This pull request implements patterns to exploit the load rightmost vector
element instructions for loading element 0 on little endian PowerPC subtargets
into v8i16 and v16i8 vector registers for i16 and i8 data types.
Differential Revision: https://reviews.llvm.org/D94816#inline-921403
This patch generates the vinsw, vinsd, vinsblx, vinshlx, vinswlx, vinsdlx,
vinsbrx, vinshrx, vinswrx and vinsdrx instructions for vector insertion on P10.
Differential Revision: https://reviews.llvm.org/D94454
This intrinsic is supposed to have the permute control vector complemented on
little endian systems (as the ABI specifies and GCC implements). With the
current code gen, the result vector is byte-reversed.
Differential revision: https://reviews.llvm.org/D95004
A bug in the system assembler can assemble the xxspltd extended
menemonic into the wrong instruction (extracting the wrong element).
Emit the full xxpermdi with all operands to work around the problem.
Differential Revision: https://reviews.llvm.org/D94419
We will emit these permuted nodes on all VSX little endian subtargets
but don't have the patterns available to match them on subtargets
that don't have direct moves.
Fixes: https://bugs.llvm.org/show_bug.cgi?id=47916
Some of the pattern matching in PPCInstrVSX.td and node lowering involving vectors assumes 64bit mode. This patch disables some of the unsafe pattern matching and lowering of BUILD_VECTOR in 32bit mode.
Reviewed By: Xiangling_L
Differential Revision: https://reviews.llvm.org/D92789
PowerPC ISA support the input test for vector type v4f32 and v2f64.
Replace the software compare with hw test will improve the perf.
Reviewed By: ChenZheng
Differential Revision: https://reviews.llvm.org/D90914
For now, we will hardcode the result as 0.0 if the input is denormal or 0. That will
have the impact the precision. As the fsqrt added belong to the cold path of the
cmp+branch, it won't impact the performance for normal inputs for PowerPC, but improve
the precision if the input is denormal.
Reviewed By: Spatel
Differential Revision: https://reviews.llvm.org/D80974
PowerPC has instruction ftsqrt/xstsqrtdp etc to do the input test for software square root.
LLVM now tests it with smallest normalized value using abs + setcc. We should add hook to
target that has test instructions.
Reviewed By: Spatel, Chen Zheng, Qiu Chao Fang
Differential Revision: https://reviews.llvm.org/D80706
Summary: This patch implements the builtins for xvtdivdp, xvtdivsp, xvtsqrtdp, xvtsqrtsp.
The instructions correspond to the following builtins:
int vec_test_swdiv(vector double v1, vector double v2);
int vec_test_swdivs(vector float v1, vector float v2);
int vec_test_swsqrt(vector double v1);
int vec_test_swsqrts(vector float v1);
This patch depends on D88274, which fixes the bug in copying from CRRC to GPRC/G8RC.
Reviewed By: steven.zhang, amyk
Differential Revision: https://reviews.llvm.org/D88278
According to POWER ISA, floating point instructions altering exception
bits in FPSCR should be 'may raise FP exception'. (excluding those
read or write the whole FPSCR directly, like mffs/mtfsf) We need to
model FPSCR well in future patches to handle the special case properly.
Instructions added mayRaiseFPException:
- fre(s)/frsqrte(s)
- fmadd(s)/fmsub(s)/fnmadd(s)/fnmsub(s)
- xscmpoqp/xscmpuqp/xscmpeqdp/xscmpgedp/xscmpgtdp
- xscvdphp/xscvhpdp/xvcvhpsp/xvcvsphp/xsrqpxp
- xsmaxcdp/xsincdp/xsmaxjdp/xsminjdp
Instructions removed mayRaiseFPException:
- xstdivdp/xvtdiv(d|s)p/xstsqrtdp/xvtsqrt(d|s)p
- xsabsdp/xsnabsdp/xvabs(d|s)p/xvnabs(d|s)p
- xsnegdp/xscpsgndp/xvneg(d|s)p/xvcpsgn(d|s)p
- xvcvsxwdp/xvcvuxwdp
- xscvdpspn/xscvspdpn
Reviewed By: steven.zhang
Differential Revision: https://reviews.llvm.org/D87738
In standard C library, both rint and nearbyint returns rounding result
in current rounding mode. But nearbyint never raises inexact exception.
On PowerPC, x(v|s)r(d|s)pic may modify FPSCR XX, raising inexact
exception. So we can't select constrained fnearbyint into xvrdpic.
One exception here is xsrqpi, which will not raise inexact exception, so
fnearbyint f128 is okay here.
Reviewed By: uweigand
Differential Revision: https://reviews.llvm.org/D87220
This patch makes these operations legal, and add necessary codegen
patterns.
There's still some issue similar to D77033 for conversion from v1i128
type. But normal type tests synced in vector-constrained-fp-intrinsic
are passed successfully.
