidmarks. I
suspect this corresponds to the fact that those loops are gone now (see
the reduction in number of loops analyzed by LV).
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D88471
We already set the `sh_entsize` field in a single place
for all non-implicit sections.
This patch reorders the logic slightly and with it
we finally have the only one place where the `sh_entsize` is set.
obj2yaml will not dump the `EntSize` key for `SHT_DYNSYM/SHT_SYMTAB` sections anymore,
when the value of `sh_entsize` is equal to `sizeof(Elf_Sym)`
Note that this also seems revealed an issue in llvm-objcopy:
Previously yaml2obj set the `sh_entsize` for the `.symtab` section to 0x18,
now we it sets it for `SHT_SYMTAB` sections, i.e. by type.
But the `llvm-objcopy/ELF/only-keep-debug.test` has a `.symtab` section of type `SHT_STRTAB`,
and now yaml2obj sets the `sh_entsize` to 0 for it.
I had to update the corresponding check lines for `ES`, but the behavior of
`llvm-objcopy` should be fixed instead I think.
I've added a TODO and a comment.
Differential revision: https://reviews.llvm.org/D95364
A default version (@@) is only available for defined symbols.
Currently we use "@@" for undefined symbols too.
This patch fixes the issue and improves our test case.
Differential revision: https://reviews.llvm.org/D95219
To be able to refer to constant keypaths (e.g. `defvar cplusplus = LangOpts<"CPlusPlus">`) inside `ImpliedByAnyOf`, let's accept strings instead of `Option` instances.
This somewhat weakens the guarantees that we're referring to an existing (option) record, but we can still use the option.KeyPath syntax to simulate this.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D95344
AMDGPULegalizerInfo.h needs MachineIRBuilder but relies on a forward
declaration of MachineIRBuilder in LegalizerInfo.h. This patch adds a
forward declaration right in AMDGPULegalizerInfo.h.
While we are at it, this patch removes the one in LegalizerInfo.h,
where it is unnecessary.
The current algorithm just tries to localize defs as far as they can go, and in
the case of G_PHI operands, it clones the def into the predecessor block for
each incoming edge. When multiple edges have the same register value, this can
cause unnecessary code bloat, and inhibit later optimizations.
This change checks if a given phi operand is unique in the phi, if not the
def of that register is not localized to the predecessor.
Differential Revision: https://reviews.llvm.org/D95406
This change leverages the work done in D83743 to replay in the SampleProfile inliner to also be used in the CGSCC inliner. NOTE: currently restricted to non-ML advisors only.
The added switch `-cgscc-inline-replay=<remarks file>` will replay the inlining decisions in that file where the remarks file is generated via `-Rpass=inline`. The aim here is to make it easier to analyze changes that would modify inlining heuristics to be separated from this behavior. Doing so allows easier examination of assembly and runtime behavior compared to the baseline rather than trying to dig through the large churn caused by inlining.
In LTO compilation, since inlining is done twice you can separately specify replay by passing the flag to the FE (`-cgscc-inline-replay=`) and to the linker (`-Wl,cgscc-inline-replay=`) with the remarks generated from their respective places.
Testing on mysqld by comparing the inline decisions between base (generates remarks.txt) and diff (replay using identical input/tools with remarks.txt) and examining the inlining sites with `diff` shows 14,000 mismatches out of 247,341 for a ~94% replay accuracy. I believe this gap can be narrowed further though for the general case we may never achieve full accuracy. For my personal use, this is close enough to be representative: I set the baseline as the one generated by the replay on identical input/toolset and compare that to my modified input/toolset using the same replay.
Testing:
ninja check-llvm
newly added test correctly replays CGSCC inlining decisions
Reviewed By: mtrofin, wenlei
Differential Revision: https://reviews.llvm.org/D94334
Refactor the duplicated canonicalize-path logic in `FileCollector` and
`ModulesDependencyCollector` into a new utility called
`PathCanonicalizer` that's shared. This popped up when tracking down a
bug common to both in https://reviews.llvm.org/D95202.
As drive-bys, update a few names and comments to better reflect the
effect of the code, delay removal of `..`s to avoid an unnecessary extra
string copy, and leave behind a couple of FIXMEs for future
consideration.
Differential Revision: https://reviews.llvm.org/D95279
Don't emit an output dash for an empty sequence. Take emitting a vector
of strings for example:
std::vector<std::string> Strings = {"foo", "bar"};
LLVM_YAML_IS_SEQUENCE_VECTOR(std::string)
yout << Strings;
This emits the following YAML document.
---
- foo
- bar
...
When the vector is empty, this generates the following result:
---
- []
...
Although this is valid YAML, it does not match what we meant to emit.
The result is a one-element sequence consisting of an empty list.
Indeed, if we were to try to read this again we get an error:
YAML:2:4: error: not a mapping
- []
The problem is the output dash before the empty list. The correct output
would be:
---
[]
...
This patch fixes that by not emitting the output dash for an empty
sequence.
Differential revision: https://reviews.llvm.org/D95280
or claimRV calls in the IR
Background:
This patch makes changes to the front-end and middle-end that are
needed to fix a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end annotates calls with attribute "clang.arc.rv"="retain"
or "clang.arc.rv"="claim", which indicates the call is implicitly
followed by a marker instruction and a retainRV/claimRV call that
consumes the call result. This is currently done only when the target
is arm64 and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the
annotated calls in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the annotated
calls. It doesn't remove the attribute on the call since the backend
needs it to emit the marker instruction. The retainRV/claimRV calls
are emitted late in the pipeline to prevent optimization passes from
transforming the IR in a way that makes it harder for the ARC
middle-end passes to figure out the def-use relationship between the
call and the retainRV/claimRV calls (which is the cause of PR31925).
- The function inliner removes the autoreleaseRV call in the callee that
returns the result if nothing in the callee prevents it from being
paired up with the calls annotated with "clang.arc.rv"="retain/claim"
in the caller. If the call is annotated with "claim", a release call
is inserted since autoreleaseRV+claimRV is equivalent to a release. If
it cannot find an autoreleaseRV call, it tries to transfer the
attributes to a function call in the callee. This is important since
ARC optimizer can remove the autoreleaseRV call returning the callee
result, which makes it impossible to pair it up with the retainRV or
claimRV call in the caller. If that fails, it simply emits a retain
call in the IR if the call is annotated with "retain" and does nothing
if it's annotated with "claim".
- This patch teaches dead argument elimination pass not to change the
return type of a function if any of the calls to the function are
annotated with attribute "clang.arc.rv". This is necessary since the
pass can incorrectly determine nothing in the IR uses the function
return, which can happen since the front-end no longer explicitly
emits retainRV/claimRV calls in the IR, and change its return type to
'void'.
Future work:
- Use the attribute on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls annotated with the attributes.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
For a function that returns InstructionCost, it is very tempting to write:
return InstructionCost::Invalid;
But that actually returns InstructionCost(1 /* int value of Invalid */))
which has a totally different meaning. By marking this constructor as
`delete`, this can no longer happen.
This was discussed in D93678 thread.
Currently we have one special chunk - Fill.
This patch re implements the "SectionHeaderTable" key to become a special chunk too.
With that we are able to place the section header table at any location,
just like we place sections.
Differential revision: https://reviews.llvm.org/D95140
For now, we correct the result for sqrt if iteration > 0. This doesn't make
sense as they are not strict relative.
Reviewed By: dmgreen, spatel, RKSimon
Differential Revision: https://reviews.llvm.org/D94480
Reassociating some patterns to generate more fma instructions to
reduce register pressure.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D92071
Frame-base materialization may insert vector instructions before EXEC is initialised.
Fix this by moving lowering of llvm.amdgcn.init.exec later in backend.
Also remove SI_INIT_EXEC_LO pseudo as this is not necessary.
Reviewed By: ruiling
Differential Revision: https://reviews.llvm.org/D94645
InstrEmitter.h needs TargetMachine but relies on a forward declaration
of TargetMachine in MachineOperand.h. This patch adds a forward
declaration right in InstrEmitter.h.
While we are at it, this patch removes the one in MachineOperand.h,
where it is unnecessary.
In the cloning infrastructure, only track an MDNode mapping,
without explicitly storing the Metadata mapping, same as is done
during inlining. This makes things slightly simpler.
To simplify the transition to using LTOBackend, move DisableVerify to
the LTOCodeGenerator class, like most/all other options.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D95223
Similar to D92887, LoopRotation also needs duplicate the noalias scopes when rotating a `@llvm.experimental.noalias.scope.decl` across a block boundary.
This is based on the version from the Full Restrict paches (D68511).
The problem it fixes also showed up in Transforms/Coroutines/ex5.ll after D93040 (when enabling strict checking with -verify-noalias-scope-decl-dom).
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D94306
This is a fix for https://bugs.llvm.org/show_bug.cgi?id=39282. Compared to D90104, this version is based on part of the full restrict patched (D68484) and uses the `@llvm.experimental.noalias.scope.decl` intrinsic to track the location where !noalias and !alias.scope scopes have been introduced. This allows us to only duplicate the scopes that are really needed.
Notes:
- it also includes changes and tests from D90104
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D92887
The tileLoops method implements the code generation part of the tile directive introduced in OpenMP 5.1. It takes a list of loops forming a loop nest, tiles it, and returns the CanonicalLoopInfo representing the generated loops.
The implementation takes n CanonicalLoopInfos, n tile size Values and returns 2*n new CanonicalLoopInfos. The input CanonicalLoopInfos are invalidated and BBs not reused in the new loop nest removed from the function.
