Peeking through AND is only valid if the input to both shifts is
the same. If the inputs are different, then the original pattern
ORs the two values when the masked shift amount is 0. This is ok
if the values are the same since the OR would be a NOP which is
why its ok for rotate.
Fixes PR49365 and reverts PR34641
Differential Revision: https://reviews.llvm.org/D97637
Even if the first computeKnownBits call doesn't have any zero
bits it is possible the other operand has bitwidth-1 leading zero.
In that case overflow is still impossible. So always call computeKnownBits
for both operands.
D97247 added the reverse mapping from unwind destination to their
source, but it had a critical bug; sources can be multiple, because
multiple BBs can have a single BB as their unwind destination.
This changes `WasmEHFuncInfo::getUnwindSrc` to `getUnwindSrcs` and makes
it return a vector rather than a single BB. It does not return the const
reference to the existing vector but creates a new vector because
`WasmEHFuncInfo` stores not `BasicBlock*` or `MachineBasicBlock*` but
`PointerUnion` of them. Also I hoped to unify those methods for
`BasicBlock` and `MachineBasicBlock` into one using templates to reduce
duplication, but failed because various usages require `BasicBlock*` to
be `const` but it's hard to make it `const` for `MachineBasicBlock`
usages.
Fixes https://github.com/emscripten-core/emscripten/issues/13514.
(More precisely, fixes
https://github.com/emscripten-core/emscripten/issues/13514#issuecomment-784708744)
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D97583
If a global object is listed in `@llvm.used`, place it in a unique section with
the `SHF_GNU_RETAIN` flag. The section is a GC root under `ld --gc-sections`
with LLD>=13 or GNU ld>=2.36.
For front ends which do not expect to see multiple sections of the same name,
consider emitting `@llvm.compiler.used` instead of `@llvm.used`.
SHF_GNU_RETAIN is restricted to ELFOSABI_GNU and ELFOSABI_FREEBSD in
binutils. We don't do the restriction - see the rationale in D95749.
The integrated assembler has supported SHF_GNU_RETAIN since D95730.
GNU as>=2.36 supports section flag 'R'.
We don't need to worry about GNU ld support because older GNU ld just ignores
the unknown SHF_GNU_RETAIN.
With this change, `__attribute__((retain))` functions/variables emitted
by clang will get the SHF_GNU_RETAIN flag.
Differential Revision: https://reviews.llvm.org/D97448
Using ComputeNumSignBits or computeKnownBits we might be able
to determine that overflow is impossible.
This especially helps after type legalization if the type was
promoted from a type with half the bits or more. Type legalization
conservatively creates a promoted smulo/umulo and an overflow
check for the promoted bits. The overflow from the promoted
smulo/umulo is ORed with the result of the promoted bits
overflow check. Proving that the promoted smulo/umulo can never
overflow will leave us with just the promoted bits overflow check.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D97160
remove `Hi` `Lo` argument from `emitDwarfUnitLength`, so we
can make caller of emitDwarfUnitLength easier.
Reviewed By: MaskRay, dblaikie, ikudrin
Differential Revision: https://reviews.llvm.org/D96409
And then push those change throughout LLVM.
Keep the old signature in Clang's CGBuilder for now -- that will be
updated in a follow-on patch (D97224).
The MLIR LLVM-IR dialect is not updated to support the new alignment
attribute, but preserves its existing behavior.
Differential Revision: https://reviews.llvm.org/D97223
When calling SelectionDAG::getNode() to create an ADD or SUB
of two vectors with i1 element types we can canonicalise this
to use XOR instead, where 1+1 is treated as wrapping around
to 0 and 0-1 wraps to 1.
I've added the following tests for SVE targets:
CodeGen/AArch64/sve-pred-arith.ll
and modified some X86 tests to reflect the much simpler codegen
required.
Differential Revision: https://reviews.llvm.org/D97276
Rather than converting 3 signbits to bools and comparing them,
we can do bitwise logic on the whole vector and convert the
resulting sign bit to a bool at the end.
This is still a different algorithm than what we do in LegalizeDAG
through expandSADDOSSUBO. That algorithm needs to know that the
RHS of SSUBO is > 0, but that's costly when the type is split.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D97325
This reverts commit 6b286d93f7 because
in some cases when the optimizer evaluates the global initializer,
__llvm_prf_cnts may not be entirely zero initialized.
We know the input is going to be expanded as well, so we should
just ask for the already expanded operands. Otherwise we create
nodes that are just going to need to be legalized.
We may need to do some customization for DWARF unit length in DWARF
section headers for some targets for some code generation path.
For example, for XCOFF in assembly path, AIX assembler does not require
the debug section containing its debug unit length in the header.
Move emitDwarfUnitLength to MCStreamer class so that we can do
customization in different Streamers
Reviewed By: ikudrin
Differential Revision: https://reviews.llvm.org/D95932
This CL is not big but contains changes that span multiple analyses and
passes. This description is very long because it tries to explain basics
on what each pass/analysis does and why we need this change on top of
that. Please feel free to skip parts that are not necessary for your
understanding.
---
`WasmEHFuncInfo` contains the mapping of <EH pad, the EH pad's next
unwind destination>. The value (unwind dest) here is where an exception
should end up when it is not caught by the key (EH pad). We record this
info in WasmEHPrepare to fix catch mismatches, because the CFG itself
does not have this info. A CFG only contains BBs and
predecessor-successor relationship between them, but in `WasmEHFuncInfo`
the unwind destination BB is not necessarily a successor or the key EH
pad BB. Their relationship can be intuitively explained by this C++ code
snippet:
```
try {
try {
foo();
} catch (int) { // EH pad
...
}
} catch (...) { // unwind destination
}
```
So when `foo()` throws, it goes to `catch (int)` first. But if it is not
caught by it, it ends up in the next unwind destination `catch (...)`.
This unwind destination is what you see in `catchswitch`'s
`unwind label %bb` part.
---
`WebAssemblyExceptionInfo` groups exceptions so that they can be sorted
continuously together in CFGSort, as we do for loops. What this analysis
does is very simple: it creates a single `WebAssemblyException` per EH
pad, and all BBs that are dominated by that EH pad are included in this
exception. We also identify subexception relationship in this way: if
EHPad A domiantes EHPad B, EHPad B's exception is a subexception of
EHPad A's exception.
This simple rule turns out to be incorrect in some cases. In
`WasmEHFuncInfo`, if EHPad A's unwind destination is EHPad B, it means
semantically EHPad B should not be included in EHPad A's exception,
because it does not make sense to rethrow/delegate to an inner scope.
This is what happened in CFGStackify as a result of this:
```
try
try
catch
... <- %dest_bb is among here!
end
delegate %dest_bb
```
So this patch adds a phase in `WebAssemblyExceptionInfo::recalculate` to
make sure excptions' unwind destinations are not subexceptions of
their unwind sources in `WasmEHFuncInfo`.
But this alone does not prevent `dest_bb` in the example above from
being sorted within the inner `catch`'s exception, even if its exception
is not a subexception of that `catch`'s exception anymore, because of
how CFGSort works, which will be explained below.