Reviewed By: uweigand
Differential Revision: https://reviews.llvm.org/D83654
This patch adds support for constrained scalar int to fp operations on
PowerPC. Besides, this also fixes the FP exception bit of FCFID*
instructions.
Reviewed By: steven.zhang, uweigand
Differential Revision: https://reviews.llvm.org/D81669
This patch adds support for constrained scalar fp to int operations on
PowerPC. Besides, this fixes the FP exception bit of quad-precision
convert & truncate instructions.
Reviewed By: steven.zhang, uweigand
Differential Revision: https://reviews.llvm.org/D81537
Summary:
Some instructions have set the wrong [RM] flag, this patch is to fix it.
Instructions x(v|s)r(d|s)pi[zmp]? and fri[npzm] use fixed rounding
directions without referencing current rounding mode.
Also, the SETRNDi, SETRND, BCLRn, MTFSFI, MTFSB0, MTFSB1, MTFSFb,
MTFSFI, MTFSFI_rec, MTFSF, MTFSF_rec should also fix the RM flag.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D81360
Summary:
In preparation for GlobalISel, PPCSubTarget needs to be renamed to Subtarget as there places in GlobalISel that assume the presence of the variable Subtarget.
This patch introduces the variable Subtarget, and replaces all existing uses of PPCSubTarget with Subtarget. A subsequent patch will remove the definiton of
PPCSubTarget, once any downstream users have the opportunity to rename any uses they have.
Reviewers: hfinkel, nemanjai, jhibbits, #powerpc, echristo, lkail
Reviewed By: #powerpc, echristo, lkail
Subscribers: echristo, lkail, wuzish, nemanjai, hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81623
We currently miss a number of opportunities to emit single-instruction
VMRG[LH][BHW] instructions for shuffles on little endian subtargets. Although
this in itself is not a huge performance opportunity since loading the permute
vector for a VPERM can always be pulled out of loops, producing such merge
instructions is useful to downstream optimizations.
Since VPERM is essentially opaque to all subsequent optimizations, we want to
avoid it as much as possible. Other permute instructions have semantics that can
be reasoned about much more easily in later optimizations.
This patch does the following:
- Canonicalize shuffles so that the first element comes from the first vector
(since that's what most of the mask matching functions want)
- Switch the elements that come from splat vectors so that they match the
corresponding elements from the other vector (to allow for merges)
- Adds debugging messages for when a shuffle is matched to a VPERM so that
anyone interested in improving this further can get the info for their code
Differential revision: https://reviews.llvm.org/D77448
This patch adds handling of constrained FP intrinsics about round,
truncate and extend for PowerPC target, with necessary tests.
Reviewed By: steven.zhang
Differential Revision: https://reviews.llvm.org/D64193
On PowerPC, FNMSUB (both VSX and non-VSX version) means -(a*b-c). But
the backend used to generate these instructions regardless whether nsz
flag exists or not. If a*b-c==0, such transformation changes sign of
zero.
This patch introduces PPC specific FNMSUB ISD opcode, which may help
improving combined FMA code sequence.
Reviewed By: steven.zhang
Differential Revision: https://reviews.llvm.org/D76585
The fix for PR39865 took care of some of the handling for half precision
but it missed a number of issues that still exist. This patch fixes the
remaining issues that cause crashes in the PPC back end.
Fixes: https://bugs.llvm.org/show_bug.cgi?id=45776
Differential revision: https://reviews.llvm.org/D79283
xsnegdp, xsabsdp and xsnabsdp can be used to operate on f32 operand.
This patch adds the missing patterns since we prefer VSX instructions
when available.
Reviewed By: steven.zhang
Differential Revision: https://reviews.llvm.org/D75344
This patch adds strict-fp intrinsics support for fma, fsqrt, fmaxnum and
fminnum on PowerPC.
Reviewed By: hfinkel
Differential Revision: https://reviews.llvm.org/D72749
Over time, we have made many additions to this file and it has frankly become a
bit of a mess. This has led to at least one issue - we have a number of
instructions where the side effects flag should be set to false and we neglected
to do this. This patch suggests a refactoring that should make the file much
more maintainable. The file is split up into major sections and the nesting
level is reduced, predicate blocks merged, etc.
Sections:
- Custom PPCISD node definitions
- Predicate definitions
- Instruction formats
- Instruction definitions
- Helper DAG definitions
- Anonymous patterns
- Instruction aliases
Differential revision: https://reviews.llvm.org/D78132
There are a few patterns where we use a superclass for inputs to this
instruction rather than the correct class. This can sometimes lead to
unncessary copies.
An analysis of real world code turned up a number of patterns with BUILD_VECTOR
of nodes resulting from operations on extracted vector elements for which we
produce poor code. This addresses those cases. No attempt is made for
completeness as that would entail a large amount of work for something that
there is no evidence of in real code.
