Commit Graph

651 Commits

Author SHA1 Message Date
David Green 3e780616c4 [ARM] Correct some tablegen operand types. NFC 2021-02-02 16:55:31 +00:00
David Green 9e2768a3d9 [ARM] Add neon FP16 scalar_to_vector patterns.
This adds some simple fp16 scalar_to_vector patterns, preventing a
selection failure if this came up.

Differential Revision: https://reviews.llvm.org/D95427
2021-01-27 09:59:15 +00:00
David Green 63dce70b79 [ARM] Handle any extend whilst lowering addw/addl/subw/subl
Same as a9b6440edd, use zanyext to treat any_extends as zero extends
during lowering to create addw/addl/subw/subl nodes.

Differential Revision: https://reviews.llvm.org/D93835
2021-01-06 11:26:39 +00:00
Mikhail Maltsev ae1396c7d4 [ARM][BFloat16] Change types of some Arm and AArch64 bf16 intrinsics
This patch adjusts the following ARM/AArch64 LLVM IR intrinsics:
- neon_bfmmla
- neon_bfmlalb
- neon_bfmlalt
so that they take and return bf16 and float types. Previously these
intrinsics used <8 x i8> and <4 x i8> vectors (a rudiment from
implementation lacking bf16 IR type).

The neon_vbfdot[q] intrinsics are adjusted similarly. This change
required some additional selection patterns for vbfdot itself and
also for vector shuffles (in a previous patch) because of SelectionDAG
transformations kicking in and mangling the original code.

This patch makes the generated IR cleaner (less useless bitcasts are
produced), but it does not affect the final assembly.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D86146
2020-08-27 18:43:16 +01:00
David Green f8abecf337 [ARM] Extra MVE select(binop) patterns
This is very similar to 243970d03cace2, but handling a slightly
different form of predicated operations. When starting with a pattern of
the form select(p, BinOp(x, y), x), Instcombine will often transform
this to BinOp(x, select(p, y, 0)), where 0 is the identity value of the
binop (0 for adds/subs, 1 for muls, -1 for ands etc). This adds the
patterns that transforms those back into predicated binary operations.

There is also a very minor adjustment to tablegen null_frag in here, to
allow it to also be recognized as a PatLeaf node, so that it can be used
in MVE_TwoOpPattern to easily exclude the cases where we do not need the
alternate transform.

Differential Revision: https://reviews.llvm.org/D84091
2020-07-22 14:08:29 +01:00
Pavel Iliin b9a6fb6428 [ARM] VBIT/VBIF support added.
Vector bitwise selects are matched by pseudo VBSP instruction
and expanded to VBSL/VBIT/VBIF after register allocation
depend on operands registers to minimize extra copies.
2020-07-16 11:25:53 +01:00
David Green 76e0e1a55d [ARM] VCVTT instruction selection
We current extract and convert from a top lane of a f16 vector using a
VMOVX;VCVTB pair. We can simplify that to use a single VCVTT. The
pattern is mostly copied from a vector extract pattern, but produces a
VCVTTHS f32 directly.

This had to move some code around so that ARMInstrVFP had access to the
required pattern frags that were previously part of ARMInstrNEON.

Differential Revision: https://reviews.llvm.org/D81556
2020-06-26 08:58:55 +01:00
Mikhail Maltsev 9c579540ff [ARM] BFloat MatMul Intrinsics&CodeGen
Summary:
This patch adds support for BFloat Matrix Multiplication Intrinsics
and Code Generation from __bf16 to AArch32. This includes IR intrinsics. Tests are
provided as needed.

This patch is part of a series implementing the Bfloat16 extension of
the
Armv8.6-a architecture, as detailed here:

https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a

The bfloat type and its properties are specified in the Arm
Architecture
Reference Manual:

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

The following people contributed to this patch:

 - Luke Geeson
 - Momchil Velikov
 - Mikhail Maltsev
 - Luke Cheeseman
 - Simon Tatham

Reviewers: stuij, t.p.northover, SjoerdMeijer, sdesmalen, fpetrogalli, LukeGeeson, simon_tatham, dmgreen, MarkMurrayARM

Reviewed By: MarkMurrayARM

Subscribers: MarkMurrayARM, danielkiss, kristof.beyls, hiraditya, cfe-commits, llvm-commits, chill, miyuki

