EHTerminateScope is used to implement C++ noexcept semantics. Per C++
[except.terminate], it is implemented-defined whether no, some, or all
cleanups are run prior to terminatation.
Therefore, the code to run cleanups on the way towards termination is
unnecessary, and may be omitted.
After this change, we will still run some cleanups: any cleanups in a
function called from the noexcept function will continue to run, while
those in the noexcept function itself will not.
(Commit attempt 2: check InnermostEHScope != stable_end() before accessing it.)
Differential Revision: https://reviews.llvm.org/D113620
While investigating the failures of `symbolize_pc.cpp` and
`symbolize_pc_inline.cpp` on SPARC (both Solaris and Linux), I noticed that
`__builtin_extract_return_addr` is a no-op in `clang` on all targets, while
`gcc` has non-default implementations for arm, mips, s390, and sparc.
This patch provides the SPARC implementation. For background see
`SparcISelLowering.cpp` (`SparcTargetLowering::LowerReturn_32`), the SPARC
psABI p.3-12, `%i7` and p.3-16/17, and SCD 2.4.1, p.3P-10, `%i7` and
p.3P-15.
Tested (after enabling the `sanitizer_common` tests on SPARC) on
`sparcv9-sun-solaris2.11`.
Differential Revision: https://reviews.llvm.org/D91607
This patch extends clang frontend to add metadata that can be used to emit macho files with two build version load commands.
It utilizes "darwin.target_variant.triple" and "darwin.target_variant.SDK Version" metadata names for that.
MachO uses two build version load commands to represent an object file / binary that is targeting both the macOS target,
and the Mac Catalyst target. At runtime, a dynamic library that supports both targets can be loaded from either a native
macOS or a Mac Catalyst app on a macOS system. We want to add support to this to upstream to LLVM to be able to build
compiler-rt for both targets, to finish the complete support for the Mac Catalyst platform, which is right now targetable
by upstream clang, but the compiler-rt bits aren't supported because of the lack of this multiple build version support.
Differential Revision: https://reviews.llvm.org/D115415
Based on the output of include-what-you-use.
This is a big chunk of changes. It is very likely to break downstream code
unless they took a lot of care in avoiding hidden ehader dependencies, something
the LLVM codebase doesn't do that well :-/
I've tried to summarize the biggest change below:
- llvm/include/llvm-c/Core.h: no longer includes llvm-c/ErrorHandling.h
- llvm/IR/DIBuilder.h no longer includes llvm/IR/DebugInfo.h
- llvm/IR/IRBuilder.h no longer includes llvm/IR/IntrinsicInst.h
- llvm/IR/LLVMRemarkStreamer.h no longer includes llvm/Support/ToolOutputFile.h
- llvm/IR/LegacyPassManager.h no longer include llvm/Pass.h
- llvm/IR/Type.h no longer includes llvm/ADT/SmallPtrSet.h
- llvm/IR/PassManager.h no longer includes llvm/Pass.h nor llvm/Support/Debug.h
And the usual count of preprocessed lines:
$ clang++ -E -Iinclude -I../llvm/include ../llvm/lib/IR/*.cpp -std=c++14 -fno-rtti -fno-exceptions | wc -l
before: 6400831
after: 6189948
200k lines less to process is no that bad ;-)
Discourse thread on the topic: https://llvm.discourse.group/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D118652
This patch adds a function attribute to the kernel function generated in
OpenMP offloading. We already create a `nvvm.annotations` metadata node
indicating the kernels present in the program. However, this created
some indirection when trying to identify if a specific function was an
entry. We add a single function attribute for each function now to
simplify this.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D118708
D116542 adds EmbedBufferInModule which introduces a layer violation
(https://llvm.org/docs/CodingStandards.html#library-layering).
See 2d5f857a1e for detail.
EmbedBufferInModule does not use BitcodeWriter functionality and should be moved
LLVMTransformsUtils. While here, change the function case to the prevailing
convention.
It seems that EmbedBufferInModule just follows the steps of
EmbedBitcodeInModule. EmbedBitcodeInModule calls WriteBitcodeToFile but has IR
update operations which ideally should be refactored to another library.
Reviewed By: jhuber6
Differential Revision: https://reviews.llvm.org/D118666
This patch adds support for a flag `-fembed-offload-binary` to embed a
file as an ELF section in the output by placing it in a global variable.