In a modified version of D76342, I was able to correctly compile and execute a tiled loop nest.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D92974
Add an intrinsic type class to represent the
llvm.experimental.noalias.scope.decl intrinsic, to make code
working with it a bit nicer by hiding the metadata extraction
from view.
This patch adds a new InstModificationIRStrategy to mutate flags/options
for instructions. For example, it may add or remove nuw/nsw flags from
add, mul, sub, shl instructions or change the predicate for icmp
instructions.
Subtle changes such as those mentioned above should lead to a more
interesting range of inputs. The presence or absence of overflow flags
can expose subtle bugs, for example.
Reviewed By: bogner
Differential Revision: https://reviews.llvm.org/D94905
LoopUtils.h needs ICFLoopSafetyInfo but relies on a forward
declaration of ICFLoopSafetyInfo in IVDescriptors.h. This patch adds
a forward declaration right in LoopUtils.h.
While we are at it, this patch removes the one in IVDescriptors.h,
where it is unnecessary.
With the addition of the `willreturn` attribute, functions that may
not return (e.g. due to an infinite loop) are well defined, if they are
not marked as `willreturn`.
This patch updates `wouldInstructionBeTriviallyDead` to not consider
calls that may not return as dead.
This patch still provides an escape hatch for intrinsics, which are
still assumed as willreturn unconditionally. It will be removed once
all intrinsics definitions have been reviewed and updated.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D94106
If i change it to AssertingVH instead, a number of existing tests fail,
which means we don't consistently remove from the set when deleting blocks,
which means newly-created blocks may happen to appear in that set
if they happen to occupy the same memory chunk as did some block
that was in the set originally.
There are many places where we delete blocks,
and while we could probably consistently delete from LoopHeaders
when deleting a block in transforms located in SimplifyCFG.cpp itself,
transforms located elsewhere (Local.cpp/BasicBlockUtils.cpp) also may
delete blocks, and it doesn't seem good to teach them to deal with it.
Since we at most only ever delete from LoopHeaders,
let's just delegate to WeakVH to do that automatically.
But to be honest, personally, i'm not sure that the idea
behind LoopHeaders is sound.
The target features are obtained as a list of features/attributes.
Instead of storing them in a single string, store the vector. This
matches lto::Config's behavior and simplifies the transition to
lto::backend().
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D95224
Rather than reimplement, use a `using` declaration to bring in
`SmallVectorImpl<char>`'s assign and append implementations in
`SmallString`.
The `SmallString` versions were missing reference invalidation
assertions from `SmallVector`. This patch also fixes a bug in
`llvm::FileCollector::addFileImpl`, which was a copy/paste from
`clang::ModuleDependencyCollector::copyToRoot`, both caught by the
no-longer-skipped assertions.
As a drive-by, this also sinks the `const SmallVectorImpl&` versions of
these methods down into `SmallVectorImpl`, since I imagine they'd be
useful elsewhere.
Differential Revision: https://reviews.llvm.org/D95202
The only caller of this function is in the LocalStackSlotAllocation
and it creates base register of class returned by the target's
getPointerRegClass(). AMDGPU wants to use a different reg class
here so let materializeFrameBaseRegister to just create and return
whatever it wants.
Differential Revision: https://reviews.llvm.org/D95268
This patch addresses inconsistencies in the way fallthrough is handled
in the RedirectingFileSystem. Rather than trying to change the working
directory of the external filesystem, the RedirectingFileSystem will
canonicalize every path before handing it down. This guarantees that
relative paths are resolved relative to the RedirectingFileSystem's
working directory.
This allows us to have a strictly virtual working directory, and still
fallthrough for absolute paths, but not for relative paths that would
get resolved incorrectly at the lower layer (for example, in case of the
RealFileSystem, because the strictly virtual path does not exist).
Differential revision: https://reviews.llvm.org/D95188
The widenScalar implementation for signed and unsigned overflowing
operations were very similar: both are checked by truncating the result
and then re-sign/zero-extending it and checking that it matches the
computed operation.
Using a truncate + zero-extend for the unsigned case instead of manually
producing the AND instruction like before leads to an extra copy
instruction during legalization, but this should be harmless.
Differential Revision: https://reviews.llvm.org/D95035
This is to support the memory routines vec_malloc, vec_calloc, vec_realloc, and vec_free. These routines manage memory that is 16-byte aligned. And they are only available on AIX.
Differential Revision: https://reviews.llvm.org/D94710
This patch implements codegen for __managed__ variable attribute for HIP.
Diagnostics will be added later.
Differential Revision: https://reviews.llvm.org/D94814
When adding an enum attribute to an AttributeList, avoid going
through an AttrBuilder and instead directly add the attribute to
the correct set. Going through AttrBuilder is expensive, because
it requires all string attributes to be reconstructed.
This can be further improved by inserting the attribute at the
right position and using the AttributeSetNode::getSorted() API.
This recovers the small compile-time regression from D94633.
This speeds up setLastUser enough to give a 5% to 10% speed up on
trivial invocations of opt and llc, as measured by:
perf stat -r 100 opt -S -o /dev/null -O3 /dev/null
perf stat -r 100 llc -march=amdgcn /dev/null -filetype null
Don't dump last use information unless -debug-pass=Details to avoid
printing lots of spam that will break some existing lit tests. Before
this patch, dumping last use information was broken anyway, because it
used InversedLastUser before it had been populated.
Differential Revision: https://reviews.llvm.org/D92309
Having a custom inliner doesn't really fit in with the new PM's
pipeline. It's also extra technical debt.
amdgpu-inline only does a couple of custom things compared to the normal
inliner:
1) It disables inlining if the number of BBs in a function would exceed
some limit
2) It increases the threshold if there are pointers to private arrays(?)
These can all be handled as TTI inliner hooks.
There already exists a hook for backends to multiply the inlining
threshold.
This way we can remove the custom amdgpu-inline pass.
This caused inline-hint.ll to fail, and after some investigation, it
looks like getInliningThresholdMultiplier() was previously getting
applied twice in amdgpu-inline (https://reviews.llvm.org/D62707 fixed it
not applying at all, so some later inliner change must have fixed
something), so I had to change the threshold in the test.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D94153
Add factory to create streams for logging the reproducer. Allows for more general logging (beyond file) and logging the configuration/module separately (logged in order, configuration before module).
Also enable querying filename of ToolOutputFile.
Differential Revision: https://reviews.llvm.org/D94868
The fault-only-first-load instructions can reduce VL if an element
other than element 0 triggers a memory fault. This can be used to
vectorize loops with data dependent exit conditions like strcmp or
strlen.
This patch adds a VL output to these intrinsics so that the new
VL value can be captured by software. This will be expanded to
'csrr gpr, vl' after the vleff instruction during SelectionDAG.
By doing this with one intrinsic we are able to guarantee that the
csrr reads the VL value produced by the vleff instruction. Having
it as a separate intrinsic would make it impossible to guarantee
ordering without making every other vector intrinsic have side
effects.
The intrinsics are expanded during lowering into two ISD nodes
that are glued together. These ISD nodes will go
through isel separately, but should maintain the glue so that they
get emitted adjacently by InstrEmitter.
I've only ran the chain through the vleff instruction, allowing
the READ_VL to be deleted if it is unused.
Reviewed By: HsiangKai
Differential Revision: https://reviews.llvm.org/D94286
Upgrade RISC-V V extension to v1.0-08a0b46.
Indexed load/store have ordered and unordered form.
New whole vector load/store.
Differential Revision: https://reviews.llvm.org/D93614
This adds cost modelling for the inloop vectorization added in
745bf6cf44. Up until now they have been modelled as the original
underlying instruction, usually an add. This happens to works OK for MVE
with instructions that are reducing into the same type as they are
working on. But MVE's instructions can perform the equivalent of an
extended MLA as a single instruction:
%sa = sext <16 x i8> A to <16 x i32>
%sb = sext <16 x i8> B to <16 x i32>
%m = mul <16 x i32> %sa, %sb
%r = vecreduce.add(%m)
->
R = VMLADAV A, B
There are other instructions for performing add reductions of
v4i32/v8i16/v16i8 into i32 (VADDV), for doing the same with v4i32->i64
(VADDLV) and for performing a v4i32/v8i16 MLA into an i64 (VMLALDAV).
The i64 are particularly interesting as there are no native i64 add/mul
instructions, leading to the i64 add and mul naturally getting very
high costs.
Also worth mentioning, under NEON there is the concept of a sdot/udot
instruction which performs a partial reduction from a v16i8 to a v4i32.
They extend and mul/sum the first four elements from the inputs into the
first element of the output, repeating for each of the four output
lanes. They could possibly be represented in the same way as above in
llvm, so long as a vecreduce.add could perform a partial reduction. The
vectorizer would then produce a combination of in and outer loop
reductions to efficiently use the sdot and udot instructions. Although
this patch does not do that yet, it does suggest that separating the
input reduction type from the produced result type is a useful concept
to model. It also shows that a MLA reduction as a single instruction is
fairly common.
This patch attempt to improve the costmodelling of in-loop reductions
by:
- Adding some pattern matching in the loop vectorizer cost model to
match extended reduction patterns that are optionally extended and/or
MLA patterns. This marks the cost of the reduction instruction correctly
and the sext/zext/mul leading up to it as free, which is otherwise
difficult to tell and may get a very high cost. (In the long run this
can hopefully be replaced by vplan producing a single node and costing
it correctly, but that is not yet something that vplan can do).
- getExtendedAddReductionCost is added to query the cost of these
extended reduction patterns.
- Expanded the ARM costs to account for these expanded sizes, which is a
fairly simple change in itself.
- Some minor alterations to allow inloop reduction larger than the highest
vector width and i64 MVE reductions.