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D81740
2020-06-23 12:06:37 +00:00
Mikhail Maltsev 490f78c038 [ARM][BFloat] Implement lowering of bf16 load/store intrinsics
Reviewers: labrinea, dmgreen, pratlucas, LukeGeeson

Reviewed By: dmgreen

Subscribers: kristof.beyls, hiraditya, danielkiss, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D81486
2020-06-19 14:02:35 +00:00
Mikhail Maltsev 7526881246 [ARM][BFloat] Lowering of create/get/set/dup intrinsics
This patch adds codegen for the following BFloat
operations to the ARM backend:
* concatenation of bf16 vectors
* bf16 vector element extraction
* bf16 vector element insertion
* duplication of a bf16 value into each lane of a vector
* duplication of a bf16 vector lane into each lane

Differential Revision: https://reviews.llvm.org/D81411
2020-06-19 12:52:40 +00:00
Alexandros Lamprineas ecdf48f15b [ARM] Basic bfloat support
This patch adds basic support for BFloat in the Arm backend.
For now the code generation relies on fullfp16 being present.

Briefly:
* adds the bfloat scalar and vector types in the necessary register classes,
* adjusts the calling convention to cope with bfloat argument passing and return,
* adds codegen patterns for moves, loads and stores.

It's tested mostly by the intrinsic patches that depend on it (load/store, convert/copy).

The following people contributed to this patch:

 * Alexandros Lamprineas
 * Ties Stuij

Differential Revision: https://reviews.llvm.org/D81373
2020-06-18 17:26:24 +01:00
Alexandros Lamprineas f6189da938 [ARM][NFC] Explicitly specify the fp16 value type in codegen patterns.
We are planning to add the bf16 value type in the HPR register class
and this will make the codegen patterns ambiguous.

Differential Revision: https://reviews.llvm.org/D81505
2020-06-16 11:32:17 +01:00
David Green 7a076418dd [ARM] Replace hasNoSchedulingInfo with UnsupportedFeatures in the A57 schedule
hasNoSchedulingInfo should be used for Pseudo's and other instructions
that are never expected to be scheduled. This removes the flag from new
ARM instructions, instead fixing the A57 schedule by marking the related
architecture features as unsupported.
2020-04-27 10:13:29 +01:00
Luke Geeson 7da1905125 [AArch32] Armv8.6-a Matrix Mult Assembly + Intrinsics
This patch upstreams support for the Armv8.6-a Matrix Multiplication
Extension. A summary of the features can be found here:

https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a

This patch includes:

- Assembly support for AArch32
- Intrinsics Support for AArch32 Neon Intrinsics for Matrix
  Multiplication

Note: these extensions are optional in the 8.6a architecture and so have
to be enabled by default

No additional IR types or C Types are needed for this extension.

This is part of a patch series, starting with BFloat16 support and
the other components in the armv8.6a extension (in previous patches
linked in phabricator)

Based on work by:
- Luke Geeson
- Oliver Stannard
- Luke Cheeseman

Reviewers: t.p.northover, miyuki

Reviewed By: miyuki

Subscribers: miyuki, ostannard, kristof.beyls, hiraditya, danielkiss,
cfe-commits

Tags: #clang

Differential Revision: https://reviews.llvm.org/D77872
2020-04-24 15:54:06 +01:00
Kazuaki Ishizaki 0312b9f550 [llvm] NFC: Fix trivial typo in rst and td files
Differential Revision: https://reviews.llvm.org/D77469
2020-04-23 14:26:32 +09:00
David Green fbd53ffc3a [ARM] MVE VMULL patterns
This adds MVE vmull patterns, which are conceptually the same as
mul(vmovl, vmovl), and so the tablegen patterns follow the same
structure.

For i8 and i16 this is simple enough, but in the i32 version the
multiply (in 64bits) is illegal, meaning we need to catch the pattern
earlier in a dag fold. Because bitcasts are involved in the zext
versions and the patterns are a little different in little and big
endian. I have only added little endian support in this patch.