---
CFGSort places BBs within the same `SortRegion` (loop or exception)
continuously together so they can be demarcated with `loop`-`end_loop`
or `catch`-`end_try` in CFGStackify.
`SortRegion` is a wrapper for one of `MachineLoop` or
`WebAssemblyException`. `SortRegionInfo` already does some complicated
things because there discrepancies between those two data structures.
`WebAssemblyException` is what we control, and it is defined as an EH
pad as its header and BBs dominated by the header as its BBs (with a
newly added exception of unwind destinations explained in the previous
paragraph). But `MachineLoop` is an LLVM data structure and uses the
standard loop detection algorithm. So by the algorithm, BBs that are 1.
dominated by the loop header and 2. have a path back to its header.
Because of the second condition, many BBs that are dominated by the loop
header are not included in the loop. So BBs that contain `return` or
branches to outside of the loop are not technically included in
`MachineLoop`, but they can be sorted together with the loop with no
problem.
Maybe to relax the condition, in CFGSort, when we are in a `SortRegion`
we allow sorting of not only BBs that belong to the current innermost
region but also BBs that are by the current region header.
(This was written this way from the first version written by Dan, when
only loops existed.) But now, we have cases in exceptions when EHPad B
is the unwind destination for EHPad A, even if EHPad B is dominated by
EHPad A it should not be included in EHPad A's exception, and should not
be sorted within EHPad A.
One way to make things work, at least correctly, is change `dominates`
condition to `contains` condition for `SortRegion` when sorting BBs, but
this will change compilation results for existing non-EH code and I
can't be sure it will not degrade performance or code size. I think it
will degrade performance because it will force many BBs dominated by a
loop, which don't have the path back to the header, to be placed after
the loop and it will likely to create more branches and blocks.
So this does a little hacky check when adding BBs to `Preferred` list:
(`Preferred` list is a ready list. CFGSort maintains ready list in two
priority queues: `Preferred` and `Ready`. I'm not very sure why, but it
was written that way from the beginning. BBs are first added to
`Preferred` list and then some of them are pushed to `Ready` list, so
here we only need to guard condition for `Preferred` list.)
When adding a BB to `Preferred` list, we check if that BB is an unwind
destination of another BB. To do this, this adds the reverse mapping,
`UnwindDestToSrc`, and getter methods to `WasmEHFuncInfo`. And if the BB
is an unwind destination, it checks if the current stack of regions
(`Entries`) contains its source BB by traversing the stack backwards. If
we find its unwind source in there, we add the BB to its `Deferred`
list, to make sure that unwind destination BB is added to `Preferred`
list only after that region with the unwind source BB is sorted and
popped from the stack.
---
This does not contain a new test that crashes because of this bug, but
this fix changes the result for one of existing test case. This test
case didn't crash because it fortunately didn't contain `delegate` to
the incorrectly placed unwind destination BB.
Fixes https://github.com/emscripten-core/emscripten/issues/13514.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D97247
In every catchpad except `catch (...)`, we add a call to
`_Unwind_CallPersonality`, which is a wapper to call the personality
function. (In most of other Itanium-based architectures the call is done
from libunwind, but in wasm we don't have the control over the VM.)
Because the personatlity function is called to figure out whether the
current exception is a type we should catch, such as `int` or
`SomeClass&`, `catch (...)` does not need the personality function call.
For the same reason, all cleanuppads don't need it.
When we call `_Unwind_CallPersonality`, we store some necessary info in
a data structure called `__wasm_lpad_context` of type
`_Unwind_LandingPadContext`, which is defined in the wasm's port of
libunwind in Emscripten. Also the personality wrapper function returns
some info (selector and the caught pointer) in that data structure, so
it is used as a medium for communication.
One of the info we need to store is the address for LSDA info for the
current function. `wasm.lsda()` intrinsic returns that address. (This
intrinsic will be lowered to a symbol that points to the LSDA address.)
The simpliest thing is call `wasm.lsda()` every time we need to call
`_Unwind_CallPersonality` and store that info in `__wasm_lpad_context`
data structure. But we tried to be better than that (D77423 and some
more previous CLs), so if catchpad A dominates catchpad B and catchpad A
is not `catch (...)`, we didn't insert `wasm.lsda()` call in catchpad B,
thinking that the LSDA address is the same for a single function and we
already visited catchpad A and `__wasm_lpad_context.lsda` field would
already have that value.
But this can be incorrect if there is a call to another function, which
also can have the personality function and LSDA, between catchpad A and
catchpad B, because `__wasm_lpad_context` is a globally defined
structure and the callee function will overwrite its `lsda` field.
So in this CL we don't try to do any optimizaions on adding
`wasm.lsda()` call; we store the result of `wasm.lsda()` every time we
call `_Unwind_CallPersonality`. We can do some complicated analysis,
like checking if there is a function call between the dominating
catchpad and the current catchpad, but at this time it seems overkill.
This deletes three tests because they all tested `wasm.ldsa()` call
optimization.
Fixes https://github.com/emscripten-core/emscripten/issues/13548.
Reviewed By: tlively
Differential Revision: https://reviews.llvm.org/D97309
This code creates 3 setccs that need to be expanded. It was
creating a sign bit test as setge X, 0 which is non-canonical.
Canonical would be setgt X, -1. This misses the special case in
IntegerExpandSetCCOperands for sign bit tests that assumes
canonical form. If we don't hit this special case we end up
with a multipart setcc instead of just checking the sign of
the high part.
To fix this I've reversed the polarity of all of the setccs to
setlt X, 0 which is canonical. The rest of the logic should
still work. This seems to produce better code on RISCV which
lacks a setgt instruction.
This probably still isn't the best code sequence we could use here.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D97181
We don't yet have working codegen for the resulting unmerges, and if
we did it would probably be horrible.
Differential Revision: https://reviews.llvm.org/D97035
This renames variable and method names in `WasmEHFuncInfo` class to be
simpler and clearer. For example, unwind destinations are EH pads by
definition so it doesn't necessarily need to be included in every method
name. Also I am planning to add the reverse mapping in a later CL,
something like `UnwindDestToSrc`, so this renaming will make meanings
clearer.
Reviewed By: dschuff
Differential Revision: https://reviews.llvm.org/D97173
This also removes a pattern from RISCV that is no longer needed
since the sexti32 on the LHS of the srem in the pattern implies
the result is sign extended so the sign_extend_inreg should be
removed in DAG combine now.
Reviewed By: luismarques, RKSimon
Differential Revision: https://reviews.llvm.org/D97133
This patch handles usubsat patterns hidden through zext/trunc and uses the getTruncatedUSUBSAT helper to determine if the USUBSAT can be correctly performed in the truncated form:
zext(x) >= y ? x - trunc(y) : 0 --> usubsat(x,trunc(umin(y,SatLimit)))
zext(x) > y ? x - trunc(y) : 0 --> usubsat(x,trunc(umin(y,SatLimit)))
Based on original examples:
void foo(unsigned short *p, int max, int n) {
int i;
unsigned m;
for (i = 0; i < n; i++) {
m = *--p;
*p = (unsigned short)(m >= max ? m-max : 0);
}
}
Differential Revision: https://reviews.llvm.org/D25987
This can reduce the binary size because counters will no longer occupy
space in the binary, instead they will be allocated by dynamic linker.