- An extra InLoopReductionImmediateChains map was added to the vectorizer
for it to efficiently detect which instructions are reductions in the
cost model.
- The tests have some updates to show what I believe is optimal
vectorization and where we are now.
Put together this can greatly improve performance for reduction loop
under MVE.
Differential Revision: https://reviews.llvm.org/D93476
This fixes the final (I think?) reference invalidation in `SmallVector`
that we need to fix to align with `std::vector`. (There is still some
left in the range insert / append / assign, but the standard calls that
UB for `std::vector` so I think we don't care?)
For POD-like types, reimplement `emplace_back()` in terms of
`push_back()`, taking a copy even for large `T` rather than lose the
realloc optimization in `grow_pod()`.
For other types, split the grow operation in three and construct the new
element in the middle.
- `mallocForGrow()` calculates the new capacity and returns the result
of `safe_malloc()`. We only need a single definition per
`SmallVectorBase` so this is defined in SmallVector.cpp to avoid code
size bloat. Moving this part of non-POD grow to the source file also
allows the logic to be easily shared with `grow_pod`, and
`report_size_overflow()` and `report_at_maximum_capacity()` can move
there too.
- `moveElementsForGrow()` moves elements from the old to the new
allocation.
- `takeAllocationForGrow()` frees the old allocation and saves the
new allocation and capacity .
`SmallVector:assign(size_type, const T&)` also uses the split-grow
operations for non-POD, but it also has a semantic change when not
growing. Previously, assign would start with `clear()`, and so the old
elements were destructed and all elements of the new vector were
copy-constructed (potentially invalidating references). The new
implementation skips destruction and uses copy-assignment for the prefix
of the new vector that fits. The new semantics match what libc++ does
for `std::vector::assign()`.
Note that the following is another possible implementation:
```
void assign(size_type NumElts, ValueParamT Elt) {
std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt);
this->resize(NumElts, Elt);
}
```
The downside of this simpler implementation is that if the vector has to
grow there will be `size()` redundant copy operations.
(I had planned on splitting this patch up into three for committing
(after getting performance numbers / initial review), but I've realized
that if this does for some reason need to be reverted we'll probably
want to revert the whole package...)
Differential Revision: https://reviews.llvm.org/D94739
Make this look more like the DAG handling and move to common code.
I also noticed AArch64 seems to not be properly adding the
physreg:virtreg mapping to the function live ins.
Summary:
The custom mapper API did not previously support the mapping names added previously. This means they were not present if a user requested debugging information while using the mapper functions. This adds basic support for passing the mapped names to the runtime library.
Reviewers: jdoerfert
Differential Revision: https://reviews.llvm.org/D94806
Previous code build the model that tile config register is the user of
each AMX instruction. There is a problem for the tile config register
spill. When across function, the ldtilecfg instruction may be inserted
on each AMX instruction which use tile config register. This cause all
tile data register clobber.
To fix this issue, we remove the model of tile config register. We
analyze the regmask of call instruction and insert ldtilecfg if there is
any tile data register live across the call. Inserting the sttilecfg
before the call is unneccessary, because the tile config doesn't change
and we can just reload the config.
Besides we also need check tile config register interference. Since we
don't model the config register we should check interference from the
ldtilecfg to each tile data register def.
ldtilecfg
/ \
BB1 BB2
/ \
call BB3
/ \
%1=tileload %2=tilezero
We can start from the instruction of each tile def, and backward to
ldtilecfg. If there is any call instruction, and tile data register is
not preserved, we should insert ldtilecfg after the call instruction.
Differential Revision: https://reviews.llvm.org/D94155
This makes the following improvements.
For `SHT_GNU_versym`:
* yaml2obj: set `sh_link` to index of `.dynsym` section automatically.
For `SHT_GNU_verdef`:
* yaml2obj: set `sh_link` to index of `.dynstr` section automatically.
* yaml2obj: set `sh_info` field automatically.
* obj2yaml: don't dump the `Info` field when its value matches the number of version definitions.
For `SHT_GNU_verneed`:
* yaml2obj: set `sh_link` to index of `.dynstr` section automatically.
* yaml2obj: set `sh_info` field automatically.
* obj2yaml: don't dump the `Info` field when its value matches the number of version dependencies.
Also, simplifies few test cases.
Differential revision: https://reviews.llvm.org/D94956
This reverts commit d97f776be5.
The original problem was due to build failures in shared lib builds. D95079
moved ImportedFunctionsInliningStatistics under Analysis, unblocking
this.
This is related to D94982. We want to call these APIs from the Analysis
component, so we can't leave them under Transforms.
Differential Revision: https://reviews.llvm.org/D95079
This reverts commit 5b7aef6eb4 and relands
6529d7c5a4.
The ASan error was debugged and determined to be the fault of an invalid
object file input in our test suite, which was fixed by my last change.
LLD's project policy is that it assumes input objects are valid, so I
have added a comment about this assumption to the relocation bounds
check.
Run the ObjCARCContractPass during LTO. The legacy LTO backend (under
LTO/ThinLTOCodeGenerator.cpp) already does this; this diff just adds that
behavior to the new LTO backend. Without that pass, the objc.clang.arc.use
intrinsic will get passed to the instruction selector, which doesn't know how to
handle it.
In order to test both the new and old pass managers, I've also added support for
the `--[no-]lto-legacy-pass-manager` flags.
P.S. Not sure if the ordering of the pass within the pipeline matters...
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D94547
When using 2 InlinePass instances in the same CGSCC - one for other
mandatory inlinings, the other for the heuristic-driven ones - the order
in which the ImportedFunctionStats would be output-ed would depend on
the destruction order of the inline passes, which is not deterministic.
This patch moves the ImportedFunctionStats responsibility to the
InlineAdvisor to address this problem.
Differential Revision: https://reviews.llvm.org/D94982
Add the aarch64[_be]-*-gnu_ilp32 targets to support the GNU ILP32 ABI for AArch64.
The needed codegen changes were mostly already implemented in D61259, which added support for the watchOS ILP32 ABI. The main changes are:
- Wiring up the new target to enable ILP32 codegen and MC.
- ILP32 va_list support.
- ILP32 TLSDESC relocation support.
There was existing MC support for ELF ILP32 relocations from D25159 which could be enabled by passing "-target-abi ilp32" to llvm-mc. This was changed to check for "gnu_ilp32" in the target triple instead. This shouldn't cause any issues since the existing support was slightly broken: it was generating ELF64 objects instead of the ELF32 object files expected by the GNU ILP32 toolchain.
This target has been tested by running the full rustc testsuite on a big-endian ILP32 system based on the GCC ILP32 toolchain.
Reviewed By: kristof.beyls
Differential Revision: https://reviews.llvm.org/D94143
The pass analysis uses "sets" implemented using a SmallVector type
to keep track of Used, Preserved, Required and RequiredTransitive
passes. When having nested analyses we could end up with duplicates
in those sets, as there was no checks to see if a pass already
existed in the "set" before pushing to the vectors. This idea with
this patch is to avoid such duplicates by avoiding pushing elements
that already is contained when adding elements to those sets.
To align with the above PMDataManager::collectRequiredAndUsedAnalyses
is changed to skip adding both the Required and RequiredTransitive
passes to its result vectors (since RequiredTransitive always is
a subset of Required we ended up with duplicates when traversing
both sets).
Main goal with this is to avoid spending time verifying the same
analysis mulitple times in PMDataManager::verifyPreservedAnalysis
when iterating over the Preserved "set". It is assumed that removing
duplicates from a "set" shouldn't have any other negative impact
(I have not seen any problems so far). If this ends up causing
problems one could do some uniqueness filtering of the vector being
traversed in verifyPreservedAnalysis instead.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D94416
If constants are hidden behind G_ANYEXT we can treat them same way as G_SEXT.
For that purpose we extend getConstantVRegValWithLookThrough with option
to handle G_ANYEXT same way as G_SEXT.
Differential Revision: https://reviews.llvm.org/D92219
When constraining an operand register using constrainOperandRegClass(),
the function may emit a COPY in case the provided register class does
not match the current operand register class. However, the operand
itself is not updated to make use of the COPY, thereby resulting in
incorrect code. This patch fixes that bug by updating the machine
operand accordingly.
Reviewed By: dsanders
Differential Revision: https://reviews.llvm.org/D91244
For Zvlsseg, we need continuous vector registers for the values. We need
to define new register classes for the different combinations of (number
of fields and LMUL). For example,
when the number of fields(NF) = 3, LMUL = 2, the values will be assigned
to (V0M2, V2M2, V4M2), (V2M2, V4M2, V6M2), (V4M2, V6M2, V8M2), ...
We define the vlseg intrinsics with multiple outputs. There is no way to
describe the codegen patterns with multiple outputs in the tablegen
files. We do the codegen in RISCVISelDAGToDAG and use EXTRACT_SUBREG to
extract the values of output.
The multiple scalable vector values will be put into a struct. This
patch is depended on the support for scalable vector struct.
Differential Revision: https://reviews.llvm.org/D94229
Currently LLVM is relying on ValueTracking's `isKnownNonZero` to attach `nonnull`, which can return true when the value is poison.
To make the semantics of `nonnull` consistent with the behavior of `isKnownNonZero`, this makes the semantics of `nonnull` to accept poison, and return poison if the input pointer isn't null.
This makes many transformations like below legal:
```
%p = gep inbounds %x, 1 ; % p is non-null pointer or poison
call void @f(%p) ; instcombine converts this to call void @f(nonnull %p)
```
Instead, this semantics makes propagation of `nonnull` to caller illegal.