Differential Revision: https://reviews.llvm.org/D76740
2020-04-02 10:57:40 +01:00
Ties Stuij 71ae267d1f [PATCH] [ARM] ARMv8.6-a command-line + BFloat16 Asm Support
Summary:
This patch introduces command-line support for the Armv8.6-a architecture and assembly support for BFloat16. Details can be found
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a

in addition to the GCC patch for the 8..6-a CLI:
https://gcc.gnu.org/legacy-ml/gcc-patches/2019-11/msg02647.html

In detail this patch

- march options for armv8.6-a
- BFloat16 assembly

This is part of a patch series, starting with command-line and Bfloat16
assembly support. The subsequent patches will upstream intrinsics
support for BFloat16, followed by Matrix Multiplication and the
remaining Virtualization features of the armv8.6-a architecture.

Based on work by:
- labrinea
- MarkMurrayARM
- Luke Cheeseman
- Javed Asbar
- Mikhail Maltsev
- Luke Geeson

Reviewers: SjoerdMeijer, craig.topper, rjmccall, jfb, LukeGeeson

Reviewed By: SjoerdMeijer

Subscribers: stuij, kristof.beyls, hiraditya, dexonsmith, danielkiss, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D76062
2020-03-26 09:17:20 +00:00
Simon Tatham 9dcc1667ab [ARM] Allow `ARMVectorRegCast` to match bitconverts too. (NFC)
Summary:
When we start putting instances of `ARMVectorRegCast` in complex isel
patterns, it will be awkward that they're often turned into the more
standard `bitconvert` in little-endian mode. We'd rather not have to
write separate isel patterns for the two endiannesses, matching
different but equivalent cast operations.

This change aims to fix that awkwardness in advance, by turning the
Tablegen record `ARMVectorRegCast` from a simple `SDNode` instance
into a `PatFrags` that can match either kind of cast – with a
predicate that prevents it matching a bitconvert in the big-endian
case, where bitconvert isn't semantically identical.

No existing code generation should be affected by this change, but it
will enable the patterns introduced by D74336 to work in both
endiannesses.

Reviewers: dmgreen

Reviewed By: dmgreen

Subscribers: kristof.beyls, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D74716
2020-02-18 09:34:50 +00:00
David Green 9d4c597541 [ARM] Fix ReconstructShuffle for bigendian
Simon pointed out that this function is doing a bitcast, which can be
incorrect for big endian. That makes the lowering of VMOVN in MVE
wrong, but the function is shared between Neon and MVE so both can
be incorrect.

This attempts to fix things by using the newly added VECTOR_REG_CAST
instead of the BITCAST. As it may now be used on Neon, I've added the
relevant patterns for it there too. I've also added a quick dag combine
for it to remove them where possible.

Differential Revision: https://reviews.llvm.org/D74485
2020-02-13 09:56:46 +00:00
Simon Tatham 4321c6af28 [ARM,MVE] Support immediate vbicq,vorrq,vmvnq intrinsics.
Summary:
Immediate vmvnq is code-generated as a simple vector constant in IR,
and left to the backend to recognize that it can be created with an
MVE VMVN instruction. The predicated version is represented as a
select between the input and the same constant, and I've added a
Tablegen isel rule to turn that into a predicated VMVN. (That should
be better than the previous VMVN + VPSEL: it's the same number of
instructions but now it can fold into an adjacent VPT block.)

The unpredicated forms of VBIC and VORR are done by enabling the same
isel lowering as for NEON, recognizing appropriate immediates and
rewriting them as ARMISD::VBICIMM / ARMISD::VORRIMM SDNodes, which I
then instruction-select into the right MVE instructions (now that I've
also reworked those instructions to use the same MC operand encoding).
In order to do that, I had to promote the Tablegen SDNode instance
`NEONvorrImm` to a general `ARMvorrImm` available in MVE as well, and
similarly for `NEONvbicImm`.

The predicated forms of VBIC and VORR are represented as a vector
select between the original input vector and the output of the
unpredicated operation. The main convenience of this is that it still
lets me use the existing isel lowering for VBICIMM/VORRIMM, and not
have to write another copy of the operand encoding translation code.

This intrinsic family is the first to use the `imm_simd` system I put
into the MveEmitter tablegen backend. So, naturally, it showed up a
bug or two (emitting bogus range checks and the like). Fixed those,
and added a full set of tests for the permissible immediates in the
existing Sema test.

Also adjusted the isel pattern for `vmovlb.u8`, which stopped matching
because lowering started turning its input into a VBICIMM. Now it
recognizes the VBICIMM instead.

Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard

Reviewed By: dmgreen

Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D72934
2020-01-23 11:53:52 +00:00
David Green a223a4d66f [ARM] Add ARMCC constants to tablegen. NFC
I got tired of looking at magic constants in tablegen files. This adds
condition codes like ARMCCeq and makes use of them.

I also removed the extra patterns for reverse condition codes from
D70296, they should now be covered by the parent commit.

Differential Revision: https://reviews.llvm.org/D70824
2019-12-02 19:57:12 +00:00
Victor Campos dcf11c5e86 [ARM][AArch64] Complex addition Neon intrinsics for Armv8.3-A
Summary:
Add support for vcadd_* family of intrinsics. This set of intrinsics is
available in Armv8.3-A.

The fp16 versions require the FP16 extension, which has been available
(opt-in) since Armv8.2-A.

Reviewers: t.p.northover

Reviewed By: t.p.northover

Subscribers: t.p.northover, kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D70862
2019-12-02 14:38:39 +00:00
David Green 9f15fcc271 [ARM] Replace arm_neon_vqadds with sadd_sat
This replaces the A32 NEON vqadds, vqaddu, vqsubs and vqsubu intrinsics
with the target independent sadd_sat, uadd_sat, ssub_sat and usub_sat.
This helps generate vqadds from standard IR nodes, which might be
produced from the vectoriser. The old variants are removed in the
process.

Differential Revision: https://reviews.llvm.org/D69350
2019-11-27 13:32:29 +00:00
David Green 6bae5d16a2 [ARM] Add vrev32 NEON fp16 patterns
Fill in the gaps for vrev32.16 f16 patterns, extending the existing i16
patterns.

Differential Revision: https://reviews.llvm.org/D69508
2019-11-04 13:37:01 +00:00
David Green cd7a6fa314 [ARM] Rewrite how VCMP are lowered, using a single node
This removes the VCEQ/VCNE/VCGE/VCEQZ/etc nodes, just using two called VCMP and
VCMPZ with an extra operand as the condition code. I believe this will make
some combines simpler, allowing us to just look at these codes and not the
operands. It also helps fill in a missing VCGTUZ MVE selection without adding
extra nodes for it.

Differential Revision: https://reviews.llvm.org/D65072

llvm-svn: 366934
2019-07-24 17:36:47 +00:00
David Green b9d96ceca0 [ARM] MVE integer compares and selects
This adds the very basics for MVE vector predication, adding integer VCMP and
VSEL instruction support. This is done through predicate registers (MVT::v16i1,
MVT::v8i1, MVT::v4i1), but otherwise using same mechanics as NEON to custom
lower setcc's through ARMISD::VCXX nodes (VCEQ, VCGT, VCEQZ, etc).

An extra VCNE was added, as this can be handled sensibly by MVE's expanded
number of VCMP condition codes. (There are also VCLE and VCLT which are added
later).

VPSEL is also added here, simply selecting on the vselect.

Original code by David Sherwood.

Differential Revision: https://reviews.llvm.org/D65051

llvm-svn: 366885
2019-07-24 11:08:14 +00:00
David Green fdedf240f8 [ARM] Rename NEONModImm to VMOVModImm. NFC
Rename NEONModImm to VMOVModImm as it is used in both NEON and MVE.

llvm-svn: 366790
2019-07-23 09:19:24 +00:00
David Green 6e89887642 [ARM] MVE Vector Shifts
This adds basic lowering for MVE shifts. There are many shifts in MVE, but the
instructions handled here are:
 VSHL (imm)
 VSHRu (imm)
 VSHRs (imm)
 VSHL (vector)
 VSHL (register)

MVE, like NEON before it, doesn't have shift right by a vector (or register).
We instead have to negate the amount and shift in the opposite direction. This
means we have to convert any SHR's into a form of SHL (that is still signed or
unsigned) with a negated condition and selecting from there. MVE still does
have shifting by an immediate for SHL, ASR and LSR.

This adds lowering for these and for register forms, which work well for shift
lefts but may require an extra fold of neg(vdup(x)) -> vdup(neg(x)) to potentially
work optimally for right shifts.