Differential revision: https://reviews.llvm.org/D72660
The PPCISD::SExtVElems was added by commit https://reviews.llvm.org/D34009. However,
we have another ISD node ISD::SIGN_EXTEND_INREG that perfectly match the semantics
of SExtVElems. And the DAGCombiner has some combine rules for SIGN_EXTEND_INREG
that produce better code.
Differential Revision: https://reviews.llvm.org/D70771
Exploit native VSX rounding instruction, x(v|s)r(d|s)pic, which does
rounding using current rounding mode.
According to C standard library, rint may raise INEXACT exception while
nearbyint won't.
Reviewed By: lkail
Differential Revision: https://reviews.llvm.org/D72685
We use o suffix to indicate record form instuctions,
(as it is similar to dot '.' in mne?)
This was fine before, as we did not support XO-form.
However, with https://reviews.llvm.org/D66902,
we now have XO-form support.
It becomes confusing now to still use 'o' for record form,
and it is weird to have something like 'Oo' .
This patch rename all 'o' instructions to use '_rec' instead.
Also rename `isDot` to `isRecordForm`.
Reviewed By: #powerpc, hfinkel, nemanjai, steven.zhang, lkail
Differential Revision: https://reviews.llvm.org/D70758
VSX provides a full complement of rounding instructions yet we somehow ended up
with some of them legal and others not. This just legalizes all of the FP
rounding nodes and the FP -> int rounding nodes with unsafe math.
Differential revision: https://reviews.llvm.org/D69949
The custom node PPCISD::XXREVERSE has completely the same semantics of generic node ISD::BSWAP.
We need to clean up it as we have the combine rules for bswap in the base class, while nothing for xxreverse.
Differential Revision: https://reviews.llvm.org/D70657
We somehow missed doing this when we were working on Power9 exploitation.
This just adds the missing legalization and cost for producing the vector
intrinsics.
Differential revision: https://reviews.llvm.org/D70436
Summary:
This is found during https://reviews.llvm.org/D70758
All the other record forms are having suffix o at the end.
ANDIo8 and ANDISo8 are the only two that put o before 8.
This patch rename them to be consistent with others.
Reviewers: #powerpc, hfinkel, nemanjai, lei, steven.zhang, echristo, jhibbits, joerg
Reviewed By: jhibbits
Subscribers: wuzish, hiraditya, kbarton, shchenz, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70928
This patch aims to improve the code generation for float vector gather on POWER9.
Patterns have been implemented to utilize instructions that deliver improved
performance.
Patch by: Kamau Bridgeman
Differential Revision: https://reviews.llvm.org/D62908
The 'RM' flag model the "Rounding Mode" and it has nothing to do with the load/store instructions.
Differential Revision: https://reviews.llvm.org/D69551
If the instruction have match pattern, llvm-tblgen will infer the sideeffect bit from the match pattern and it works well.
If not, the tblgen will set it as true that hurt the scheduling.
PowerPC has some instructions that didn't specify the match pattern(i.e. LXSD etc), which is manually selected post-ra according
to the register pressure. We need to clear the sideeffect flag for these instructions.
Differential Revision: https://reviews.llvm.org/D69232
VSX provides floating point minimum and maximum instructions that conform
to IEEE semantics. This legalizes the respective nodes and emits VSX code
for them. Furthermore, on Power9 cores we have xsmaxcdp and xsmincdp
instructions that conform to language semantics for the conditional operator
even in the presence of NaNs.
Differential revision: https://reviews.llvm.org/D62993
Summary:
This is follow up patch of https://reviews.llvm.org/D67595.
Adjust naming and the Commutable operands for additional patterns
to make it easier to read.
The testcase update also show that we can save some unecessary fmr as
well.
Reviewers: #powerpc, steven.zhang, hfinkel, nemanjai
Reviewed By: #powerpc, nemanjai
Subscribers: wuzish, hiraditya, kbarton, MaskRay, shchenz, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68112
llvm-svn: 373652
Summary:
This was found during review of https://reviews.llvm.org/D66050.
In the simple test of fdiv, we miss to fold
```
fneg 2, 2
xsmaddasp 3, 2, 0
```
to
```
xsnmsubasp 3, 2, 0
```
We have the patterns for Double Precision and vectors, just missing
Single Precision, the patch add that.
Reviewers: #powerpc, hfinkel, nemanjai, steven.zhang
Reviewed By: #powerpc, steven.zhang
Subscribers: wuzish, hiraditya, kbarton, MaskRay, shchenz, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67595
llvm-svn: 372985
This reverts r372314, reapplying r372285 and the commits which depend
on it (r372286-r372293, and r372296-r372297)
This was missing one switch to getTargetConstant in an untested case.
llvm-svn: 372338
This broke the Chromium build, causing it to fail with e.g.
fatal error: error in backend: Cannot select: t362: v4i32 = X86ISD::VSHLI t392, Constant:i8<15>
See llvm-commits thread of r372285 for details.