Differential Revision: https://reviews.llvm.org/D97110
There is a trailing dot in text section name if it has prefix, don't add
repeated dot when connect text section name and symbol name.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D96327
Previously we would use the extended implementation, but
the extended implementation requires the vector type to be extended
so that we can access the LLVMContext. In theory we could
detect this case and use the context from the element type instead,
but since I know of no cases hitting this in practice today
I've done the simplest thing.
Also add asserts to several extended EVT functions that assume
LLVMTy is non-null.
Follow from discussion in D97036
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D97070
VirtRegAuxInfo is an extensibility point, so the register allocator's
decision on which implementation to use should be communicated to the
other users - namely, LiveRangeEdit.
Differential Revision: https://reviews.llvm.org/D96898
This patch provides two major changes:
1. Add getRelocationInfo to check if a constant will have static, dynamic, or
no relocations. (Also rename the original needsRelocation to needsDynamicRelocation.)
2. Only allow a constant with no relocations (static or dynamic) to be placed
in a mergeable section.
This will allow unused symbols that contain static relocations and happen to
fit in mergeable constant sections (.rodata.cstN) to instead be placed in
unique-named sections if -fdata-sections is used and subsequently garbage collected
by --gc-sections.
See https://lists.llvm.org/pipermail/llvm-dev/2021-February/148281.html.
Differential Revision: https://reviews.llvm.org/D95960
AMDGPU currently has a lot of pre-processing code to pre-split
argument types into 32-bit pieces before passing it to the generic
code in handleAssignments. This is a bit sloppy and also requires some
overly fancy iterator work when building the calls. It's better if all
argument marshalling code is handled directly in
handleAssignments. This handles more situations like decomposing large
element vectors into sub-element sized pieces.
This should mostly be NFC, but does change the generated code by
shifting where the initial argument packing instructions are placed. I
think this is nicer looking, since it now emits the packing code
directly after the relevant copies, rather than after the copies for
the remaining arguments.
This doubles down on gfx6/gfx7 using the gfx8+ ABI for 16-bit
types. This is ultimately the better option, but incompatible with the
DAG. Fixing this requires more work, especially for f16.
If extload is legal, following transform
(zext (select c, load1, load2)) -> (select c, zextload1, zextload2)
can save one ext instruction.
Differential Revision: https://reviews.llvm.org/D95086
I've now hit several cases where a mistake in the regalloc main loop caused corrupt live intervals that didn't get caught until either the next verify or during post-optimization. The later case is rather confusing and tends to lead one down false trails, so let's catch corruption before that.
Adjust generateFMAsInMachineCombiner to return false if SVE is present
in order to combine fmul+fadd into fma. Also add new pseudo instructions
so as to select the most appropriate of FMLA/FMAD depending on register
allocation.
Depends on D96599
Differential Revision: https://reviews.llvm.org/D96424
CheckInteger uses an int64_t encoded using a variable width encoding
that is optimized for encoding a number with a lot of leading zeros.
Negative numbers have no leading zeros so use the largest encoding
requiring 9 bytes.
I believe its most like we want to check for positive and negative
numbers near 0. -1 is quite common due to its use in the 'not'
idiom.
To optimize for this, we can borrow an idea from the bitcode format
and move the sign bit to bit 0 with the magnitude stored in the
upper bits. This will drastically increase the number of leading
zeros for small magnitudes. Then we can run this value through
VBR encoding.
This gives a small reduction in the table size on all in tree
targets except VE where size increased by about 300 bytes due
to intrinsic ids now requiring 3 bytes instead of 2. Since the
intrinsic enum space is shared by all targets this an unfortunate
consquence of where VE is currently located in the range.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D96317
GCC warning:
```
/llvm-project/llvm/lib/CodeGen/TargetLoweringObjectFileImpl.cpp: In member function ‘virtual llvm::MCSection* llvm::TargetLoweringObjectFileELF::getSectionForLSDA(const llvm::Function&, const llvm::MCSymbol&, const llvm::TargetMachine&) const’:
/llvm-project/llvm/lib/CodeGen/TargetLoweringObjectFileImpl.cpp:871:8: warning: variable ‘IsComdat’ set but not used [-Wunused-but-set-variable]
871 | bool IsComdat = false;
| ^~~~~~~~
```
We are going to support debug sections for XCOFF. So the csect
properties are not necessary. This patch makes these properties
optional.
Reviewed By: hubert.reinterpretcast
Differential Revision: https://reviews.llvm.org/D95931
Same implementation as G_SEXT_INREG.
Add a testcase to combine-sext-inreg for a concrete example, and a testcase
to KnownBitsTest.
Differential Revision: https://reviews.llvm.org/D96897
This adds a G_ASSERT_SEXT opcode, similar to G_ASSERT_ZEXT. This instruction
signifies that an operation was already sign extended from a smaller type.
This is useful for functions with sign-extended parameters.
E.g.
```
define void @foo(i16 signext %x) {
...
}
```
This adds verifier, regbankselect, and instruction selection support for
G_ASSERT_SEXT equivalent to G_ASSERT_ZEXT.
Differential Revision: https://reviews.llvm.org/D96890
D94835 added support for WinEH to export public symbols pointing to
basic blocks which are catchret targets for use with Windows CET.
Wasm currently doesn't support public symbols to non-function code
addresses (they get treated like new functions in asm but then don't
lower to object files correctly).
It created them unconditionally for all catchret targets.
This change disables those symbols unless the exceptionHandlingType
is WinEH (since they aren't used with ExceptionHandling::Wasm)
Differential Revision: https://reviews.llvm.org/D96824
Interval value
The II value was incremented before exiting the loop, and therefor when
used in the optimization remarks and debug dumps it did not reflect the
initiation interval actually used in Schedule.
Differential Revision: https://reviews.llvm.org/D95692
Fold shuffle(bop(shuffle(x,y),shuffle(z,w)),bop(shuffle(a,b),shuffle(c,d))) -> bop(shuffle(x,y),shuffle(z,w)),bop(shuffle(a,b),shuffle(c,d))
Attempt to fold from a shuffle of a pair of binops to a binop of shuffles, as long as one/both of the binop sources are also shuffles that can be merged with the outer shuffle. This should guarantee that we remove one binop without introducing any additional shuffles.
Technically there's potential for a merged shuffle's lowering to be poorer than the original shuffle, but it could also be better, and I'm not seeing any regressions as long as we keep the 'don't merge splats' rule already present in MergeInnerShuffle.
This expands and generalizes an existing X86 combine and attempts to merge either of each binop's sources (with an on-the-fly commutation of the shuffle mask) - we couldn't do that in the x86 version as it had to stay in a form that DAGCombine's MergeInnerShuffle would still recognise.
Fixes issue raised by @saugustine in rG5aa8f4c0843a where we were failing to replace null shuffle operands from MergeInnerShuffle to UNDEFs.
Differential Revision: https://reviews.llvm.org/D96345
This allows the option to affect the LTO output. Module::Max helps to
generate debug info for all modules in the same format.