Differential Revision: https://reviews.llvm.org/D64212

llvm-svn: 366056
2019-07-15 11:35:39 +00:00
David Green da750b1688 [ARM] Adjust how NEON shifts are lowered
This adjusts the way that we lower NEON shifts to use a DAG target node, not
via a neon intrinsic. This is useful for handling MVE shifts operations in the
same the way. It also renames some of the immediate shift nodes for
consistency, and moves some of the processing of immediate shifts into
LowerShift allowing it to capture more cases.

Differential Revision: https://reviews.llvm.org/D64426

llvm-svn: 366051
2019-07-15 10:44:50 +00:00
David Green 25cf705097 [ARM] MVE VMOV immediate handling
This adds some handling for VMOVimm, using the same method that NEON uses. We
create VMOVIMM/VMVNIMM/VMOVFPIMM nodes based on the immediate, and select them
using the now renamed ARMvmovImm/etc. There is also an extra 64bit immediate
mode that I have not yet added here.

Code by David Sherwood

Differential Revision: https://reviews.llvm.org/D63884

llvm-svn: 365178
2019-07-05 10:02:43 +00:00
David Green 8be372b190 [ARM] MVE vector shuffles
This patch adds necessary shuffle vector and buildvector support for ARM MVE.
It essentially adds support for VDUP, VREVs and some VMOVs, which are often
required by other code (like upcoming patches).

This mostly uses the same code from Neon that already generated
NEONvdup/NEONvduplane/NEONvrev's. These have been renamed to ARMvdup/etc and
moved to ARMInstrInfo as they are common to both architectures. Most of the
selection code seems to be applicable to both, but NEON does have some more
instructions making some parts specific.

Most code originally by David Sherwood.

Differential Revision: https://reviews.llvm.org/D63567

llvm-svn: 364626
2019-06-28 07:08:42 +00:00
David Green 10fbaa96c5 [ARM] Add HasNEON for all Neon patterns in ARMInstrNEON.td. NFCI
We are starting to add an entirely separate vector architecture to the ARM
backend. To do that we need at least some separation between the existing NEON
and the new MVE code. This patch just goes through the Neon patterns and
ensures that they are predicated on HasNEON, giving MVE a stable place to start
from.

No tests yet as this is largely an NFC, and we don't have the other target that
will treat any of these intructions as legal.

Differential Revision: https://reviews.llvm.org/D62945

llvm-svn: 362870
2019-06-08 09:36:49 +00:00
Mikhail Maltsev 08da01b496 [ARM] Add FP16 vector insert/extract patterns
This change adds two FP16 extraction and two insertion patterns
(one per possible vector length).
Extractions are handled by copying a Q/D register into one of VFP2
class registers, where single FP32 sub-registers can be accessed. Then
the extraction of even lanes are simple sub-register extractions
(because we don't care about the top parts of registers for FP16
operations). Odd lanes need an additional VMOVX instruction.

Unfortunately, insertions cannot be handled in the same way, because:
* There is no instruction to insert FP16 into an even lane (VINS only
  works with odd lanes)
* The patterns for odd lanes will have a form of a DAG (not a tree),
  and will not be implementable in pure tablegen

Because of this insertions are handled in the same way as 16-bit
integer insertions (with conversions between FP registers and GPRs
using VMOVHR instructions).

Without these patterns the ARM backend would sometimes fail during
instruction selection.

This patch also adds patterns which combine:
* an FP16 element extraction and a store into a single VST1
  instruction
* an FP16 load and insertion into a single VLD1 instruction

Differential Revision: https://reviews.llvm.org/D62651

llvm-svn: 362482
2019-06-04 09:39:55 +00:00
Sjoerd Meijer eb072b5a6a [ARM] Change the MC names for VMAXNM/VMINNM
Now the NEON ones have a prefix "NEON_", and the VFP ones have a
prefix "VFP_". This is so that the regex in ARMScheduleA57.td can be
made to match both of _those_ classes of VMAXNM without also matching
the MVE ones that are going to be introduced soon. NFCI.

Patch by Simon Tatham.

Differential Revision: https://reviews.llvm.org/D60700

llvm-svn: 362097
2019-05-30 14:34:29 +00:00
Sjoerd Meijer 7eb95d672d [ARM] Introduce separate features for FP registers
The MVE extension in Arm v8.1-M permits the use of some move, load and
store isntructions which access the FP registers, even if there's no
actual FP support in the processor (in particular, if you have the
integer-only version of MVE).