The reason is that, passing poison to `nonnull` does not immediately raise UB anymore, so such program is still well defined, if the callee does not use the argument.
Having `noundef` attribute there re-allows this.
```
define void @f(i8* %p) { ; functionattr cannot mark %p nonnull here anymore
call void @g(i8* nonnull %p) ; .. because @g never raises UB if it never uses %p.
ret void
}
```
Another attribute that needs to be updated is `align`. This patch updates the semantics of align to accept poison as well.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D90529
separate sections.
For ThinLTO, all the function profiles without context has been annotated to
outline functions if possible in prelink phase. In postlink phase, profile
annotation in postlink phase is only meaningful for function profile with
context. If the profile is large, it is better to split the profile into two
parts, one with context and one without, so the profile reading in postlink
phase only has to read the part with context. To have the profile splitting,
we extend the ExtBinary format to support different section arrangement. It
will be flexible to add other section layout in the future without the need
to create new class inheriting from ExtBinary class.
Differential Revision: https://reviews.llvm.org/D94435
If we are able to compare with 0 instead of 1, we might be able
to fold the setcc into a beqz/bnez.
Often these setccs start life as an xor that gets converted to
a setcc by DAG combiner's rebuildSetcc. I looked into a detecting
(xor X, 1) and converting to (seteq X, 0) based on boolean contents
being 0/1 in rebuildSetcc instead of using computeKnownBits. It was
very perturbing to AMDGPU tests which I didn't look closely at.
It had a few changes on a couple other targets, but didn't seem
to be much if any improvement.
Reviewed By: lenary
Differential Revision: https://reviews.llvm.org/D94730
Just like llvm.assume, there are a lot of cases where we can just ignore llvm.experimental.noalias.scope.decl.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D93042
This is a restricted version of the combine in `DAGCombiner::MatchLoadCombine`.
(See D27861)
This tries to recognize patterns like below (assuming a little-endian target):
```
s8* x = ...
s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
->
s32 val = *((i32)a)
s8* x = ...
s32 val = a[3] | (a[2] << 8) | (a[1] << 16) | (a[0] << 24)
->
s32 val = BSWAP(*((s32)a))
```
(This patch also handles the big-endian target case as well, in which the first
example above has a BSWAP, and the second example above does not.)
To recognize the pattern, this searches from the last G_OR in the expression
tree.
E.g.
```
Reg Reg
\ /
OR_1 Reg
\ /
OR_2
\ Reg
.. /
Root
```
Each non-OR register in the tree is put in a list. Each register in the list is
then checked to see if it's an appropriate load + shift logic.
If every register is a load + potentially a shift, the combine checks if those
loads + shifts, when OR'd together, are equivalent to a wide load (possibly with
a BSWAP.)
To simplify things, this patch
(1) Only handles G_ZEXTLOADs (which appear to be the common case)
(2) Only works in a single MachineBasicBlock
(3) Only handles G_SHL as the bit twiddling to stick the small load into a
specific location
An IR example of this is here: https://godbolt.org/z/4sP9Pj (lifted from
test/CodeGen/AArch64/load-combine.ll)
At -Os on AArch64, this is a 0.5% code size improvement for CTMark/sqlite3,
and a 0.4% improvement for CTMark/7zip-benchmark.
Also fix a bug in `isPredecessor` which caused it to fail whenever `DefMI` was
the first instruction in the block.
Differential Revision: https://reviews.llvm.org/D94350
The TableGen emitter for directives has two slots for flangClass information and this was mainly
to be able to keep up with the legacy openmp parser at the time. Now that all clauses are encapsulated in
AccClause or OmpClause, these two strings are not necessary anymore and were the the source of couple
of problem while working with the generic structure checker for OpenMP.
This patch remove the flangClassValue string from DirectiveBase.td and use the string flangClass as the
placeholder for the encapsulated class.
Reviewed By: sameeranjoshi
Differential Revision: https://reviews.llvm.org/D94821
This CPU supports all v8.5a features except BTI, and so identifies as v8.5a to
Clang. A bit weird, but the best way for things like xnu to detect the new
features it cares about.
This patch updates the llvm module map to reflect changes made in
`24672ddea3c97fd1eca3e905b23c0116d7759ab8` and fixes the module builds
(`-DLLVM_ENABLE_MODULES=On`).
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch computes the cost for vector.reduce<operand> for scalable vectors.
The cost is split into two parts: the legalization cost and the horizontal
reduction.
Differential Revision: https://reviews.llvm.org/D93639
D84108 exposed a bad interaction between inlining and loop-rotation
during regular LTO, which is causing notable regressions in at least
CINT2006/473.astar.
The problem boils down to: we now rotate a loop just before the vectorizer
which requires duplicating a function call in the preheader when compiling
the individual files ('prepare for LTO'). But this then prevents further
inlining of the function during LTO.
This patch tries to resolve this issue by making LoopRotate more
conservative with respect to rotating loops that have inline-able calls
during the 'prepare for LTO' stage.
I think this change intuitively improves the current situation in
general. Loop-rotate tries hard to avoid creating headers that are 'too
big'. At the moment, it assumes all inlining already happened and the
cost of duplicating a call is equal to just doing the call. But with LTO,
inlining also happens during full LTO and it is possible that a previously
duplicated call is actually a huge function which gets inlined
during LTO.
From the perspective of LV, not much should change overall. Most loops
calling user-provided functions won't get vectorized to start with
(unless we can infer that the function does not touch memory, has no
other side effects). If we do not inline the 'inline-able' call during
the LTO stage, we merely delayed loop-rotation & vectorization. If we
inline during LTO, chances should be very high that the inlined code is
itself vectorizable or the user call was not vectorizable to start with.
There could of course be scenarios where we inline a sufficiently large
function with code not profitable to vectorize, which would have be
vectorized earlier (by scalarzing the call). But even in that case,
there probably is no big performance impact, because it should be mostly
down to the cost-model to reject vectorization in that case. And then
the version with scalarized calls should also not be beneficial. In a way,
LV should have strictly more information after inlining and make more
accurate decisions (barring cost-model issues).
There is of course plenty of room for things to go wrong unexpectedly,
so we need to keep a close look at actual performance and address any
follow-up issues.
I took a look at the impact on statistics for
MultiSource/SPEC2000/SPEC2006. There are a few benchmarks with fewer
loops rotated, but no change to the number of loops vectorized.
Reviewed By: sanwou01
Differential Revision: https://reviews.llvm.org/D94232
Element sections will also need flags, so we shouldn't squat the
WASM_SEGMENT namespace.
Depends on D90948.
Differential Revision: https://reviews.llvm.org/D92315
The code here is checking to see if two sets are identical.
OtherBlocksSet should point to OtherL->getBlocksSet() instead.
Differential Revision: https://reviews.llvm.org/D94926
This patch adds the default value of 1 to drop_begin.
In the llvm codebase, 70% of calls to drop_begin have 1 as the second
argument. The interface similar to with std::next should improve
readability.
This patch converts a couple of calls to drop_begin as examples.
Differential Revision: https://reviews.llvm.org/D94858
DefaultAttrIntrinsics was introduced to add very common attributes to a
large set of intrinsics.
Currently the added attributes include:
nofree nosync nounwind willreturn
I think those should hold for most AArch64 target intrinsics, but
there are too many to check manually. This patch makes most AArch64 target
intrinsics DefaultAttrsIntrinsics.
Some notable exceptions I think are exclusive loads and stores as well
as the memory barrier intrinsics, for which nosync does not apply I
think.
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D94687
Keys matching the tombstone/empty special values cannot be inserted in a
DenseMap. Under some circumstances, LV tries to add members to an
interleave group that match the special values. Skip adding such
members. This is unlikely to have any impact in practice, because
interleave groups with such indices are very likely to not be
vectorized, due to gaps.
This issue has been surfaced by fuzzing, see
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=11638
`ELFDumper.cpp` implements the functionality that allows to get symbol versions.
It is used for dumping versioned symbols.
This helps to implement https://bugs.llvm.org/show_bug.cgi?id=48670 ("make llvm-nm -D print version names"):
we can move out and reuse the code from `ELFDumper.cpp`.
This is what this patch do: it moves the related functionality to `ELFFile<ELFT>`.
Differential revision: https://reviews.llvm.org/D94771
RISC-V would like to use a struct of scalable vectors to return multiple
values from intrinsics. This woud also be needed for target independent
intrinsics like llvm.sadd.overflow.
This patch removes the existing restriction for this. I've modified
StructType::isSized to consider a struct containing scalable vectors
as unsized so the verifier won't allow loads/stores/allocas of these
structs.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D94142
Reassociating some patterns to generate more fma instructions to
reduce register pressure.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D92071
add one use check to lookThruCopyLike.
The root node is safe to be deleted if we are sure that every
definition in the copy chain only has one use.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D92069
There are no changes relative to the original commit. However, an issue
this exposed in BasicAA assumption tracking has been fixed in the
previous commit.
-----
An alias query currently works out roughly like this:
* Look up location pair in cache.
* Perform BasicAA logic (including cache lookup and insertion...)
* Perform a recursive query using BestAAResults.
* Look up location pair in cache (and thus do not recurse into BasicAA)
* Query all the other AA providers.
* Query all the other AA providers.
This is a lot of unnecessary work, all ultimately caused by the
BestAAResults query at the end of aliasCheck(). The reason we perform
it, is that aliasCheck() is getting called recursively, and we of
course want those recursive queries to also make use of other AA
providers, not just BasicAA. We can solve this by making the recursive
queries directly use BestAAResults (which will check both BasicAA
and other providers), rather than recursing into aliasCheck().
