The matcher crashes when a variadic function pointer is invoked because the
FunctionProtoType has fewer parameters than arguments.
Matching of non-variadic arguments now works.
Differential Revision: https://reviews.llvm.org/D114559
Reviewed-by: sammccall
This contributes follow-up work from https://reviews.llvm.org/D112491, which
allows for increased control over the matching of lambda captures. This also
updates the documentation for the `lambdaCapture` matcher.
Reviewed By: ymandel, aaron.ballman
Differential Revision: https://reviews.llvm.org/D113575
This provides better support for `LambdaCapture`s by making them first-
class and allowing them to be bindable. In addition, this implements several
`LambdaCapture`-related matchers. This does not update how lambdas are
traversed. As a result, something like trying to match `lambdaCapture()` by
itself will not work - it must be used as an inner matcher.
Reviewed By: aaron.ballman, sammccall
Differential Revision: https://reviews.llvm.org/D112491
Now in libcxx and clang, all the coroutine components are defined in
std::experimental namespace.
And now the coroutine TS is merged into C++20. So in the working draft
like N4892, we could find the coroutine components is defined in std
namespace instead of std::experimental namespace.
And the coroutine support in clang seems to be relatively stable. So I
think it may be suitable to move the coroutine component into the
experiment namespace now.
This patch would make clang lookup coroutine_traits in std namespace
first. For the compatibility consideration, clang would lookup in
std::experimental namespace if it can't find definitions in std
namespace. So the existing codes wouldn't be break after update
compiler.
And in case the compiler found std::coroutine_traits and
std::experimental::coroutine_traits at the same time, it would emit an
error for it.
The support for looking up std::experimental::coroutine_traits would be
removed in Clang16.
Reviewed By: lxfind, Quuxplusone
Differential Revision: https://reviews.llvm.org/D108696
Based on post-commit review discussion on
2bd8493847 with Richard Smith.
Other uses of forcing HasEmptyPlaceHolder to false seem OK to me -
they're all around pointer/reference types where the pointer/reference
token will appear at the rightmost side of the left side of the type
name, so they make nested types (eg: the "int" in "int *") behave as
though there is a non-empty placeholder (because the "*" is essentially
the placeholder as far as the "int" is concerned).
This was originally committed in 277623f4d5
Reverted in f9ad1d1c77 due to breakages
outside of clang - lldb seems to have some strange/strong dependence on
"char [N]" versus "char[N]" when printing strings (not due to that name
appearing in DWARF, but probably due to using clang to stringify type
names) that'll need to be addressed, plus a few other odds and ends in
other subprojects (clang-tools-extra, compiler-rt, etc).
Looks like lldb has some issues with this - somehow it causes lldb to
treat a "char[N]" type as an array of chars (prints them out
individually) but a "char [N]" is printed as a string. (even though the
DWARF doesn't have this string in it - it's something to do with the
string lldb generates for itself using clang)
This reverts commit 277623f4d5.
Based on post-commit review discussion on
2bd8493847 with Richard Smith.
Other uses of forcing HasEmptyPlaceHolder to false seem OK to me -
they're all around pointer/reference types where the pointer/reference
token will appear at the rightmost side of the left side of the type
name, so they make nested types (eg: the "int" in "int *") behave as
though there is a non-empty placeholder (because the "*" is essentially
the placeholder as far as the "int" is concerned).
This reverts commit 2fbd254aa4, which broke the libc++ CI. I'm reverting
to get things stable again until we've figured out a way forward.
Differential Revision: https://reviews.llvm.org/D108696
Summary: Now in libcxx and clang, all the coroutine components are
defined in std::experimental namespace.
And now the coroutine TS is merged into C++20. So in the working draft
like N4892, we could find the coroutine components is defined in std
namespace instead of std::experimental namespace.
And the coroutine support in clang seems to be relatively stable. So I
think it may be suitable to move the coroutine component into the
experiment namespace now.
But move the coroutine component into the std namespace may be an break
change. So I planned to split this change into two patch. One in clang
and other in libcxx.
This patch would make clang lookup coroutine_traits in std namespace
first. For the compatibility consideration, clang would lookup in
std::experimental namespace if it can't find definitions in std
namespace and emit a warning in this case. So the existing codes
wouldn't be break after update compiler.
Test Plan: check-clang, check-libcxx
Reviewed By: lxfind
Differential Revision: https://reviews.llvm.org/D108696
Currently, `hasUnaryOperand` fails for the overloaded `operator*`. This patch fixes the bug and
adds tests for this case.
Differential Revision: https://reviews.llvm.org/D104389
The new matcher additionally covers blocks and Objective-C methods.
This matcher actually makes sure that the statement truly belongs
to that declaration's body. forFunction() incorrectly reported that
a statement in a nested block belonged to the surrounding function.
forFunction() is now deprecated due to the above footgun, in favor of
forCallable(functionDecl()) when only functions need to be considered.