Therefore, we need separate subtarget features to condition those
instructions on, which are implied by both FP and MVE but are not part
of either.

Patch mostly by Simon Tatham.

Differential Revision: https://reviews.llvm.org/D60694

llvm-svn: 362088
2019-05-30 12:37:05 +00:00
Diogo N. Sampaio d95abb170b [ARM] Add bitcast/extract_subvec. of fp16 vectors
Summary:
This patch adds some basic operations for fp16
vectors, such as bitcast from fp16 to i16,
required to perform extract_subvector (also added
here) and extract_element.

Reviewers: SjoerdMeijer, DavidSpickett, t.p.northover, ostannard

Reviewed By: ostannard

Subscribers: javed.absar, kristof.beyls, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D60618

llvm-svn: 359433
2019-04-29 10:28:07 +00:00
Diogo N. Sampaio 651463e4a8 [ARM] [FIX] Add missing f16 vector operations lowering
Summary:
Add missing <8xhalf> shufflevectors pattern, when using concat_vector dag node.
As well, allows <8xhalf> and <4xhalf> vldup1 operations.

These instructions are required for v8.2a fp16 lowering of vmul_n_f16, vmulq_n_f16 and vmulq_lane_f16 intrinsics.

Reviewers: olista01, pbarrio, LukeGeeson, efriedma

Reviewed By: efriedma

Subscribers: efriedma, javed.absar, kristof.beyls, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D60319

llvm-svn: 358081
2019-04-10 13:28:06 +00:00
Diogo N. Sampaio c20c37ba7f [ARM][FIX] Fix vfmal.f16 and vfmsl.f16 operand
The indexed variant of vfmal.f16 and vfmsl.f16
instructions use the uppser bits of the indexed
operand to store the index (1 bit for the double
variant, 2 bits for the quad).

This limits the usable registers to d0 - d7 or
s0 - s15. This patch enforces this limitation.

Differential Revision: https://reviews.llvm.org/D59021

llvm-svn: 355707
2019-03-08 17:11:20 +00:00
Chandler Carruth 2946cd7010 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00
Thomas Lively 30f1d69115 [NFC] Rename minnan and maxnan to minimum and maximum
Summary:
Changes all uses of minnan/maxnan to minimum/maximum
globally. These names emphasize that the semantic difference between
these operations is more than just NaN-propagation.

Reviewers: arsenm, aheejin, dschuff, javed.absar

Subscribers: jholewinski, sdardis, wdng, sbc100, jgravelle-google, jrtc27, atanasyan, llvm-commits

Differential Revision: https://reviews.llvm.org/D53112

llvm-svn: 345218
2018-10-24 22:49:55 +00:00
Sjoerd Meijer ff3ab33ec8 [ARM][NFCI] Do not fuse VADD and VMUL, continued (1/2)
This is a follow up of rL342874, which stopped fusing muls and adds into VMLAs
for performance reasons on the Cortex-M4 and Cortex-M33.  This is a serie of 2
patches, that is trying to achieve the same for VFMA.  The second column in the
table below shows what we were generating before rL342874, the third column
what changed with rL342874, and the last column what we want to achieve with
these 2 patches:

 --------------------------------------------------------
 | Opt   |  < rL342874   |  >= rL342874   |             |
 |------------------------------------------------------|
 |-O3    |     vmla      |      vmul      |     vmul    |
 |       |               |      vadd      |     vadd    |
 |------------------------------------------------------|
 |-Ofast |     vfma      |      vfma      |     vmul    |
 |       |               |                |     vadd    |
 |------------------------------------------------------|
 |-Oz    |     vmla      |      vmla      |     vmla    |
 --------------------------------------------------------

This patch 1/2, is a cleanup of the spaghetti predicate logic on the different
VMLA and VFMA codegen rules, so that we can make the final functional change in
patch 2/2.  This also fixes a typo in the regression test added in rL342874.

Differential revision: https://reviews.llvm.org/D53314

llvm-svn: 344671
2018-10-17 07:26:35 +00:00
Bernard Ogden b828bb2a15 [ARM/AArch64] Support FP16 +fp16fml instructions
Add +fp16fml feature for new FP16 instructions, which are a
mandatory part of FP16 from v8.4-A and an optional part of FP16
from v8.2-A. It doesn't seem to be possible to model this in
LLVM, but the relationship between the options is handled by
the related clang patch.