This also reverts r372286, r372287, r372288, r372289, r372290, r372291,
r372292, r372293, r372296, and r372297, which seemed to depend on the
main commit.
> Encode them directly as an imm argument to G_INTRINSIC*.
>
> Since now intrinsics can now define what parameters are required to be
> immediates, avoid using registers for them. Intrinsics could
> potentially want a constant that isn't a legal register type. Also,
> since G_CONSTANT is subject to CSE and legalization, transforms could
> potentially obscure the value (and create extra work for the
> selector). The register bank of a G_CONSTANT is also meaningful, so
> this could throw off future folding and legalization logic for AMDGPU.
>
> This will be much more convenient to work with than needing to call
> getConstantVRegVal and checking if it may have failed for every
> constant intrinsic parameter. AMDGPU has quite a lot of intrinsics wth
> immarg operands, many of which need inspection during lowering. Having
> to find the value in a register is going to add a lot of boilerplate
> and waste compile time.
>
> SelectionDAG has always provided TargetConstant for constants which
> should not be legalized or materialized in a register. The distinction
> between Constant and TargetConstant was somewhat fuzzy, and there was
> no automatic way to force usage of TargetConstant for certain
> intrinsic parameters. They were both ultimately ConstantSDNode, and it
> was inconsistently used. It was quite easy to mis-select an
> instruction requiring an immediate. For SelectionDAG, start emitting
> TargetConstant for these arguments, and using timm to match them.
>
> Most of the work here is to cleanup target handling of constants. Some
> targets process intrinsics through intermediate custom nodes, which
> need to preserve TargetConstant usage to match the intrinsic
> expectation. Pattern inputs now need to distinguish whether a constant
> is merely compatible with an operand or whether it is mandatory.
>
> The GlobalISelEmitter needs to treat timm as a special case of a leaf
> node, simlar to MachineBasicBlock operands. This should also enable
> handling of patterns for some G_* instructions with immediates, like
> G_FENCE or G_EXTRACT.
>
> This does include a workaround for a crash in GlobalISelEmitter when
> ARM tries to uses "imm" in an output with a "timm" pattern source.
llvm-svn: 372314
Encode them directly as an imm argument to G_INTRINSIC*.
Since now intrinsics can now define what parameters are required to be
immediates, avoid using registers for them. Intrinsics could
potentially want a constant that isn't a legal register type. Also,
since G_CONSTANT is subject to CSE and legalization, transforms could
potentially obscure the value (and create extra work for the
selector). The register bank of a G_CONSTANT is also meaningful, so
this could throw off future folding and legalization logic for AMDGPU.
This will be much more convenient to work with than needing to call
getConstantVRegVal and checking if it may have failed for every
constant intrinsic parameter. AMDGPU has quite a lot of intrinsics wth
immarg operands, many of which need inspection during lowering. Having
to find the value in a register is going to add a lot of boilerplate
and waste compile time.
SelectionDAG has always provided TargetConstant for constants which
should not be legalized or materialized in a register. The distinction
between Constant and TargetConstant was somewhat fuzzy, and there was
no automatic way to force usage of TargetConstant for certain
intrinsic parameters. They were both ultimately ConstantSDNode, and it
was inconsistently used. It was quite easy to mis-select an
instruction requiring an immediate. For SelectionDAG, start emitting
TargetConstant for these arguments, and using timm to match them.
Most of the work here is to cleanup target handling of constants. Some
targets process intrinsics through intermediate custom nodes, which
need to preserve TargetConstant usage to match the intrinsic
expectation. Pattern inputs now need to distinguish whether a constant
is merely compatible with an operand or whether it is mandatory.
The GlobalISelEmitter needs to treat timm as a special case of a leaf
node, simlar to MachineBasicBlock operands. This should also enable
handling of patterns for some G_* instructions with immediates, like
G_FENCE or G_EXTRACT.
This does include a workaround for a crash in GlobalISelEmitter when
ARM tries to uses "imm" in an output with a "timm" pattern source.
llvm-svn: 372285
We currently produce a load, followed by (possibly a move for integers and) a
splat as separate instructions. VSX has always had a splatting load for
doublewords, but as of Power9, we have it for words as well. This patch just
exploits these instructions.
Differential revision: https://reviews.llvm.org/D63624
llvm-svn: 372139
Add the missing piece of r372029.
Somehow when the patch for review D61961 was committed, only the test case
went in and the code didn't. This of course caused all kinds of build bot
breaks.
This patch just adds the code for that patch.
Author: Lei Huang
Differential revision: https://reviews.llvm.org/D61961
llvm-svn: 372043