There are some tradeoffs:
* We can no longer pass through the precomputed underlying object
to aliasCheck(). This is not a major concern, because nowadays
getUnderlyingObject() is quite cheap.
* Results from other AA providers are no longer cached inside
BasicAA. The way this worked was already a bit iffy, in that a
result could be cached, but if it was MayAlias, we'd still end
up re-querying other providers anyway. If we want to cache
non-BasicAA results, we should do that in a more principled manner.
In any case, despite those tradeoffs, this works out to be a decent
compile-time improvment. I think it also simplifies the mental model
of how BasicAA works. It took me quite a while to fully understand
how these things interact.
Differential Revision: https://reviews.llvm.org/D90094
D91936 placed the tracking for the assumptions into BasicAA.
However, when recursing over phis, we may use fresh AAQI instances.
In this case AssumptionBasedResults from an inner AAQI can reesult
in a removal of an element from the outer AAQI.
To avoid this, move the tracking into AAQI. This generally makes
more sense, as the NoAlias assumptions themselves are also stored
in AAQI.
The test case only produces an assertion failure with D90094
reapplied. I think the issue exists independently of that change
as well, but I wasn't able to come up with a reproducer.
This patch removes some ancient options as a clean-up before moving
code-gen to use LTOBackend in D94487.
I think it would preferable to remove those ancient options, because
1. There are no corresponding options in LTOBackend based tools,
2. There are no unit tests for them,
3. They are not passed through by Clang,
4. At least for GNVLoadPRE, users could just use GVN's `enable-load-pre`.
Alternatively we could add support for those options to lto::Config &
co, but I think it would be better to remove them, unless they are
actually used in practice.
Reviewed By: steven_wu, tejohnson
Differential Revision: https://reviews.llvm.org/D94783
Current code breaks this version of MSVC due to a mismatch between `std::is_trivially_copyable` and `llvm::is_trivially_copyable` for `std::pair` instantiations. Hence I was attempting to use `std::is_trivially_copyable` to set `llvm::is_trivially_copyable<T>::value`.
I spent some time root causing an `llvm::Optional` build error on MSVC 16.8.3 related to the change described above:
```
62>C:\src\ocg_llvm\llvm-project\llvm\include\llvm/ADT/BreadthFirstIterator.h(96,12): error C2280: 'llvm::Optional<std::pair<std::pair<unsigned int,llvm::Graph<4>::NodeSubset> *,llvm::Optional<llvm::Graph<4>::ChildIterator>>> &llvm::Optional<std::pair<std::pair<unsigned int,llvm::Graph<4>::NodeSubset> *,llvm::Optional<llvm::Graph<4>::ChildIterator>>>::operator =(const llvm::Optional<std::pair<std::pair<unsigned int,llvm::Graph<4>::NodeSubset> *,llvm::Optional<llvm::Graph<4>::ChildIterator>>> &)': attempting to reference a deleted function (compiling source file C:\src\ocg_llvm\llvm-project\llvm\unittests\ADT\BreadthFirstIteratorTest.cpp)
...
```
The "trivial" specialization of `optional_detail::OptionalStorage` assumes that the value type is trivially copy constructible and trivially copy assignable. The specialization is invoked based on a check of `is_trivially_copyable` alone, which does not imply both `is_trivially_copy_assignable` and `is_trivially_copy_constructible` are true.
[[ https://en.cppreference.com/w/cpp/named_req/TriviallyCopyable | According to the spec ]], a deleted assignment operator does not make `is_trivially_copyable` false. So I think all these properties need to be checked explicitly in order to specialize `OptionalStorage` to the "trivial" version:
```
/// Storage for any type.
template <typename T, bool = std::is_trivially_copy_constructible<T>::value
&& std::is_trivially_copy_assignable<T>::value>
class OptionalStorage {
```
Above fixed my build break in MSVC, but I think we need to explicitly check `is_trivially_copy_constructible` too since it might be possible the copy constructor is deleted. Also would be ideal to move over to `std::is_trivially_copyable` instead of the `llvm` namespace verson.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D93510
The ``llvm.experimental.noalias.scope.decl`` intrinsic identifies where a noalias
scope is declared. When the intrinsic is duplicated, a decision must
also be made about the scope: depending on the reason of the duplication,
the scope might need to be duplicated as well.
Reviewed By: nikic, jdoerfert
Differential Revision: https://reviews.llvm.org/D93039
Expanding from D94808 - we ensure the same InlineAdvisor is used by both
InlinerPass instances. The notion of mandatory inlining is moved into
the core InlineAdvisor: advisors anyway have to handle that case, so
this change also factors out that a bit better.
Differential Revision: https://reviews.llvm.org/D94825
Unary minus operator applied to unsigned type, result still unsigned.
Use `~0U` instead of `-1U` and `1 + ~VAL` instead of `-VAL`.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D94417
This reverts commit 33be50daa9,
effectively reapplying:
- 260a856c2a
- 3043e5a5c3
- 49142991a6
... with a fix to skip a call to `SmallVector::isReferenceToStorage()`
when we know the parameter had been taken by value for small, POD-like
`T`. See https://reviews.llvm.org/D93779 for the discussion on the
revert.
At a high-level, these commits fix reference invalidation in
SmallVector's push_back, append, insert (one or N), and resize
operations. For more details, please see the original commit messages.
This commit fixes a bug that crept into
`SmallVectorTemplateCommon::reserveForAndGetAddress()` during the review
process after performance analysis was done. That function is now called
`reserveForParamAndGetAddress()`, clarifying that it only works for
parameter values. It uses that knowledge to bypass
`SmallVector::isReferenceToStorage()` when `TakesParamByValue`. This is
`constexpr` and avoids adding overhead for "small enough", trivially
copyable `T`.
Performance could potentially be tuned further by increasing the
threshold for `TakesParamByValue`, which is currently defined as:
```
bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void *);
```
in the POD-like version of SmallVectorTemplateBase (else, `false`).
Differential Revision: https://reviews.llvm.org/D94800
This is not nice, but it's the best transient solution possible,
and is better than just duplicating the whole function.
The problem is, this function is widely used,
and it is not at all obvious that all the users
could be painlessly switched to operate on DomTreeUpdater,
and somehow i don't feel like porting all those users first.
This function is one of last three that not operate on DomTreeUpdater.
This is not nice, but it's the best transient solution possible,
and is better than just duplicating the whole function.
The problem is, this function is widely used,
and it is not at all obvious that all the users
could be painlessly switched to operate on DomTreeUpdater,
and somehow i don't feel like porting all those users first.
This function is one of last three that not operate on DomTreeUpdater.
This is not nice, but it's the best transient solution possible,
and is better than just duplicating the whole function.
The problem is, this function is widely used,
and it is not at all obvious that all the users
could be painlessly switched to operate on DomTreeUpdater,
and somehow i don't feel like porting all those users first.
This function is one of last three that not operate on DomTreeUpdater.
Even though not all it's users operate on DomTreeUpdater,
it itself internally operates on DomTreeUpdater,
so it must mean everything is fine with that,
so just do that globally.
This reverts commit a3904cc77f.
It causes the compiler to crash while building Harfbuzz for ARM in
Chromium, reduced reproducer forthcoming:
https://crbug.com/1167305
Add a matcher that checks if the given subpattern has only one non-debug use.
Also improve existing m_OneUse testcase.
Differential Revision: https://reviews.llvm.org/D94705
It can be useful for an ObjectLinkingLayerCreator to allow callee errors to get propagated to the builder. Specifically, this is the case when the ObjectLayer uses the EHFrameRegistrationPlugin, because it requires a TPCEHFrameRegistrar and instantiation for it may fail (e.g. if the required registration symbols are missing in the target process).
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D94690
All other layers in LLJIT are stored as unique_ptr's already. At this point, it is not strictly necessary for ObjTransformLayer, but it makes a follow-up change more straightforward.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D94689
New dwarf operator DW_OP_LLVM_implicit_pointer is introduced (present only in LLVM IR)
This operator is required as it is different than DWARF operator
DW_OP_implicit_pointer in representation and specification (number
and types of operands) and later can not be used as multiple level.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D84113
This reverts commit 260a856c2a.
This reverts commit 3043e5a5c3.
This reverts commit 49142991a6.
This change had a larger than anticipated compile-time impact,
possibly because the small value optimization is not working as
intended. See D93779.
It turns out we need to handle `LangOptions` separately from the rest of the options. `LangOptions` used to be conditionally parsed only when `!(DashX.getFormat() == InputKind::Precompiled || DashX.getLanguage() == Language::LLVM_IR)` and we need to restore this order (for more info, see D94682).
We could do this similarly to how `DiagnosticOptions` are handled: via a counterpart to the `IsDiag` mix-in (e.g. `IsLang`). These mix-ins would prefix the option key path with the appropriate `CompilerInvocation::XxxOpts` member. However, this solution would be problematic, as we'd now have two kinds of options (`Lang` and `Diag`) with seemingly incomplete key paths in the same file. To understand what `CompilerInvocation` member an option affects, one would need to read the whole option definition and notice the `IsDiag` or `IsLang` class.
Instead, this patch introduces more robust way to handle different kinds of options separately: via the `KeyPathAndMacroPrefix` class. We have one specialization of that class per `CompilerInvocation` member (e.g. `LangOpts`, `DiagnosticOpts`, etc.). Now, instead of specifying a key path with `"LangOpts->UndefPrefixes"`, we use `LangOpts<"UndefPrefixes">`. This keeps the readability intact (you don't have to look for the `IsLang` mix-in, the key path is complete on its own) and allows us to specify a custom macro prefix within `LangOpts`.
