Lookup tables generate non PIC-friendly code, which requires dynamic relocation as described in:
https://bugs.llvm.org/show_bug.cgi?id=45244
This patch adds a new pass that converts lookup tables to relative lookup tables to make them PIC-friendly.
Differential Revision: https://reviews.llvm.org/D94355
Lookup tables generate non PIC-friendly code, which requires dynamic relocation as described in:
https://bugs.llvm.org/show_bug.cgi?id=45244
This patch adds a new pass that converts lookup tables to relative lookup tables to make them PIC-friendly.
Differential Revision: https://reviews.llvm.org/D94355
Lookup tables generate non PIC-friendly code, which requires dynamic relocation as described in:
https://bugs.llvm.org/show_bug.cgi?id=45244
This patch adds a new pass that converts lookup tables to relative lookup tables to make them PIC-friendly.
Differential Revision: https://reviews.llvm.org/D94355
This seems to be more of a Clang thing rather than a generic LLVM thing,
so this moves it out of LLVM pipelines and as Clang extension hooks into
LLVM pipelines.
Move the post-inline EEInstrumentation out of the backend pipeline and
into a late pass, similar to other sanitizer passes. It doesn't fit
into the codegen pipeline.
Also fix up EntryExitInstrumentation not running at -O0 under the new
PM. PR49143
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D97608
This enables use of MemorySSA instead of MemDep in MemCpyOpt. To
allow this without significant compile-time impact, the MemCpyOpt
pass is moved directly before DSE (in the cases where this was not
already the case), which allows us to reuse the existing MemorySSA
analysis.
Unlike the MemDep-based implementation, the MemorySSA-based MemCpyOpt
can also perform simple optimizations across basic blocks.
Differential Revision: https://reviews.llvm.org/D94376
Currently, `-indvars` runs first, and then immediately after `-loop-idiom` does.
I'm not really sure if `-loop-idiom` requires `-indvars` to run beforehand,
but i'm *very* sure that `-indvars` requires `-loop-idiom` to run afterwards,
as it can be seen in the phase-ordering test.
LoopIdiom runs on two types of loops: countable ones, and uncountable ones.
For uncountable ones, IndVars obviously didn't make any change to them,
since they are uncountable, so for them the order should be irrelevant.
For countable ones, well, they should have been countable before IndVars
for IndVars to make any change to them, and since SCEV is used on them,
it shouldn't matter if IndVars have already canonicalized them.
So i don't really see why we'd want the current ordering.
Should this cause issues, it will give us a reproducer test case
that shows flaws in this logic, and we then could adjust accordingly.
While this is quite likely beneficial in-the-wild already,
it's a required part for the full motivational pattern
behind `left-shift-until-bittest` loop idiom (D91038).
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D91800
This patch adds a new pass to add !annotation metadata for entries in
@llvm.global.anotations, which is generated using
__attribute__((annotate("_name"))) on functions in Clang.
This has been discussed on llvm-dev as part of
RFC: Combining Annotation Metadata and Remarks
http://lists.llvm.org/pipermail/llvm-dev/2020-November/146393.html
Reviewed By: thegameg
Differential Revision: https://reviews.llvm.org/D91195
This patch adds a new !annotation metadata kind which can be used to
attach annotation strings to instructions.
It also adds a new pass that emits summary remarks per function with the
counts for each annotation kind.
The intended uses cases for this new metadata is annotating
'interesting' instructions and the remarks should provide additional
insight into transformations applied to a program.
To motivate this, consider these specific questions we would like to get answered:
* How many stores added for automatic variable initialization remain after optimizations? Where are they?
* How many runtime checks inserted by a frontend could be eliminated? Where are the ones that did not get eliminated?
Discussed on llvm-dev as part of 'RFC: Combining Annotation Metadata and Remarks'
(http://lists.llvm.org/pipermail/llvm-dev/2020-November/146393.html)
Reviewed By: thegameg, jdoerfert
Differential Revision: https://reviews.llvm.org/D91188
This broke Chromium's PGO build, it seems because hot-cold-splitting got turned
on unintentionally. See comment on the code review for repro etc.
> This patch adds -f[no-]split-cold-code CC1 options to clang. This allows
> the splitting pass to be toggled on/off. The current method of passing
> `-mllvm -hot-cold-split=true` to clang isn't ideal as it may not compose
> correctly (say, with `-O0` or `-Oz`).
>
> To implement the -fsplit-cold-code option, an attribute is applied to
> functions to indicate that they may be considered for splitting. This
> removes some complexity from the old/new PM pipeline builders, and
> behaves as expected when LTO is enabled.
>
> Co-authored by: Saleem Abdulrasool <compnerd@compnerd.org>
> Differential Revision: https://reviews.llvm.org/D57265
> Reviewed By: Aditya Kumar, Vedant Kumar
> Reviewers: Teresa Johnson, Aditya Kumar, Fedor Sergeev, Philip Pfaffe, Vedant Kumar
This reverts commit 273c299d5d.
After investigation by @asbirlea, the issue that caused the
revert appears to be an issue in the original source, rather
than a problem with the compiler.
This patch enables MemorySSA DSE again.
This reverts commit 915310bf14.
This patch adds -f[no-]split-cold-code CC1 options to clang. This allows
the splitting pass to be toggled on/off. The current method of passing
`-mllvm -hot-cold-split=true` to clang isn't ideal as it may not compose
correctly (say, with `-O0` or `-Oz`).