Differential Revision: https://reviews.llvm.org/D96597
To make sure compile-times don't regress, add an option to restrict the number
of instructions considered for sinking as alias analysis can be expensive and
for the same reason also skip large blocks.
Differential Revision: https://reviews.llvm.org/D96485
Basic block sections enables function sections implicitly, this is not needed
and is inefficient with "=list" option.
We had basic block sections enable function sections implicitly in clang. This
is particularly inefficient with "=list" option as it places functions that do
not have any basic block sections in separate sections. This causes unnecessary
object file overhead for large applications.
This patch disables this implicit behavior. It only creates function sections
for those functions that require basic block sections.
Further, there was an inconistent behavior with llc as llc was not turning on
function sections by default. This patch makes llc and clang consistent and
tests are added to check the new behavior.
This is the first of two patches and this adds functionality in LLVM to
create a new section for the entry block if function sections is not
enabled.
Differential Revision: https://reviews.llvm.org/D93876
This change introduces support for zero flag ELF section groups to LLVM.
LLVM already supports COMDAT sections, which in ELF are a special type
of ELF section groups. These are generally useful to enable linker GC
where you want a group of sections to always travel together, that is to
be either retained or discarded as a whole, but without the COMDAT
semantics. Other ELF assemblers already support zero flag ELF section
groups and this change helps us reach feature parity.
Differential Revision: https://reviews.llvm.org/D95851
This reverts commit 5dfba562dd.
That commit causes an assertion failure with the following repro:
typedef long b __attribute__((__vector_size__(16)));
b *d;
b e;
b __attribute__((__always_inline__)) c(b h, b i) {
return (__attribute__((__vector_size__(8 * sizeof(short)))) short)h + i;
}
j() {
b k, l, m, n, o[6], p, q;
m = d[5];
b r = m;
b s = f(r, 8);
q = s;
l = d[1];
p = l;
t(q);
n = c(m, l);
o[1] = c(s, f(p, 8));
k = __builtin_shufflevector(n, o[1], 0, 2);
e = __builtin_ia32_psrlwi128(k, j);
}
./bin/clang -cc1 -triple x86_64-grtev4-linux-gnu -emit-obj -O1 -std=c99 test.c
Similar to D96622, we're better off just promoting uaddsat(x,y) -> umin(add(x,y),c) instead of trying to perform a shifted uaddsat.
I initially tried to just use shifted promotion in cases where we didn't have a legal/custom umin - but we don't appear to have any targets that have uaddsat but not umin, so imo we're better off always using the umin and avoid an untested shifted uaddsat code path.
Differential Revision: https://reviews.llvm.org/D96767
fde2466171 added support for
scalable vectors to matchUnaryPredicate by handling SPLAT_VECTOR in
addition to BUILD_VECTOR. This was used to enabled UDIV/SDIV/UREM/SREM
by constant expansion in BuildUDIV/BuildSDIV in TargetLowering.cpp
The caller there expects to call getBuildVector from the match factors.
This leads to a crash right now if there is a SPLAT_VECTOR of
fixed vectors since the number of vectors won't match the number
of elements.
To fix this, this patch updates the callers to check the opcode
instead of whether the type is fixed or scalable. This assumes
that only 3 opcodes are handled by matchUnaryPredicate so
I've added an assertion to the final else to check that opcode.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D96174
Fold shuffle(bop(shuffle(x,y),shuffle(z,w)),bop(shuffle(a,b),shuffle(c,d))) -> bop(shuffle(x,y),shuffle(z,w)),bop(shuffle(a,b),shuffle(c,d))
Attempt to fold from a shuffle of a pair of binops to a binop of shuffles, as long as one/both of the binop sources are also shuffles that can be merged with the outer shuffle. This should guarantee that we remove one binop without introducing any additional shuffles.
Technically there's potential for a merged shuffle's lowering to be poorer than the original shuffle, but it could also be better, and I'm not seeing any regressions as long as we keep the 'don't merge splats' rule already present in MergeInnerShuffle.
This expands and generalizes an existing X86 combine and attempts to merge either of each binop's sources (with an on-the-fly commutation of the shuffle mask) - we couldn't do that in the x86 version as it had to stay in a form that DAGCombine's MergeInnerShuffle would still recognise.
Differential Revision: https://reviews.llvm.org/D96345
The API is a bit awkward since you need to index into an array in the
passed struct. I guess an alternative would be to pass all of the
individual fields.
Return the best covering index, and additional needed to complete the
mask. This logically belongs in TargetRegisterInfo, although I ended
up not needing it for why I originally split this out.
If we're going to end up expanding anyway, we should do it early
so we don't create extra operations to handle the bytes added by
promotion.
Simlilar was done for BSWAP previously.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D96681
This patch enables AsmPrinter support for complex expression with
entry values. It shouldn't AsmPrinter's call whether these are safe or
not but the pass who introduces the DW_OP_LLVM_entry_value. This patch
on its own has no effect on clang.
Differential Revision: https://reviews.llvm.org/D96559
This patch adds a new intrinsic experimental.vector.reduce that takes a single
vector and returns a vector of matching type but with the original lane order
reversed. For example:
```
vector.reverse(<A,B,C,D>) ==> <D,C,B,A>
```
The new intrinsic supports fixed and scalable vectors types.
The fixed-width vector relies on shufflevector to maintain existing behaviour.
Scalable vector uses the new ISD node - VECTOR_REVERSE.
This new intrinsic is one of the named shufflevector intrinsics proposed on the
mailing-list in the RFC at [1].
Patch by Paul Walker (@paulwalker-arm).
[1] https://lists.llvm.org/pipermail/llvm-dev/2020-November/146864.html
Differential Revision: https://reviews.llvm.org/D94883
In the future Windows will enable Control-flow Enforcement Technology (CET aka shadow stacks). To protect the path where the context is updated during exception handling, the binary is required to enumerate valid unwind entrypoints in a dedicated section which is validated when the context is being set during exception handling.
This change allows llvm to generate the section that contains the appropriate symbol references in the form expected by the msvc linker.
This feature is enabled through a new module flag, ehcontguard, which was modelled on the cfguard flag.
The change includes a test that when the module flag is enabled the section is correctly generated.
The set of exception continuation information includes returns from exceptional control flow (catchret in llvm).
In order to collect catchret we:
1) Includes an additional flag on machine basic blocks to indicate that the given block is the target of a catchret operation,
2) Introduces a new machine function pass to insert and collect symbols at the start of each block, and
3) Combines these targets with the other EHCont targets that were already being collected.
Change originally authored by Daniel Frampton <dframpto@microsoft.com>
For more details, see MSVC documentation for `/guard:ehcont`
https://docs.microsoft.com/en-us/cpp/build/reference/guard-enable-eh-continuation-metadata
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D94835
The implementation for vectors is broken and doesn't seem to be used by
anything. Explicitly remove support for them, they can be added again
later when they're properly implemented.
Reviewed By: aemerson
Differential Revision: https://reviews.llvm.org/D95699
As discussed on D96413, as long as the promoted bits of the args are zero we can use the basic ISD::USUBSAT pattern directly, without the shifting like we do for other ops.
I think something similar should be possible for ISD::UADDSAT as well, which I'll look at later.