Reviewed By: Bigcheese
Differential Revision: https://reviews.llvm.org/D94676
The number of hardware threads available to a ThreadPool can be limited if setting an affinity mask.
For example:
> start /B /AFFINITY 0xF lld-link.exe ...
Would let LLD only use 4 hyper-threads.
Previously, there was an outstanding issue on Windows Server 2019 on dual-CPU machines, which was preventing from using both CPU sockets. In normal conditions, when no affinity mask was set, ProcessorGroup::AllThreads was different from ProcessorGroup::UsableThreads. The previous code in llvm/lib/Support/Windows/Threading.inc L201 was improperly assuming those two values to be equal, and consequently was limiting the execution to only one CPU socket.
Differential Revision: https://reviews.llvm.org/D92419
An alias query currently works out roughly like this:
* Look up location pair in cache.
* Perform BasicAA logic (including cache lookup and insertion...)
* Perform a recursive query using BestAAResults.
* Look up location pair in cache (and thus do not recurse into BasicAA)
* Query all the other AA providers.
* Query all the other AA providers.
This is a lot of unnecessary work, all ultimately caused by the
BestAAResults query at the end of aliasCheck(). The reason we perform
it, is that aliasCheck() is getting called recursively, and we of
course want those recursive queries to also make use of other AA
providers, not just BasicAA. We can solve this by making the recursive
queries directly use BestAAResults (which will check both BasicAA
and other providers), rather than recursing into aliasCheck().
There are some tradeoffs:
* We can no longer pass through the precomputed underlying object
to aliasCheck(). This is not a major concern, because nowadays
getUnderlyingObject() is quite cheap.
* Results from other AA providers are no longer cached inside
BasicAA. The way this worked was already a bit iffy, in that a
result could be cached, but if it was MayAlias, we'd still end
up re-querying other providers anyway. If we want to cache
non-BasicAA results, we should do that in a more principled manner.
In any case, despite those tradeoffs, this works out to be a decent
compile-time improvment. I think it also simplifies the mental model
of how BasicAA works. It took me quite a while to fully understand
how these things interact.
Differential Revision: https://reviews.llvm.org/D90094
This patch rename the tablegen generated file ACC.cpp.inc to ACC.inc in order
to match what was done in D92955. This file is included in header file as well as .cpp
file so it make more sense.
Reviewed By: sameeranjoshi
Differential Revision: https://reviews.llvm.org/D93485
This commit adds table symbol support in a partial way, while still
including some special cases for the __indirect_function_table symbol.
No change in tests.
Differential Revision: https://reviews.llvm.org/D94075
This introduces the ARMv8.7-A LS64 extension's intrinsics for 64 bytes
atomic loads and stores: `__arm_ld64b`, `__arm_st64b`, `__arm_st64bv`,
and `__arm_st64bv0`. These are selected into the LS64 instructions
LD64B, ST64B, ST64BV and ST64BV0, respectively.
Based on patches written by Simon Tatham.
Reviewed By: tmatheson
Differential Revision: https://reviews.llvm.org/D93232
For small enough, trivially copyable `T`, take the parameter by-value in
`SmallVector::resize`. Otherwise, when growing, update the arugment
appropriately.
Differential Revision: https://reviews.llvm.org/D93781
For small enough, trivially copyable `T`, take the parameter by-value in
`SmallVector::append` and `SmallVector::insert`. Otherwise, when
growing, update the arugment appropriately.
Differential Revision: https://reviews.llvm.org/D93780
This reverts commit 56d1ffb927, reapplying
9abac60309, removing insert_one_maybe_copy
and using a helper called forward_value_param instead. This avoids use
of `std::is_same` (or any SFINAE), so I'm hoping it's more portable and
MSVC will be happier.
Original commit message follows:
For small enough, trivially copyable `T`, take the argument by value in
`SmallVector::push_back` and copy it when forwarding to
`SmallVector::insert_one_impl`. Otherwise, when growing, update the
argument appropriately.
Differential Revision: https://reviews.llvm.org/D93779
For small enough, trivially copyable `T`, take the argument by value in
`SmallVector::push_back` and copy it when forwarding to
`SmallVector::insert_one_impl`. Otherwise, when growing, update the
argument appropriately.
Differential Revision: https://reviews.llvm.org/D93779
The number of hardware threads available to a ThreadPool can be limited if setting an affinity mask.
For example:
> start /B /AFFINITY 0xF lld-link.exe ...
Would let LLD only use 4 hyper-threads.
Previously, there was an outstanding issue on Windows Server 2019 on dual-CPU machines, which was preventing from using both CPU sockets. In normal conditions, when no affinity mask was set, ProcessorGroup::AllThreads was different from ProcessorGroup::UsableThreads. The previous code in llvm/lib/Support/Windows/Threading.inc L201 was improperly assuming those two values to be equal, and consequently was limiting the execution to only one CPU socket.
Differential Revision: https://reviews.llvm.org/D92419
to Pass.h.
In some compiler passes like SampleProfileLoaderPass, we want to know which
LTO/ThinLTO phase the pass is in. Currently the phase is represented in enum
class PassBuilder::ThinLTOPhase, so it is only available in PassBuilder and
it also cannot represent phase in full LTO. The patch extends it to include
full LTO phases and move it from PassBuilder.h to Pass.h, then it is much
easier for PassBuilder to communiate with each pass about current LTO phase.
Differential Revision: https://reviews.llvm.org/D94613
Current code breaks this version of MSVC due to a mismatch between `std::is_trivially_copyable` and `llvm::is_trivially_copyable` for `std::pair` instantiations. Hence I was attempting to use `std::is_trivially_copyable` to set `llvm::is_trivially_copyable<T>::value`.
I spent some time root causing an `llvm::Optional` build error on MSVC 16.8.3 related to the change described above:
```
62>C:\src\ocg_llvm\llvm-project\llvm\include\llvm/ADT/BreadthFirstIterator.h(96,12): error C2280: 'llvm::Optional<std::pair<std::pair<unsigned int,llvm::Graph<4>::NodeSubset> *,llvm::Optional<llvm::Graph<4>::ChildIterator>>> &llvm::Optional<std::pair<std::pair<unsigned int,llvm::Graph<4>::NodeSubset> *,llvm::Optional<llvm::Graph<4>::ChildIterator>>>::operator =(const llvm::Optional<std::pair<std::pair<unsigned int,llvm::Graph<4>::NodeSubset> *,llvm::Optional<llvm::Graph<4>::ChildIterator>>> &)': attempting to reference a deleted function (compiling source file C:\src\ocg_llvm\llvm-project\llvm\unittests\ADT\BreadthFirstIteratorTest.cpp)
...
```
The "trivial" specialization of `optional_detail::OptionalStorage` assumes that the value type is trivially copy constructible and trivially copy assignable. The specialization is invoked based on a check of `is_trivially_copyable` alone, which does not imply both `is_trivially_copy_assignable` and `is_trivially_copy_constructible` are true.
[[ https://en.cppreference.com/w/cpp/named_req/TriviallyCopyable | According to the spec ]], a deleted assignment operator does not make `is_trivially_copyable` false. So I think all these properties need to be checked explicitly in order to specialize `OptionalStorage` to the "trivial" version:
```
/// Storage for any type.
template <typename T, bool = std::is_trivially_copy_constructible<T>::value
&& std::is_trivially_copy_assignable<T>::value>
class OptionalStorage {
```
Above fixed my build break in MSVC, but I think we need to explicitly check `is_trivially_copy_constructible` too since it might be possible the copy constructor is deleted. Also would be ideal to move over to `std::is_trivially_copyable` instead of the `llvm` namespace verson.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D93510
This fixes double printing of insertion debug messages in the
legalizer.
Try to cleanup usage of observers. Currently the use of observers is
pretty hard to follow and it's not clear what is responsible for
them. Observers are referenced in 3 places:
1. In the MachineFunction
2. In the MachineIRBuilder
3. In the LegalizerHelper
The observers in the MachineFunction and MachineIRBuilder are both
called only on insertions, and are redundant with each other. The
source of the double printing was the same observer was added to both
the MachineFunction, and the MachineIRBuilder. One of these references
needs to be removed. Arguably observers in general should be fully
removed from one or the other, but it may be useful to have a local
observer in the MachineIRBuilder that is not added to the function's
observers. Alternatively, the wrapper observer could manage a local
observer in one place.
The LegalizerHelper only ever calls the observer on changing/changed
instructions, and never insertions. Logically these are two different
types of observers, for changes and for insertions.
Additionally, some places used the GISelObserverWrapper when they only
needed a single observer they could use directly.
Setting the observer in the LegalizerHelper constructor is not
flexible enough if the LegalizerHelper is constructed anywhere outside
the one used by the legalizer. AMDGPU calls the LegalizerHelper in
RegBankSelect, and needs to use a local observer to apply the regbank
to newly created instructions. Currently it accomplishes this by
constructing a local MachineIRBuilder. I'm trying to move the
MachineIRBuilder to be owned/maintained by the RegBankSelect pass
itself, but the locally constructed LegalizerHelper would reset the
observer.
Mips also has a special case use of the LegalizationArtifactCombiner
in applyMappingImpl; I think we do need to run the artifact combiner
during RegBankSelect, but in a more consistent way outside of
applyMappingImpl.
For some reason some builds dont like the arrow operator access. using the deref then access should fix the issue.