To implement the -fsplit-cold-code option, an attribute is applied to
functions to indicate that they may be considered for splitting. This
removes some complexity from the old/new PM pipeline builders, and
behaves as expected when LTO is enabled.
Co-authored by: Saleem Abdulrasool <compnerd@compnerd.org>
Differential Revision: https://reviews.llvm.org/D57265
Reviewed By: Aditya Kumar, Vedant Kumar
Reviewers: Teresa Johnson, Aditya Kumar, Fedor Sergeev, Philip Pfaffe, Vedant Kumar
There appears to be a mis-compile with MemorySSA-backed DSE in
combination with llvm.lifetime.end. It currently appears like
DSE is doing the right thing and the llvm.lifetime.end markers
are incorrect. The reverted patch uncovers the mis-compile.
This patch temporarily switches back to the legacy DSE
implementation, while we investigate.
This reverts commit 9d172c8e9c.
This switches to using DSE + MemorySSA by default again, after
fixing the issues reported after the first commit.
Notable fixes fc82006331, a0017c2bc2.
This reverts commit 3a59628f3c.
~~D65060 uncovered that trying to use BFI in loop passes can lead to non-deterministic behavior when blocks are re-used while retaining old BFI data.~~
~~To make sure BFI is preserved through loop passes a Value Handle (VH) callback is registered on blocks themselves. When a block is freed it now also wipes out the accompanying BFI entry such that stale BFI data can no longer persist resolving the determinism issue. ~~
~~An optimistic approach would be to incrementally update BFI information throughout the loop passes rather than only invalidating them on removed blocks. The issues with that are:~~
~~1. It is not clear how BFI information should be incrementally updated: If a block is duplicated does its BFI information come with? How about if it's split/modified/moved around? ~~
~~2. Assuming we can address these problems the implementation here will be a massive undertaking. ~~
~~There's a known need of BFI in LICM analysis which requires correct but not incrementally updated BFI data. A follow-up change can register BFI in all loop passes so this preserved but potentially lossy data is available to any loop pass that wants it.~~
See: D75341 for an identical implementation of preserving BFI via VH callbacks. The previous statements do still apply but this change no longer has to be in this diff because it's already upstream 😄 .
This diff also moves BFI to be a part of LoopStandardAnalysisResults since the previous method using getCachedResults now (correctly!) statically asserts (D72893) that this data isn't static through the loop passes.
Testing
Ninja check
Reviewed By: asbirlea, nikic
Differential Revision: https://reviews.llvm.org/D86156
The tests have been updated and I plan to move them from the MSSA
directory up.
Some end-to-end tests needed small adjustments. One difference to the
legacy DSE is that legacy DSE also deletes trivially dead instructions
that are unrelated to memory operations. Because MemorySSA-backed DSE
just walks the MemorySSA, we only visit/check memory instructions. But
removing unrelated dead instructions is not really DSE's job and other
passes will clean up.
One noteworthy change is in llvm/test/Transforms/Coroutines/ArgAddr.ll,
but I think this comes down to legacy DSE not handling instructions that
may throw correctly in that case. To cover this with MemorySSA-backed
DSE, we need an update to llvm.coro.begin to treat it's return value to
belong to the same underlying object as the passed pointer.
There are some minor cases MemorySSA-backed DSE currently misses, e.g. related
to atomic operations, but I think those can be implemented after the switch.
This has been discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2020-August/144417.html
For the MultiSource/SPEC2000/SPEC2006 the number of eliminated stores
goes from ~17500 (legayc DSE) to ~26300 (MemorySSA-backed). More numbers
and details in the thread on llvm-dev.
Impact on CTMark:
```
Legacy Pass Manager
exec instrs size-text
O3 + 0.60% - 0.27%
ReleaseThinLTO + 1.00% - 0.42%
ReleaseLTO-g. + 0.77% - 0.33%
RelThinLTO (link only) + 0.87% - 0.42%
RelLO-g (link only) + 0.78% - 0.33%
```
http://llvm-compile-time-tracker.com/compare.php?from=3f22e96d95c71ded906c67067d75278efb0a2525&to=ae8be4642533ff03803967ee9d7017c0d73b0ee0&stat=instructions
```
New Pass Manager
exec instrs. size-text
O3 + 0.95% - 0.25%
ReleaseThinLTO + 1.34% - 0.41%
ReleaseLTO-g. + 1.71% - 0.35%
RelThinLTO (link only) + 0.96% - 0.41%
RelLO-g (link only) + 2.21% - 0.35%
```
http://195.201.131.214:8000/compare.php?from=3f22e96d95c71ded906c67067d75278efb0a2525&to=ae8be4642533ff03803967ee9d7017c0d73b0ee0&stat=instructions
Reviewed By: asbirlea, xbolva00, nikic
Differential Revision: https://reviews.llvm.org/D87163
This is a followup to 1ccfb52a61, which made a number of changes
including the apparently innocuous reordering of required passes in
MemCpyOptimizer. This however altered the creation order of BasicAA vs
Phi Values analysis, meaning BasicAA did not pick up PhiValues as a
cached result. Instead if we require MemoryDependence first it will
require PhiValuesAnalysis allowing BasicAA to use it for better results.
I don't claim this is an excellent design, but it fixes a nasty little
regressions where a query later in JumpThreading was getting worse
results.
Differential Revision: https://reviews.llvm.org/D87027
Summary:
Analyses are preserved in MemCpyOptimizer.
Get analyses before running the pass and store the pointers, instead of
using lambdas and getting them every time on demand.
Reviewers: lenary, deadalnix, mehdi_amini, nikic, efriedma
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74494