This can be used to bundle offloading files with the host binary so it
can be accessed by the linker. The section is named using the
`-fembed-offload-section` option.
Depends on D116541
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D116542
AVR is baremetal environment, so the avr-libc does not support
'__cxa_atexit()'.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D118445
ConstStructBuilder::Finalize in CGExprConstant.ccp assumes that the
passed in QualType is a RecordType. In some instances, the type is a
reference to a RecordType and the reference needs to be removed first.
Differential Revision: https://reviews.llvm.org/D117376
Branch protection in M-class is supported by
- Armv8.1-M.Main
- Armv8-M.Main
- Armv7-M
Attempting to enable this for other architectures, either by
command-line (e.g -mbranch-protection=bti) or by target attribute
in source code (e.g. __attribute__((target("branch-protection=..."))) )
will generate a warning.
In both cases function attributes related to branch protection will not
be emitted. Regardless of the warning, module level attributes related to
branch protection will be emitted when it is enabled via the command-line.
The following people also contributed to this patch:
- Victor Campos
Reviewed By: chill
Differential Revision: https://reviews.llvm.org/D115501
This patch changes the code generation of runtime flags to only occur if
a host bitcode file was passed in. This is a cheap way to determine if
we are compiling the OpenMP device runtime itself or user code. This is
needed because the global flags we generate for the device runtime e.g.
__omp_rtl_debug_kind were being generated with default values when we
compiled the runtime library. This would then invalidate the ones we
want to be able to add in when the user defines it.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D118399
Since it's introduction, the qrdmlah has been represented as a qrdmulh
and a sadd_sat. This doesn't produce the same result for all input
values though. This patch fixes that by introducing a qrdmlah (and
qrdmlsh) intrinsic specifically for the vqrdmlah and sqrdmlah
instructions. The old test cases will now produce a qrdmulh and sqadd,
as expected.
Fixes#53120 and #50905 and #51761.
Differential Revision: https://reviews.llvm.org/D117592
CodeGenModule::DeferredDecls std::map::operator[] seem to be hot especially while code generating huge compilation units.
In such cases using DenseMap instead gives observable compile time improvement. Patch was tested on Linux build with default config acting as benchmark.
Build was performed on isolated CPU cores in silent x86-64 Linux environment following: https://llvm.org/docs/Benchmarking.html#linux rules.
Compile time statistics diff produced by perf and time before and after change are following:
instructions -0.15%, cycles -0.7%, max-rss +0.65%.
Using StringMap instead DenseMap doesn't bring any visible gains.
Differential Revision: https://reviews.llvm.org/D118169
We currently emit the selector load early, but only because we need
it to compute the signature (so that we know which msgSend variant to
call). We can prepare the signature with a plain undef, and replace
it with the materialized selector value if (and only if) needed, later.
Concretely, this usually doesn't have an effect, but tests need updating
because we reordered the receiver bitcast and the selector load, which
is always fine.
There is one notable change: with this, when a msgSend needs a
receiver null check, the selector is now loaded in the non-null
block, instead of before the null check. That should be a mild
improvement.
/home/buildbot/llvm-avr-linux/llvm-avr-linux/llvm/clang/lib/CodeGen/Address.h:76:7: warning: 'clang::CodeGen::Address' has a field 'clang::CodeGen::Address::A' whose type uses the anonymous namespace [-Wsubobject-linkage]
https://lab.llvm.org/buildbot/#/builders/112/builds/12047
This mitigates the extra memory caused by D115725.
On 32-bit arches where we only have 2 bits per PointerIntPair we fall
back to simply storing alignment separately.
Reviewed By: rnk, nikic
Differential Revision: https://reviews.llvm.org/D117262
This reverts commit ef82063207.
- It conflicts with the existing llvm::size in STLExtras, which will now
never be called.
- Calling it without llvm:: breaks C++17 compat
Instead use either Type::getPointerElementType() or
Type::getNonOpaquePointerElementType().
This is part of D117885, in preparation for deprecating the API.