/home/buildbots/ppc64le-flang-mlir-rhel-test/ppc64le-flang-rhel-clang-build/llvm-project/llvm/include/llvm/ADT/iterator.h:171:34: error: taking the address of a temporary object of type 'llvm::StringRef' [-Waddress-of-temporary]
PointerT operator->() { return &static_cast<DerivedT *>(this)->operator*(); }
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/buildbots/ppc64le-flang-mlir-rhel-test/ppc64le-flang-rhel-clang-build/llvm-project/llvm/include/llvm/ADT/StringExtras.h:387:13: note: in instantiation of member function 'llvm::iterator_facade_base<llvm::mapped_iterator<mlir::tblgen::TypeParameter *, (lambda at /home/buildbots/ppc64le-flang-mlir-rhel-test/ppc64le-flang-rhel-clang-build/llvm-project/mlir/tools/mlir-tblgen/TypeDefGen.cpp:414:19), llvm::StringRef>, std::random_access_iterator_tag, llvm::StringRef, long, llvm::StringRef *, llvm::StringRef &>::operator->' requested here
Len += I->size();
This reuses the code from yaml2obj (moves it to ELFYAML.h).
With it we can set the `sh_entsize` in a single place in `obj2yaml`.
Note that it also fixes a bug of `yaml2obj`: we do not
set the `sh_entsize` field for the `SHT_ARM_EXIDX` section properly.
Differential revision: https://reviews.llvm.org/D93858
Currently we don't support multiple SHT_SYMTAB_SHNDX sections
and the DT_SYMTAB_SHNDX tag currently.
This patch implements it and fixes the
https://bugs.llvm.org/show_bug.cgi?id=43991.
I had to introduce the `struct DataRegion` to ELF.h,
it is used to represent a region that might have no known size.
It is needed, because we don't know the size of the extended
section indices table when it is located via DT_SYMTAB_SHNDX.
In this case we still want to validate that we don't read
past the end of the file.
Differential revision: https://reviews.llvm.org/D92923
Currently dsymutil will silently fail when processing binaries with
Dwarf 5 debug info. This patch adds rudimentary support for Dwarf 5 in
dsymutil.
- Recognize relocations in the debug_addr section.
- Recognize (a subset of) Dwarf 5 form values.
- Emits valid Dwarf 5 compile unit header chains.
To simplify things (and avoid having to emit indexed sections) I decided
to emit the relocated addresses directly in the debug info section.
- DW_FORM_strx gets relocated and rewritten to DW_FORM_strp
- DW_FORM_addrx gets relocated and rewritten to DW_FORM_addr
Obviously there's a lot of work left, but this should be a step in the
right direction.
rdar://62345491
Differential revision: https://reviews.llvm.org/D94323
Also old mir tests are updated to meet last changes in STATEPOINT format.
Reviewers: reames, dantrushin
Reviewed By: reames, dantrushin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D94482
This is a pretty classic optimization. Instead of processing symbol
records and copying them to temporary storage, do a first pass to
measure how large the module symbol stream will be, and then copy the
data into place in the PDB file. This requires defering relocation until
much later, which accounts for most of the complexity in this patch.
This patch avoids copying the contents of all live .debug$S sections
into heap memory, which is worth about 20% of private memory usage when
making PDBs. However, this is not an unmitigated performance win,
because it can be faster to read dense, temporary, heap data than it is
to iterate symbol records in object file backed memory a second time.
Results on release chrome.dll:
peak mem: 5164.89MB -> 4072.19MB (-1,092.7MB, -21.2%)
wall-j1: 0m30.844s -> 0m32.094s (slightly slower)
wall-j3: 0m20.968s -> 0m20.312s (slightly faster)
wall-j8: 0m19.062s -> 0m17.672s (meaningfully faster)
I gathered similar numbers for a debug, component build of content.dll
in Chrome, and the performance impact of this change was in the noise.
The memory usage reduction was visible and similar.
Because of the new parallelism in the PDB commit phase, more cores makes
the new approach faster. I'm assuming that most C++ developer machines
these days are at least quad core, so I think this is a win.
Differential Revision: https://reviews.llvm.org/D94267
This patch resolves the suboptimal codegen described in http://llvm.org/pr47873 .
When CodeGenPrepare lowers select into a conditional branch, a freeze instruction is inserted.
It is then translated to `BRCOND(FREEZE(SETCC))` in SelDag.
The `FREEZE` in the middle of `SETCC` and `BRCOND` was causing a suboptimal code generation however.
This patch adds `BRCOND(FREEZE(cond))` -> `BRCOND(cond)` fold to DAGCombiner to remove the `FREEZE`.
To make this optimization sound, `BRCOND(UNDEF)` simply should nondeterministically jump to the branch or not, rather than raising UB.
It wasn't clear what happens when the condition was undef according to the comments in ISDOpcodes.h, however.
I updated the comments of `BRCOND` to make it explicit (as well as `BR_CC`, which is also a conditional branch instruction).
Note that it diverges from the semantics of `br` instruction in IR, which is explicitly UB.
Since the UB semantics was necessary to explain optimizations that use branching conditions, and SelDag doesn't seem to have such optimization, I think this divergence is okay.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D92015
Most uses of this class just use the default MallocAllocator.
As this contains no fields, we can use the empty base optimisation for BumpPtrAllocatorImpl and save 8 bytes of padding for most use cases.
This prevents using a class that is marked as `final` as the `AllocatorT` template argument.
In one must use an allocator that has been marked as `final`, the simplest way around this is a proxy class.
The class should have all the methods that `AllocaterBase` expects and should forward the calls to your own allocator instance.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D94439
This change modifies the source location formatting from:
LineNumber.Discriminator
to:
LineNumber:ColumnNumber.Discriminator
The motivation here is to enhance location information for inline replay that currently exists for the SampleProfile inliner. This will be leveraged further in inline replay for the CGSCC inliner in the related diff.
The ReplayInlineAdvisor is also modified to read the new format and now takes into account the callee for greater accuracy.
Testing:
ninja check-llvm
Reviewed By: mtrofin
Differential Revision: https://reviews.llvm.org/D94333
Similar to D94125, derive `willreturn` for functions that are `readonly` and
`mustprogress` in FunctionAttrs.
To quote the reasoning from D94125:
Since D86233 we have `mustprogress` which, in combination with
`readonly`, implies `willreturn`. The idea is that every side-effect
has to be modeled as a "write". Consequently, `readonly` means there
is no side-effect, and `mustprogress` guarantees that we cannot "loop"
forever without side-effect.
Reviewed By: jdoerfert, nikic
Differential Revision: https://reviews.llvm.org/D94502
Use TableGen and information in ACC.td for the Default enum in the OpenACC dialect.
This patch generalize what was done for OpenMP for directives.
Follow up patch after D93576
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D93710
The patch adds the required methods to FixedPointBuilder
for converting between fixed-point and floating point,
and uses them from Clang.
This depends on D54749.
Reviewed By: leonardchan
Differential Revision: https://reviews.llvm.org/D86632
C++14 attributes are superior because they can be applied to functions with inline definition and the syntax is cleaner.
I intend to convert all uses and then remove the macro.
One issue that might hold back switching uses to C++14 attributes is that
clang-format does not put long attributes on separate lines and formatted code will look like:
```
template <typename T>
[[deprecated("blah blah")]] void
foooooooooooooooooooooooooooo() {
...
}
```
Putting long attributes on a separate line would be prettier.
See https://stackoverflow.com/questions/45740466/clang-format-setting-to-control-c-attributes
AttributeMacros probably won't help because it can't match the custom message.
https://clang.llvm.org/docs/ClangFormatStyleOptions.html
Reviewed By: rriddle, MaskRay
Differential Revision: https://reviews.llvm.org/D94219
Remove the InsertionPoint argument from SlotIndexes::insertMBBInMaps
because it was confusing: what does it mean to insert a new block
between two instructions, in the middle of an existing block?
Instead, support the case that MachineBasicBlock::splitAt really needs,
where the new block contains some instructions that are already in the
maps because they have been moved there from the tail of the previous
block.
In all other use cases the new block is empty.
Based on work by Carl Ritson!
Differential Revision: https://reviews.llvm.org/D94311
In ST mode, flat scratch instructions have neither an sgpr nor a vgpr
for the address. This lead to an assertion when inserting hard clauses.
Differential Revision: https://reviews.llvm.org/D94406
Added a utility function in Value class to print block name and use
block labels for unnamed blocks.
Changed LICM to call this function in its debug output.
Patch by Xiaoqing Wu <xiaoqing_wu@apple.com>
Differential Revision: https://reviews.llvm.org/D93577
Passes in the new PostAllocationPasses list will run immediately after memory
allocation and address assignment for defined symbols, and before
JITLinkContext::notifyResolved is called. These passes can set up state
associated with the addresses of defined symbols before any query for these
addresses completes.
Define the `vfclass` IR intrinsics for the respective V instructions.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Evandro Menezes <evandro.menezes@sifive.com>
Differential Revision: https://reviews.llvm.org/D94356
The standard requires comparisons of pointers to unrelated storage to
use `std::less`. Split out some helpers that do that and update all the
code that was comparing using `<` and friends (mostly assertions).
Differential Revision: https://reviews.llvm.org/D93777
Functions that are renamed under -funique-internal-linkage-names have their debug linkage name updated as well.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D93747
Before this patch there was generic mapping from vector_extract
to G_EXTRACT_VECTOR_ELT added in SelectionDAGCompat.td. That
mapping is now replaced by a mapping from extractelt instead.
The reasoning is that vector_extract is marked as deprecated,
so it is assumed that a majority of targets will use extractelt
and not vector_extract (and that the long term solution for all
targets would be to use extractelt).
Targets like AArch64 that still use vector_extract can add an
additional mapping from the deprecated vector_extract as target
specific tablegen definitions. Such a mapping is added for AArch64
in this patch to avoid breaking tests.