In keeping with what I think is the usual practice, the fp16fml
extension is accepted regardless of base architecture version.

Builds on/replaces Sjoerd Meijer's patch to add these instructions at
https://reviews.llvm.org/D49839.

Differential Revision: https://reviews.llvm.org/D50228

llvm-svn: 340013
2018-08-17 11:29:49 +00:00
Luke Geeson 4ce41d2bb7 [ARM] Added FP16 VREV Vector Instrinsic CodeGen support
llvm-svn: 339546
2018-08-13 08:37:41 +00:00
Sjoerd Meijer f8c394f0f5 [ARM] FP16: codegen support for VEXT
Differential Revision: https://reviews.llvm.org/D50427

llvm-svn: 339241
2018-08-08 13:26:38 +00:00
Sjoerd Meijer db5908deb9 [ARM] FP16: vector vmov and vdup support
This adds codegen support for the vmov_n_f16 and vdup_n_f16 variants.

Differential Revision: https://reviews.llvm.org/D50329

llvm-svn: 339238
2018-08-08 13:11:31 +00:00
Sjoerd Meijer 920a453485 [ARM] FP16: vector VMUL variants
This adds codegen support for the vmul_lane_f16 and vmul_n_f16 variants.

Differential Revision: https://reviews.llvm.org/D50326

llvm-svn: 339232
2018-08-08 10:27:34 +00:00
Sjoerd Meijer b39cd886b9 [ARM] FP16: codegen support for VACGT
Differential Revision: https://reviews.llvm.org/D50236

llvm-svn: 339148
2018-08-07 15:11:47 +00:00
Sjoerd Meijer 9b30213828 [ARM] FP16: support VFMA
This is addressing PR38404.

llvm-svn: 338830
2018-08-03 09:12:56 +00:00
Ivan A. Kosarev 7231598fce [NEON] Support vldNq intrinsics in AArch32 (LLVM part)
This patch adds support for the q versions of the dup
(load-to-all-lanes) NEON intrinsics, such as vld2q_dup_f16() for
example.

Currently, non-q versions of the dup intrinsics are implemented
in clang by generating IR that first loads the elements of the
structure into the first lane with the lane (to-single-lane)
intrinsics, and then propagating it other lanes. There are at
least two problems with this approach. First, there are no
double-spaced to-single-lane byte-element instructions. For
example, there is no such instruction as 'vld2.8 { d0[0], d2[0]
}, [r0]'. That means we cannot rely on the to-single-lane
intrinsics and instructions to implement the q versions of the
dup intrinsics. Note that to-all-lanes instructions do support
all sizes of data items, including bytes.

The second problem with the current approach is that we need a
separate vdup instruction to propagate the structure to each
lane. So for vld4q_dup_f16() we would need four vdup instructions
in addition to the initial vld instruction.

This patch introduces dup LLVM intrinsics and reworks handling of
the currently supported (non-q) NEON dup intrinsics to expand
them into those LLVM intrinsics, thus eliminating the need for
using to-single-lane intrinsics and instructions.

Additionally, this patch adds support for u64 and s64 dup NEON
intrinsics. These are marked as Arch64-only in the ARM NEON
Reference, but it seems there are no reasons to not support them
in AArch32 mode. Please correct, if that is wrong.

That's what we generate with this patch applied:

vld2q_dup_f16:
  vld2.16 {d0[], d2[]}, [r0]
  vld2.16 {d1[], d3[]}, [r0]

vld3q_dup_f16:
  vld3.16 {d0[], d2[], d4[]}, [r0]
  vld3.16 {d1[], d3[], d5[]}, [r0]

vld4q_dup_f16:
  vld4.16 {d0[], d2[], d4[], d6[]}, [r0]
  vld4.16 {d1[], d3[], d5[], d7[]}, [r0]

Differential Revision: https://reviews.llvm.org/D48439

llvm-svn: 335733
2018-06-27 13:57:52 +00:00
Krzysztof Parzyszek 82d284c1d2 [DAGCombiner] Recognize more patterns for ABS
Differential Revision: https://reviews.llvm.org/D47831

llvm-svn: 334553
2018-06-12 21:51:49 +00:00