None of these have any reordering issues, and they still emit the same reduction intrinsics without any change in the existing test coverage:
llvm-project\clang\test\CodeGen\X86\avx512-reduceIntrin.c
llvm-project\clang\test\CodeGen\X86\avx512-reduceMinMaxIntrin.c
Differential Revision: https://reviews.llvm.org/D117881
D111985 added the generic `__builtin_elementwise_max` and `__builtin_elementwise_min` intrinsics with the same integer behaviour as the SSE/AVX instructions
This patch removes the `__builtin_ia32_pmax/min` intrinsics and just uses `__builtin_elementwise_max/min` - the existing tests see no changes:
```
__m256i test_mm256_max_epu32(__m256i a, __m256i b) {
// CHECK-LABEL: test_mm256_max_epu32
// CHECK: call <8 x i32> @llvm.umax.v8i32(<8 x i32> %{{.*}}, <8 x i32> %{{.*}})
return _mm256_max_epu32(a, b);
}
```
This requires us to add a `__v64qs` explicitly signed char vector type (we already have `__v16qs` and `__v32qs`).
Sibling patch to D117791
Differential Revision: https://reviews.llvm.org/D117798
D111986 added the generic `__builtin_elementwise_abs()` intrinsic with the same integer absolute behaviour as the SSE/AVX instructions (abs(INT_MIN) == INT_MIN)
This patch removes the `__builtin_ia32_pabs*` intrinsics and just uses `__builtin_elementwise_abs` - the existing tests see no changes:
```
__m256i test_mm256_abs_epi8(__m256i a) {
// CHECK-LABEL: test_mm256_abs_epi8
// CHECK: [[ABS:%.*]] = call <32 x i8> @llvm.abs.v32i8(<32 x i8> %{{.*}}, i1 false)
return _mm256_abs_epi8(a);
}
```
This requires us to add a `__v64qs` explicitly signed char vector type (we already have `__v16qs` and `__v32qs`).
Differential Revision: https://reviews.llvm.org/D117791
D111985 added the generic `__builtin_elementwise_max` and `__builtin_elementwise_min` intrinsics with the same integer behaviour as the SSE/AVX instructions
This patch removes the `__builtin_ia32_pmax/min` intrinsics and just uses `__builtin_elementwise_max/min` - the existing tests see no changes:
```
__m256i test_mm256_max_epu32(__m256i a, __m256i b) {
// CHECK-LABEL: test_mm256_max_epu32
// CHECK: call <8 x i32> @llvm.umax.v8i32(<8 x i32> %{{.*}}, <8 x i32> %{{.*}})
return _mm256_max_epu32(a, b);
}
```
This requires us to add a `__v64qs` explicitly signed char vector type (we already have `__v16qs` and `__v32qs`).
Sibling patch to D117791
Differential Revision: https://reviews.llvm.org/D117798
D111986 added the generic `__builtin_elementwise_abs()` intrinsic with the same integer absolute behaviour as the SSE/AVX instructions (abs(INT_MIN) == INT_MIN)
This patch removes the `__builtin_ia32_pabs*` intrinsics and just uses `__builtin_elementwise_abs` - the existing tests see no changes:
```
__m256i test_mm256_abs_epi8(__m256i a) {
// CHECK-LABEL: test_mm256_abs_epi8
// CHECK: [[ABS:%.*]] = call <32 x i8> @llvm.abs.v32i8(<32 x i8> %{{.*}}, i1 false)
return _mm256_abs_epi8(a);
}
```
This requires us to add a `__v64qs` explicitly signed char vector type (we already have `__v16qs` and `__v32qs`).
Differential Revision: https://reviews.llvm.org/D117791
Intel's CET/IBT requires every indirect branch target to be an ENDBR instruction. Because of that, the compiler needs to correctly emit these instruction on function's prologues. Because this is a security feature, it is desirable that only actual indirect-branch-targeted functions are emitted with ENDBRs. While it is possible to identify address-taken functions through LTO, minimizing these ENDBR instructions remains a hard task for user-space binaries because exported functions may end being reachable through PLT entries, that will use an indirect branch for such. Because this cannot be determined during compilation-time, the compiler currently emits ENDBRs to every non-local-linkage function.
Despite the challenge presented for user-space, the kernel landscape is different as no PLTs are used. With the intent of providing the most fit ENDBR emission for the kernel, kernel developers proposed an optimization named "ibt-seal" which replaces the ENDBRs for NOPs directly in the binary. The discussion of this feature can be seen in [1].