Also, create a ISD::USUBSAT node directly - this will be expanded back by the legalizer later on if necessary.
Differential Revision: https://reviews.llvm.org/D96622
We lost this in D56387/rG69bc0990a9181e6eb86228276d2f59435a7fae67 - where I got the src/dst bitwidths mixed up and assumed getValidShiftAmountConstant would catch it.
Patch by @craig.topper - confirmed by @Carrot that it fixes PR49162
This patch hides the logic for setting the location kind of an entry
value inside the begin/finalize/cancel functions. This way we get rid
the strange workaround that is currently in setLocation().
In the future, this will allow us to set the location kind of the
entry value independently from the location kind of the main
expression.
Differential Revision: https://reviews.llvm.org/D96554
There's no need to call verifyVectorElementMatch since we already know
that the source and destination types are identical.
Differential Revision: https://reviews.llvm.org/D96589
This combine tries to do inter-block hoisting of extends of G_PHIs, into the
originating blocks of the phi's incoming value. The idea is to expose further
optimization opportunities that are normally obscured by the PHI.
Some basic heuristics, and a target hook for AArch64 is added, to allow tuning.
E.g. if the extend is used by a G_PTR_ADD, it doesn't perform this combine
since it may be folded into the addressing mode during selection.
There are very minor code size improvements on AArch64 -Os, but the real benefit
is that it unlocks optimizations like AArch64 conditional compares on some
benchmarks.
Differential Revision: https://reviews.llvm.org/D95703
Begin transitioning the X86 vector code to recognise sub(umax(a,b) ,b) or sub(a,umin(a,b)) USUBSAT patterns to make it more generic and available to all targets.
This initial patch just moves the basic umin/umax patterns to DAG, removing some vector-only checks on the way - these are some of the patterns that the legalizer will try to expand back to so we can be reasonably relaxed about matching these pre-legalization.
We can handle the trunc(sub(..))) variants as well, which helps with patterns where we were promoting to a wider type to detect overflow/saturation.
The remaining x86 code requires some cleanup first - some of it isn't actually tested etc. I also need to resurrect D25987.
Differential Revision: https://reviews.llvm.org/D96413
This patch adds a pass to replace calls to vector intrinsics (i.e., LLVM
intrinsics operating on vector operands) with calls to a vector library.
Currently, calls to LLVM intrinsics are only replaced with calls to vector
libraries when scalar calls to intrinsics are vectorized by the Loop- or
SLP-Vectorizer.
With this pass, it is now possible to replace calls to LLVM intrinsics
already operating on vector operands, e.g., if such code was generated
by MLIR. For the replacement, information from the TargetLibraryInfo,
e.g., as specified via -vector-library is used.
This is a re-try of the original commit 2303e93e66 that was reverted
due to pass manager problems. Other minor changes have also been made.
Differential Revision: https://reviews.llvm.org/D95373
explicitly emitting retainRV or claimRV calls in the IR
Background:
This fixes a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end adds operand bundle "clang.arc.attachedcall" to calls,
which indicates the call is implicitly followed by a marker
instruction and an implicit retainRV/claimRV call that consumes the
call result. In addition, it emits a call to
@llvm.objc.clang.arc.noop.use, which consumes the call result, to
prevent the middle-end passes from changing the return type of the
called function. This is currently done only when the target is arm64
and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
with the operand bundle in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the call with the
operand bundle. It doesn't remove the operand bundle on the call since
the backend needs it to emit the marker instruction. The retainRV and
claimRV calls are emitted late in the pipeline to prevent optimization
passes from transforming the IR in a way that makes it harder for the
ARC middle-end passes to figure out the def-use relationship between
the call and the retainRV/claimRV calls (which is the cause of
PR31925).
- The function inliner removes an autoreleaseRV call in the callee if
nothing in the callee prevents it from being paired up with the
retainRV/claimRV call in the caller. It then inserts a release call if
claimRV is attached to the call since autoreleaseRV+claimRV is
equivalent to a release. If it cannot find an autoreleaseRV call, it
tries to transfer the operand bundle to a function call in the callee.
This is important since the ARC optimizer can remove the autoreleaseRV
returning the callee result, which makes it impossible to pair it up
with the retainRV/claimRV call in the caller. If that fails, it simply
emits a retain call in the IR if retainRV is attached to the call and
does nothing if claimRV is attached to it.
- SCCP refrains from replacing the return value of a call with a
constant value if the call has the operand bundle. This ensures the
call always has at least one user (the call to
@llvm.objc.clang.arc.noop.use).
- This patch also fixes a bug in replaceUsesOfNonProtoConstant where
multiple operand bundles of the same kind were being added to a call.
Future work:
- Use the operand bundle on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls with the operand bundles.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
Implements same logis as in SelectionDAG.
G_FMINNUM_IEEE and G_FMAXNUM_IEEE are never SNaN by definition and
never NaN when one operand is known non-NaN and other known non-SNaN.
G_FMINNUM and G_FMAXNUM are never NaN/SNaN when one of the operands
is known non-NaN/SNaN.
Differential Revision: https://reviews.llvm.org/D91716
The builder was using the extend user as the insertion point, which meant that
we were incorrectly "moving" the load from its original position, and therefore
could violate memory operation ordering.
Support for splitting exception handling pads was added in D73739. This
change updates the code to split out exception handling pads if profile
information indicates that they are cold. For a given function with
multiple landind pads, if one of them is hot they are all retained as
part of the hot code section.
Differential Revision: https://reviews.llvm.org/D96372
The use of basic block sections should take precedence over the machine
function splitting pass. Since they use the same underlying mechanism
they are kept exclusive. Updated the tests to check that split machine
functions is overridden by all flavours of basic block sections.
Differential Revision: https://reviews.llvm.org/D96392
If we wait until the type is legalized, we'll lose information
about the orginal type and need to use larger magic constants.
This gets especially bad on RISCV64 where i64 is the only legal
type.
I've limited this to simple scalar types so it only works for
i8/i16/i32 which are most likely to occur. For more odd types
we might want to do a small promotion to a type where MULH is legal
instead.
Unfortunately, this does prevent some urem/srem+seteq matching since
that still require legal types.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D96210
As for SETCC, use a less expensive condition code when generating
STRICT_FSETCC if the node is known not to have Nan.
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D91972
This commit moves a line in SelectionDAGBuilder::handleDebugValue to
avoid implicitly casting a TypeSize object to an unsigned earlier than
necessary. It was possible that we bail out of the loop before the value
is ever used, which means we could create a superfluous TypeSize
warning.
Reviewed By: DavidTruby
Differential Revision: https://reviews.llvm.org/D96423
The patch did not account for one corner case where cmp does not dominate
the loop latch. This patch adds this check, hopefully it's cheap because
the CFG does not change during the transform, so DT queries should be
executed quickly.
If you see compile time slowness from this, please revert.
Differential Revision: https://reviews.llvm.org/D96119
Function `replaceMathCmpWithIntrinsic` artificially limits the scope
of the optimization, setting a requirement of two instructions be in
the same block, due to two reasons:
- usage of DT for more general check is costly in terms of compile time;
- risk of creating a new value that lives through multiple blocks.