When adding the extractelt => G_EXTRACT_VECTOR_ELT mapping we
triggered some new code paths in GlobalISelEmitter, ending up in
an assert when trying to import a pattern containing EXTRACT_SUBREG
for ARM. Therefore this patch also adds a "failedImport" warning
for that situation (instead of hitting the assert).
Differential Revision: https://reviews.llvm.org/D93416
Summary:
Introduce a new mode of operation for -print-changed that only reports
after a pass changes the IR with all of the other messages suppressed (ie,
no initial IR and no messages about ignored, filtered or non-modifying
passes).
The option processing for -print-changed is changed to take an optional
string indicating options for print-changed. Initially, the only option
supported is quiet (as described above). This new quiet mode is specified
with -print-changed=quiet while -print-changed will continue to function
in the same way. It is intended that there will be more options in the
future.
Author: Jamie Schmeiser <schmeise@ca.ibm.com>
Reviewed By: aeubanks (Arthur Eubanks)
Differential Revision: https://reviews.llvm.org/D92589
Now that we flush the local value map for every instruction, we don't
need any extra flushes for specific cases. Also, LastFlushPoint is
not used for anything. Follow-ups to #c161665 (D91734).
This reapplies #3fd39d3.
Differential Revision: https://reviews.llvm.org/D92338
Local values are constants or addresses that can't be folded into
the instruction that uses them. FastISel materializes these in a
"local value" area that always dominates the current insertion
point, to try to avoid materializing these values more than once
(per block).
https://reviews.llvm.org/D43093 added code to sink these local
value instructions to their first use, which has two beneficial
effects. One, it is likely to avoid some unnecessary spills and
reloads; two, it allows us to attach the debug location of the
user to the local value instruction. The latter effect can
improve the debugging experience for debuggers with a "set next
statement" feature, such as the Visual Studio debugger and PS4
debugger, because instructions to set up constants for a given
statement will be associated with the appropriate source line.
There are also some constants (primarily addresses) that could be
produced by no-op casts or GEP instructions; the main difference
from "local value" instructions is that these are values from
separate IR instructions, and therefore could have multiple users
across multiple basic blocks. D43093 avoided sinking these, even
though they were emitted to the same "local value" area as the
other instructions. The patch comment for D43093 states:
Local values may also be used by no-op casts, which adds the
register to the RegFixups table. Without reversing the RegFixups
map direction, we don't have enough information to sink these
instructions.
This patch undoes most of D43093, and instead flushes the local
value map after(*) every IR instruction, using that instruction's
debug location. This avoids sometimes incorrect locations used
previously, and emits instructions in a more natural order.
In addition, constants materialized due to PHI instructions are
not assigned a debug location immediately; instead, when the
local value map is flushed, if the first local value instruction
has no debug location, it is given the same location as the
first non-local-value-map instruction. This prevents PHIs
from introducing unattributed instructions, which would either
be implicitly attributed to the location for the preceding IR
instruction, or given line 0 if they are at the beginning of
a machine basic block. Neither of those consequences is good
for debugging.
This does mean materialized values are not re-used across IR
instruction boundaries; however, only about 5% of those values
were reused in an experimental self-build of clang.
(*) Actually, just prior to the next instruction. It seems like
it would be cleaner the other way, but I was having trouble
getting that to work.
This reapplies commits cf1c774d and dc35368c, and adds the
modification to PHI handling, which should avoid problems
with debugging under gdb.
Differential Revision: https://reviews.llvm.org/D91734
The existing implementation of parallel region merging applies only to
consecutive parallel regions that have speculatable sequential
instructions in-between. This patch lifts this limitation to expand
merging with any sequential instructions in-between, except calls to
unmergable OpenMP runtime functions. In-between sequential instructions
in the merged region are sequentialized in a "master" region and any
output values are broadcasted to the following parallel regions and the
sequential region continuation of the merged region.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D90909
This reverts commit 8e3e148c
This commit fixes two issues with the original patch:
* The sanitizer build bot reported an uninitialized value. This was caused by normalizeStringIntegral not returning None on failure.
* Some build bots complained about inaccessible keypaths. To mitigate that, "this->" was added back to the keypath to restore the previous behavior.
PreFixupPasses better reflects when these passes will run.
A future patch will (re)introduce a PostAllocationPasses list that will run
after allocation, but before JITLinkContext::notifyResolved is called to notify
the rest of the JIT about the resolved symbol addresses.
This is a resubmit of dd6bb367 (which was reverted due to stage2 build failures in 7c63aac), with the additional restriction added to the transform to only consider outer most loops.
As shown in the added test case, ensuring LCSSA is up to date when deleting an inner loop is tricky as we may actually need to remove blocks from any outer loops, thus changing the exit block set. For the moment, just avoid transforming this case. I plan to return to this case in a follow up patch and see if we can do better.
Original commit message follows...
The basic idea is that if SCEV can prove the backedge isn't taken, we can go ahead and get rid of the backedge (and thus the loop) while leaving the rest of the control in place. This nicely handles cases with dispatch between multiple exits and internal side effects.
Differential Revision: https://reviews.llvm.org/D93906
This patch introduces a helper class SubsequentDelim to simplify loops
that generate a comma-separated lists.
For example, consider the following loop, taken from
llvm/lib/CodeGen/MachineBasicBlock.cpp:
for (auto I = pred_begin(), E = pred_end(); I != E; ++I) {
if (I != pred_begin())
OS << ", ";
OS << printMBBReference(**I);
}
The new class allows us to rewrite the loop as:
SubsequentDelim SD;
for (auto I = pred_begin(), E = pred_end(); I != E; ++I)
OS << SD << printMBBReference(**I);
where SD evaluates to the empty string for the first time and ", " for
subsequent iterations.
Unlike interleaveComma, defined in llvm/include/llvm/ADT/STLExtras.h,
SubsequentDelim can accommodate a wider variety of loops, including:
- those that conditionally skip certain items,
- those that need iterators to call getSuccProbability(I), and
- those that iterate over integer ranges.
As an example, this patch cleans up MachineBasicBlock::print.
Differential Revision: https://reviews.llvm.org/D94377
Currently make_early_inc_range cannot be used with iterators with
operator* implementations that do not return a reference.
Most notably in the LLVM codebase, this means the User iterator ranges
cannot be used with make_early_inc_range, which slightly simplifies
iterating over ranges while elements are removed.
Instead of directly using BaseT::reference as return type of operator*,
this patch uses decltype to get the actual return type of the operator*
implementation in WrappedIteratorT.
This patch also updates a few places to use make use of
make_early_inc_range.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D93992
The TableGen immAllOnesV and immAllZerosV helpers implicitly wrapped the
ISD::isBuildVectorAll(Ones|Zeros) helper functions. This was inhibiting
their use for targets such as RISC-V which use ISD::SPLAT_VECTOR. In
particular, RISC-V had to define its own 'vnot' fragment.
In order to extend the scope of these nodes to include support for
ISD::SPLAT_VECTOR, two new ISD predicate functions have been introduced:
ISD::isConstantSplatVectorAll(Ones|Zeros). These effectively supersede
the older "isBuildVector" predicates, which are now simple wrappers for
the new functions. They pass a defaulted boolean toggle which preserves
the old behaviour. It is hoped that in time all call-sites can be ported
to the "isConstantSplatVector" functions.
While the use of ISD::isBuildVectorAll(Ones|Zeros) has not changed, the
behaviour of the TableGen immAll(Ones|Zeros)V **has**. To test the new
functionality, the custom RISC-V TableGen fragment has been removed and
replaced with the built-in 'vnot'. To test their use as pattern-roots, two
splat patterns have been updated accordingly.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D94223
This removes `exnref` type and `br_on_exn` instruction. This is
effectively NFC because most uses of these were already removed in the
previous CLs.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D94041
Clang generates `wasm.get.exception` and `wasm.get.ehselector`
intrinsics, which respectively return a caught exception value (a
pointer to some C++ exception struct) and a selector (an integer value
that tells which C++ `catch` clause the current exception matches, or
does not match any).
WasmEHPrepare is a pass that does some IR-level preparation before
instruction selection. Previously one of things we did in this pass was
to convert `wasm.get.exception` intrinsic calls to
`wasm.extract.exception` intrinsics. Their semantics were the same
except `wasm.extract.exception` did not have a token argument. We
maintained these two separate intrinsics with the same semantics because
instruction selection couldn't handle token arguments. This
`wasm.extract.exception` intrinsic was later converted to
`extract_exception` instruction in instruction selection, which was a
pseudo instruction to implement `br_on_exn`. Because `br_on_exn` pushed
an extracted value onto the value stack after the `end` instruction of a
`block`, but LLVM does not have a way of modeling that kind of behavior,
so this pseudo instruction was used to pull an extracted value out of
thin air, like this:
```
block $l0
...
br_on_exn $cpp_exception $l0
...
end
extract_exception ;; pushes values onto the stack
```
In the new spec, we don't need this pseudo instruction anymore because
`catch` itself returns a value and we don't have `br_on_exn` anymore. In
the spec `catch` returns multiple values (like `br_on_exn`), but here we
assume it only returns a single i32, which is sufficient to support C++.
So this renames `wasm.get.exception` intrinsic to `wasm.catch`. Because
this CL does not yet contain instruction selection for `wasm.catch`
intrinsic, all `RUN` lines in exception.ll, eh-lsda.ll, and
cfg-stackify-eh.ll, and a single `RUN` line in wasm-eh.cpp (which is an
end-to-end test from C++ source to assembly) fail. So this CL
temporarily disables those `RUN` lines, and for those test files without
any valid remaining `RUN` lines, adds a dummy `RUN` line to make them
pass. These tests will be reenabled in later CLs.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D94039