This diff brings the enablement of the flag -mibt-seal, which in combination with LTO enforces a different policy for ENDBR placement in when the code-model is set to "kernel". In this scenario, the compiler will only emit ENDBRs to address taken functions, ignoring non-address taken functions that are don't have local linkage.
A comparison between an LTO-compiled kernel binaries without and with the -mibt-seal feature enabled shows that when -mibt-seal was used, the number of ENDBRs in the vmlinux.o binary patched by objtool decreased from 44383 to 33192, and that the number of superfluous ENDBR instructions nopped-out decreased from 11730 to 540.
The 540 missed superfluous ENDBRs need to be investigated further, but hypotheses are: assembly code not being taken care of by the compiler, kernel exported symbols mechanisms creating bogus address taken situations or even these being removed due to other binary optimizations like kernel's static_calls. For now, I assume that the large drop in the number of ENDBR instructions already justifies the feature being merged.
[1] - https://lkml.org/lkml/2021/11/22/591
Reviewed By: xiangzhangllvm
Differential Revision: https://reviews.llvm.org/D116070
This patch adds support for the MSVC /HOTPATCH flag: https://docs.microsoft.com/sv-se/cpp/build/reference/hotpatch-create-hotpatchable-image?view=msvc-170&viewFallbackFrom=vs-2019
The flag is translated to a new -fms-hotpatch flag, which in turn adds a 'patchable-function' attribute for each function in the TU. This is then picked up by the PatchableFunction pass which would generate a TargetOpcode::PATCHABLE_OP of minsize = 2 (which means the target instruction must resolve to at least two bytes). TargetOpcode::PATCHABLE_OP is only implemented for x86/x64. When targetting ARM/ARM64, /HOTPATCH isn't required (instructions are always 2/4 bytes and suitable for hotpatching).
Additionally, when using /Z7, we generate a 'hot patchable' flag in the CodeView debug stream, in the S_COMPILE3 record. This flag is then picked up by LLD (or link.exe) and is used in conjunction with the linker /FUNCTIONPADMIN flag to generate extra space before each function, to accommodate for live patching long jumps. Please see: d703b92296/lld/COFF/Writer.cpp (L1298)
The outcome is that we can finally use Live++ or Recode along with clang-cl.
NOTE: It seems that MSVC cl.exe always enables /HOTPATCH on x64 by default, although if we did the same I thought we might generate sub-optimal code (if this flag was active by default). Additionally, MSVC always generates a .debug$S section and a S_COMPILE3 record, which Clang doesn't do without /Z7. Therefore, the following MSVC command-line "cl /c file.cpp" would have to be written with Clang such as "clang-cl /c file.cpp /HOTPATCH /Z7" in order to obtain the same result.
Depends on D43002, D80833 and D81301 for the full feature.
Differential Revision: https://reviews.llvm.org/D116511
When adding new attributes, existing attributes are dropped. While
this appears to be a longstanding issue, this was highlighted by D105169
which dropped a lot of attributes due to adding the new noundef
attribute.
Ahmed Bougacha (@ab) tracked down the issue and provided the fix in
CGCall.cpp. I bundled it up and updated the tests.
HIP program with printf call fails to compile with -fsanitize=address
option, because of appending module flag - amdgpu_hostcall twice, one
for printf and one for sanitize option. This patch fixes that issue.
Patch by: Praveen Velliengiri
Reviewed by: Yaxun Liu, Roman Lebedev
Differential Revision: https://reviews.llvm.org/D116216
This patch adds OMPIRBuilder support for the simd directive (without any clause). This will be a first step towards lowering simd directive in LLVM_Flang. The patch uses existing CanonicalLoop infrastructure of IRBuilder to add the support. Also adds necessary code to add llvm.access.group and llvm.loop metadata wherever needed.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D114379
Turning on `enable_noundef_analysis` flag allows better codegen by removing freeze instructions.
I modified clang by renaming `enable_noundef_analysis` flag to `disable-noundef-analysis` and turning it off by default.
Test updates are made as a separate patch: D108453
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D105169
Use the AttributeSet constructor instead. There's no good reason
why AttrBuilder itself should exact the AttributeSet from the
AttributeList. Moving this out of the AttrBuilder generally results
in cleaner code.