Because of this, two semantically equivalent tests may be or not be the
subject of this opt depending on where the binary operation is located.
See `test/CodeGen/X86/usub_inc_iv.ll` for motivation
There is one important particular case where this limitation is too strict:
it is when the binary operation is the increment of the induction variable.
As result, the application of this opt becomes fragile and highly reliant on
where other passes decide to place IV increment. In most cases, they place
it in the end of the latch block, killing the opt opportunity (when in fact it
does not matter where to insert the actual instruction).
This patch handles this particular case separately.
- The detector does not use dom tree and has constant cost;
- The value of IV or IV.next lives through all loop in any case, so this should not
create a new unexpected long-living value.
As result, the transform becomes more robust. It also seems to lead to
better code generation in some cases (see `test/CodeGen/X86/lsr-loop-exit-cond.ll`).
Differential Revision: https://reviews.llvm.org/D96119
Reviewed By: spatel, reames
The IR/MIR pseudo probe intrinsics don't get materialized into real machine instructions and therefore they don't incur runtime cost directly. However, they come with indirect cost by blocking certain optimizations. Some of the blocking are intentional (such as blocking code merge) for better counts quality while the others are accidental. This change unblocks perf-critical optimizations that do not affect counts quality. They include:
1. IR InstCombine, sinking load operation to shorten lifetimes.
2. MIR LiveRangeShrink, similar to #1
3. MIR TwoAddressInstructionPass, i.e, opeq transform
4. MIR function argument copy elision
5. IR stack protection. (though not perf-critical but nice to have).
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D95982
Originally landed in ddc2f1e3fb and reverted in d32deaab4d because of
a Generic test objecting. That was fixed up in 013613964f. Original
landing commit message follows:
[DWARF] Location-less inlined variables should not have DW_TAG_variable
Discussed in this thread:
https://lists.llvm.org/pipermail/llvm-dev/2021-January/148139.html
DwarfDebug::collectEntityInfo accidentally distinguishes between variable
locations that never have a location specified, and variable locations that
have an empty location specified. The latter leads to the creation of an
empty variable referring to the abstract origin.
Fix this by seeking a non-empty location before producing a concrete
entity, to guarantee a DW_AT_location will be produced. Other loops in
collectEntityInfo and endFunctionImpl take care of examining the
retainedNodes collection and ensuring optimised-out variables are created.
Differential Revision: https://reviews.llvm.org/D95617
Avoid doing the following combine for vector types:
```
copysign(x, fp_extend(y)) -> copysign(x, y)
copysign(x, fp_round(y)) -> copysign(x, y)
```
That combine seemed to impede the selection of vector instruction and cause
a mess in some circumstances.
Differential Revision: https://reviews.llvm.org/D96037
This was taking the calling convention from the parent function,
instead of the callee. Avoids regressions in a future patch when the
caller and callee have different type breakdowns.
For some reason AArch64's lowerFormalArguments seems to intentionally
ignore the parent isVarArg.
As of commit 284f2bffc9, the DAG Combiner gets rid of the masking of the
input to this node if the mask only keeps the bottom 16 bits. This is because
the underlying library function does not use the high order bits. However, on
PowerPC's ELFv2 ABI, it is the caller that is responsible for clearing the bits
from the register. Therefore, the library implementation of __gnu_h2f_ieee will
return an incorrect result if the bits aren't cleared.
This combine is desired for ARM (and possibly other targets) so this patch adds
a query to Target Lowering to check if this zeroing needs to be kept.
Fixes: https://bugs.llvm.org/show_bug.cgi?id=49092
Differential revision: https://reviews.llvm.org/D96283
As for SETCC, use a less expensive condition code when generating
STRICT_FSETCC if the node is known not to have Nan.
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D91972
On AArch64 (which seems to be the only target that supports it), this
attribute allows codegen to avoid saving/restoring the value in x0
across a call.
Gives a 0.1% geomean -Os code size improvement on CTMark.
Differential Revision: https://reviews.llvm.org/D96099
Different targets might handle branch performance differently, so this patch allows for
targets to specify the TailDuplicateSize threshold. Said threshold defines how small a branch
can be and still be duplicated to generate straight-line code instead.
This patch also specifies said override values for the AArch64 subtarget.
Differential Revision: https://reviews.llvm.org/D95631
Maskray has reported a fault with .debug_gnu_pubnames in the comments on
D94976, caused by this patch, reverting to investigate.
This reverts commit 8998f58435.
Backing out this workaround to focus on fixing whatever's wrong with
.debug_gnu_pubnames, I'll revert the cause, (8998f584) in the next commit.
This reverts commit 56fa34ae35.
GNU ld>=2.36 supports mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections in an
output section, so we can set SHF_LINK_ORDER if -fbinutils-version=2.36 or above.
If -fno-function-sections or older binutils, drop unique ID for -fno-unique-section-names.
The users can just specify -fbinutils-version=2.36 or above to allow GC with both GNU ld and LLD.
(LLD does not support garbage collection of non-group non-SHF_LINK_ORDER .gcc_except_table sections.)
This matches GCC behavior when the configure-time binutils is new. GNU ld<2.36
did not support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections in an
output section, so we conservatively disable SHF_LINK_ORDER for <2.36.
This patch adds a pass to replace calls to vector intrinsics
(i.e., LLVM intrinsics operating on vector operands) with
calls to a vector library.
Currently, calls to LLVM intrinsics are only replaced with
calls to vector libraries when scalar calls to intrinsics are
vectorized by the Loop- or SLP-Vectorizer.
With this pass, it is now possible to replace calls to LLVM
intrinsics already operating on vector operands, e.g., if
such code was generated by MLIR. For the replacement,
information from the TargetLibraryInfo, e.g., as specified
via -vector-library is used.
Differential Revision: https://reviews.llvm.org/D95373
Make sure scalable property is preserved by using getVectorElementCount().
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D95967
Previously the code split the string at the first '<', which
incorrectly truncated names like `operator<`.
Differential Revision: https://reviews.llvm.org/D95893
emitting retainRV or claimRV calls in the IR
This reapplies 3fe3946d9a without the
changes made to lib/IR/AutoUpgrade.cpp, which was violating layering.
Original commit message:
Background:
This patch makes changes to the front-end and middle-end that are
needed to fix a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end adds operand bundle "clang.arc.rv" to calls, which
indicates the call is implicitly followed by a marker instruction and
an implicit retainRV/claimRV call that consumes the call result. In
addition, it emits a call to @llvm.objc.clang.arc.noop.use, which
consumes the call result, to prevent the middle-end passes from changing
the return type of the called function. This is currently done only when
the target is arm64 and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
with the operand bundle in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the call with the
operand bundle. It doesn't remove the operand bundle on the call since
the backend needs it to emit the marker instruction. The retainRV and
claimRV calls are emitted late in the pipeline to prevent optimization
passes from transforming the IR in a way that makes it harder for the
ARC middle-end passes to figure out the def-use relationship between
the call and the retainRV/claimRV calls (which is the cause of
PR31925).
- The function inliner removes an autoreleaseRV call in the callee if
nothing in the callee prevents it from being paired up with the
retainRV/claimRV call in the caller. It then inserts a release call if
the call is annotated with claimRV since autoreleaseRV+claimRV is
equivalent to a release. If it cannot find an autoreleaseRV call, it
tries to transfer the operand bundle to a function call in the callee.
This is important since ARC optimizer can remove the autoreleaseRV
returning the callee result, which makes it impossible to pair it up
with the retainRV/claimRV call in the caller. If that fails, it simply
emits a retain call in the IR if the implicit call is a call to
retainRV and does nothing if it's a call to claimRV.
Future work:
- Use the operand bundle on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls annotated with the operand bundles.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
emitting retainRV or claimRV calls in the IR
Background:
This patch makes changes to the front-end and middle-end that are
needed to fix a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end adds operand bundle "clang.arc.rv" to calls, which
indicates the call is implicitly followed by a marker instruction and
an implicit retainRV/claimRV call that consumes the call result. In
addition, it emits a call to @llvm.objc.clang.arc.noop.use, which
consumes the call result, to prevent the middle-end passes from changing
the return type of the called function. This is currently done only when
the target is arm64 and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
with the operand bundle in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the call with the
operand bundle. It doesn't remove the operand bundle on the call since
the backend needs it to emit the marker instruction. The retainRV and
claimRV calls are emitted late in the pipeline to prevent optimization
passes from transforming the IR in a way that makes it harder for the
ARC middle-end passes to figure out the def-use relationship between
the call and the retainRV/claimRV calls (which is the cause of
PR31925).
- The function inliner removes an autoreleaseRV call in the callee if
nothing in the callee prevents it from being paired up with the
retainRV/claimRV call in the caller. It then inserts a release call if
the call is annotated with claimRV since autoreleaseRV+claimRV is
equivalent to a release. If it cannot find an autoreleaseRV call, it
tries to transfer the operand bundle to a function call in the callee.
This is important since ARC optimizer can remove the autoreleaseRV
returning the callee result, which makes it impossible to pair it up
with the retainRV/claimRV call in the caller. If that fails, it simply
emits a retain call in the IR if the implicit call is a call to
retainRV and does nothing if it's a call to claimRV.
Future work:
- Use the operand bundle on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls annotated with the operand bundles.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
`-flto -gsplit-dwarf -g -O[123]` may create .debug_gnu_pubnames with 0 DIE
offset entries. llvm-dwarfdump -debug-gnu-pubnames/ld.lld --gdb-index errors for that.
```
.section .debug_gnu_pubnames,"",@progbits
.long .LpubNames_end2-.LpubNames_begin2 # Length of Public Names Info
.LpubNames_begin2:
.short 2 # DWARF Version
.long .Lcu_begin2 # Offset of Compilation Unit Info
.long 57 # Compilation Unit Length
.long 0 # DIE offset
.byte 16 # Attributes: TYPE, EXTERNAL
.asciz "absl" # External Name
.long 0 # DIE offset
.byte 16 # Attributes: TYPE, EXTERNAL
.asciz "absl::base_internal" # External Name
.long 0 # End Mark
```
The upstream callers (the vectorizers) were fixed with:
bbed5f2f8a ( D95690 )
77adbe6a8c
We should remove this pass entirely now that reduction
legalization/lowering is expected to work just as well,
but we need to confirm that the shuffle ops do not
regress (for x86 in particular).
This should be the last step needed to close:
https://llvm.org/PR23116
This modified patch avoids redirecting the unit in which a subprogram is
created if type units are enabled -- DIEs were getting children allocated
from different units memory pools. Original commit message:
[DWARF] Create subprogram's DIE in DISubprogram's unit
This is a fix for PR48790. Over in D70350, subprogram DIEs were permitted
to be shared between CUs. However, the creation of a subprogram DIE can be
triggered early, from other CUs. The subprogram definition is then created
in one CU, and when the function is actually emitted children are attached
to the subprogram that expect to be in another CU. This breaks internal CU
references in the children.
Fix this by redirecting the creation of subprogram DIEs in
getOrCreateContextDIE to the CU specified by it's DISubprogram definition.
This ensures that the subprogram DIE is always created in the correct CU.
Differential Revision: https://reviews.llvm.org/D94976
These two cases have identical implementations other than an
unreachable part of `G_ADD` that checks if the scalar we're narrowing
is a vector. Combining them to avoid unnecessary divergence.
This was only adding undef to the use if the copy itself had a
subregister index. It did not consider the subrange liveness if the
use had a subreg index to begin with.
If we had a pair of copies inside a loop which introduced new liveness
to a subregister which was undef before the loop, we would have a
dummy phi-only segment remaining across the loop body. Later, this
false segment would confuse RenameIndependentSubregs causing it to
introduce IMPLICIT_DEFs with broken value numbering.
It seems always adding the lanes to ShrinkMask is OK, so any
conditions should be purely a compile time filter.
If sext_inreg is supported, we will turn this into sext_inreg. That
will then remove it if there are enough sign bits. But if sext_inreg
isn't supported, we can still remove the shift pair based on sign
bits.
Split from D95890.
Discussed in this thread:
https://lists.llvm.org/pipermail/llvm-dev/2021-January/148139.html
DwarfDebug::collectEntityInfo accidentally distinguishes between variable
locations that never have a location specified, and variable locations that
have an empty location specified. The latter leads to the creation of an
empty variable referring to the abstract origin.
Fix this by seeking a non-empty location before producing a concrete
entity, to guarantee a DW_AT_location will be produced. Other loops in
collectEntityInfo and endFunctionImpl take care of examining the
retainedNodes collection and ensuring optimised-out variables are created.
Differential Revision: https://reviews.llvm.org/D95617
FixupStatepoints pass does not take into account the undef use
it skips may have a tied def. So when defs are handled pass
considers that tied-use should be spilled and triggers an assert.
FixupStatepoints should skip undef def as well.
Reviewers: reames, dantrushin
Reviewed By: dantrushin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D95858
If the G_BR + G_BRCOND in this combine use the same MBB, then it will infinite
loop. Don't allow that to happen.
Differential Revision: https://reviews.llvm.org/D95895
When replacing the dst reg with the src reg, we need to make sure that we
propagate the dst reg's register class through to the src.
Otherwise, we aren't meeting the requirements for G_ASSERT_ZEXT, and so the
verifier will fail.
Differential Revision: https://reviews.llvm.org/D95708
The AArch64 DAG combine added by D90945 & D91433 extends the index
of a scalable masked gather or scatter to i32 if necessary.
This patch removes the combine and instead adds shouldExtendGSIndex, which
is used by visitMaskedGather/Scatter in SelectionDAGBuilder to query whether
the index should be extended before calling getMaskedGather/Scatter.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D94525
To set non-default rounding mode user usually calls function 'fesetround'
from standard C library. This way has some disadvantages.
* It creates unnecessary dependency on libc. On the other hand, setting
rounding mode requires few instructions and could be made by compiler.
Sometimes standard C library even is not available, like in the case of
GPU or AI cores that execute small kernels.
* Compiler could generate more effective code if it knows that a particular
call just sets rounding mode.
This change introduces new IR intrinsic, namely 'llvm.set.rounding', which
sets current rounding mode, similar to 'fesetround'. It however differs
from the latter, because it is a lower level facility:
* 'llvm.set.rounding' does not return any value, whereas 'fesetround'
returns non-zero value in the case of failure. In glibc 'fesetround'
reports failure if its argument is invalid or unsupported or if floating
point operations are unavailable on the hardware. Compiler usually knows
what core it generates code for and it can validate arguments in many
cases.
* Rounding mode is specified in 'fesetround' using constants like
'FE_TONEAREST', which are target dependent. It is inconvenient to work
with such constants at IR level.
C standard provides a target-independent way to specify rounding mode, it
is used in FLT_ROUNDS, however it does not define standard way to set
rounding mode using this encoding.
This change implements only IR intrinsic. Lowering it to machine code is
target-specific and will be implemented latter. Mapping of 'fesetround'
to 'llvm.set.rounding' is also not implemented here.
Differential Revision: https://reviews.llvm.org/D74729
If we're going to end up expanding anyway, we should do it early
so we don't create extra operations to handle the bytes added by
promotion.
This is helfpul on RISCV where we might have to promote i16 all
the way to i64.
Differential Revision: https://reviews.llvm.org/D95756
With a context instruction, this would produce a context
error. However, it would continue on and do an out of bounds access of
the empty allocation order array.
Source Drift happens when the sources are updated after profiling the binary
but before building the final optimized binary. If the source has changed since
the profiles were obtained, optimizing basic blocks might be sub-optimal. This
only applies to BasicBlockSection::List as it creates clusters of basic blocks
using basic block ids. Source drift can invalidate these groupings leading to
sub-optimal code generation with regards to performance.
PGO source drift for a particular function can be detected using function
metadata added in D95495.
When source drift is deected, disable basic block clusters by default
which can be re-enabled with -mllvm option
bbsections-detect-source-drift=false.
Differential Revision: https://reviews.llvm.org/D95593
I think every target will want to remove these in the same way. Rather than
making them all implement the same code, let's just put this in
InstructionSelect.
Differential Revision: https://reviews.llvm.org/D95652
Remove the call to setFlags in favour of creating the instruction with
the correct flags in the first place, so we don't have to explicitly
notify the observer.
Differential Revision: https://reviews.llvm.org/D95681
splitCodeGen does not need to take ownership of the module, as it
currently clones the original module for each split operation.
There is an ~4 year old fixme to change that, but until this is
addressed, the function can just take a reference to the module.
This makes the transition of LTOCodeGenerator to use LTOBackend a bit
easier, because under some circumstances, LTOCodeGenerator needs to
write the original module back after codegen.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D95222
iterating the same PHI/LABEL/Debug instructions repeatedly.
We run into a compiling timeout problem when building a target after its
SampleFDO profile is updated. It is because some very large blocks with
a bunch of PHIs at the beginning. LiveDebugVariables::emitDebugValues
called during VirtRegRewriter phase searchs the insertion point for those
large BBs repeatedly in SkipPHIsLabelsAndDebug, and each time
SkipPHIsLabelsAndDebug needs to go through the same set of PHIs before it
can find the first non PHI/Label/Debug instruction. This patch adds a cache
to save the last position for the sequence which has been checked in the
previous call of SkipPHIsLabelsAndDebug.
Differential Revision: https://reviews.llvm.org/D94981
This patch allows targets to define multiple cost
values for each register so that the cost model
can be more flexible and better used during the
register allocation as per the target requirements.
For AMDGPU the VGPR allocation will be more efficient
if the register cost can be associated dynamically
based on the calling convention.
Reviewed By: qcolombet
Differential Revision: https://reviews.llvm.org/D86836
This adds generic regbankselect support for G_ASSERT_ZEXT.
It inherits whatever register bank the source was given, always, on all targets.
I think that at the point where we run into these, the source register bank
should be decided.
This also adds some AArch64-specific code which makes sure we can handle
G_ASSERT_ZEXT when deciding on register banks for G_STORE, G_PHI, ... etc.
Differential Revision: https://reviews.llvm.org/D95649
It's the same as the ZEXT/TRUNC case, except SrcBitWidth is given by the
immediate operand.
Update KnownBitsTest.cpp and a MIR test for a concrete example.
Differential Revision: https://reviews.llvm.org/D95566
Treat hint instructions like G_ASSERT_ZEXT like COPY instructions in helpers
which walk through copies.
This ensures that instructions like G_ASSERT_ZEXT won't impact any optimizations
that rely on these helpers.
Differential Revision: https://reviews.llvm.org/D95577
These are widened to a wider UADDE/USUBE, with the overflow value
unused, and with the same synthesis of a new overflow value as for the
O operations.
Reviewed By: paquette
Differential Revision: https://reviews.llvm.org/D95326
This adds a generic opcode which communicates that a type has already been
zero-extended from a narrower type.
This is intended to be similar to AssertZext in SelectionDAG.
For example,
```
%x_was_extended:_(s64) = G_ASSERT_ZEXT %x, 16
```
Signifies that the top 48 bits of %x are known to be 0.
This is useful in cases like this:
```
define i1 @zeroext_param(i8 zeroext %x) {
%cmp = icmp ult i8 %x, -20
ret i1 %cmp
}
```
In AArch64, `%x` must use a 32-bit register, which is then truncated to a 8-bit
value.
If we know that `%x` is already zero-ed out in the relevant high bits, we can
avoid the truncate.
Currently, in GISel, this looks like this:
```
_zeroext_param:
and w8, w0, #0xff ; We don't actually need this!
cmp w8, #236
cset w0, lo
ret
```
While SDAG does not produce the truncation, since it knows that it's
unnecessary:
```
_zeroext_param:
cmp w0, #236
cset w0, lo
ret
```
This patch
- Adds G_ASSERT_ZEXT
- Adds MIRBuilder support for it
- Adds MachineVerifier support for it
- Documents it
It also puts G_ASSERT_ZEXT into its own class of "hint instruction." (There
should be a G_ASSERT_SEXT in the future, maybe a G_ASSERT_ALIGN as well.)
This allows us to skip over hints in the legalizer etc. These can then later
be selected like COPY instructions or removed.
Differential Revision: https://reviews.llvm.org/D95564
This reverts commit ef0dcb5063.
This change is causing a lot of compiler crashes inside, sorry I don't have a
small repro/stacktrace with symbols to share right now.
Differential Revision: https://reviews.llvm.org/D95622
https://bugs.llvm.org/show_bug.cgi?id=48232
When PrologEpilogInserter writes callee-saved registers to the stack, LR is not reloaded but is instead loaded directly into PC.
This was not taken into account when determining if each callee-saved register was liveout for the block.
When frame elimination inserts virtual registers, and the register scavenger tries to scavenge LR, it considers it liveout and tries to spill again.
However there is no emergency spill slot to use, and it fails with an error:
fatal error: error in backend: Error while trying to spill LR from class GPR: Cannot scavenge register without an emergency spill slot!
This patch pervents any callee-saved registers which are not reloaded (including LR) from being marked liveout.
They are therefore available to scavenge without requiring an extra spill.