Differential Revision: https://reviews.llvm.org/D102213
Required for capturing base specifier in matchers:
`cxxRecordDecl(hasDirectBase(cxxBaseSpecifier().bind("base")))`
Reviewed By: steveire, aaron.ballman
Differential Revision: https://reviews.llvm.org/D69218
Summary: Try to enable the support for C++20 coroutine keywords for AST
Matchers.
Reviewers: sammccall, njames93, aaron.ballman
Differential Revision: https://reviews.llvm.org/D96316
For example, before this patch we can use has() to get from a
cxxRewrittenBinaryOperator to its operand, but hasParent doesn't get
back to the cxxRewrittenBinaryOperator. This patch fixes that.
Differential Revision: https://reviews.llvm.org/D96113
With a matcher like
expr(anyOf(integerLiteral(equals(42)), unless(expr())))
and code such as
struct B {
B(int);
};
B func1() { return 42; }
the top-level expr() would match each of the nodes which are not spelled
in the source and then ignore-traverse to match the integerLiteral node.
This would result in multiple results reported for the integerLiteral.
Fix that by only running matching logic on nodes which are not skipped
with the top-level matcher.
Differential Revision: https://reviews.llvm.org/D95735
Because we don't know in ASTMatchFinder whether we're matching in AsIs
or IgnoreUnlessSpelledInSource mode, we need to traverse the lambda
twice, but store whether we're matching in nodes spelled in source or
not.
Differential Revision: https://reviews.llvm.org/D93688
traverse() predates the IgnoreUnlessSpelledInSource mode. Update example
and test code to use the newer mode.
Differential Revision: https://reviews.llvm.org/D91917
Don't match Stmt or Decl nodes not spelled in the source when using
TK_IgnoreUnlessSpelledInSource. This prevents accidental modification
of source code at incorrect locations.
Differential Revision: https://reviews.llvm.org/D90984
Update the ASTNodeTraverser to dump only nodes spelled in source. There
are only a few which need to be handled, but Decl nodes for which
isImplicit() is true are handled together.
Update the RAV instances used in ASTMatchFinder to ignore the nodes too.
As with handling of template instantiations, it is necessary to allow
the RAV to process the implicit nodes because they need to be visitable
before the first traverse() matcher is encountered. An exception to
this is in the MatchChildASTVisitor, because we sometimes wish to make a
node matchable but make its children not-matchable. This is the case
for defaulted CXXMethodDecls for example.
Extend TransformerTests to illustrate the kinds of problems that can
arise when performing source code rewriting due to matching implicit
nodes.
This change accounts for handling nodes not spelled in source when using
direct matching of nodes, and when using the has() and hasDescendant()
matchers. Other matchers such as
cxxRecordDecl(hasMethod(cxxMethodDecl())) still succeed for
compiler-generated methods for example after this change. Updating the
implementations of hasMethod() and other matchers is for a follow-up
patch.
Differential Revision: https://reviews.llvm.org/D90982
Continue to dump and match on explicit template specializations, but
omit explicit instantiation declarations and definitions.
Differential Revision: https://reviews.llvm.org/D90763
Summary:
IgnoreUnlessSpelledInSource mode should ignore these because they are
not written in the source. This matters for example when trying to
replace types or values which are templated. The new test in
TransformerTest.cpp in this commit demonstrates the problem.
In existing matcher code, users can write
`unless(isInTemplateInstantiation())` or `unless(isInstantiated())` (the
user must know which to use). The point of the
TK_IgnoreUnlessSpelledInSource mode is to allow the novice to avoid such
details. This patch changes the IgnoreUnlessSpelledInSource mode to
skip over implicit template instantiations.
This patch does not change the TK_AsIs mode.
Note: An obvious attempt at an alternative implementation would simply
change the shouldVisitTemplateInstantiations() in ASTMatchFinder.cpp to
return something conditional on the operational TraversalKind. That
does not work because shouldVisitTemplateInstantiations() is called
before a possible top-level traverse() matcher changes the operational
TraversalKind.
Reviewers: sammccall, aaron.ballman, gribozavr2, ymandel, klimek
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D80961
Summary:
Skip over elidable nodes, and ensure that intermediate
CXXFunctionalCastExpr nodes are also skipped if they are semantic.
Reviewers: klimek, ymandel
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D82278
//AST Matcher// `hasBody` is a polymorphic matcher that behaves
differently for loop statements and function declarations. The main
difference is the for functions declarations it does not only call
`FunctionDecl::getBody()` but first checks whether the declaration in
question is that specific declaration which has the body by calling
`FunctionDecl::doesThisDeclarationHaveABody()`. This is achieved by
specialization of the template `GetBodyMatcher`. Unfortunately template
specializations do not catch the descendants of the class for which the
template is specialized. Therefore it does not work correcly for the
descendants of `FunctionDecl`, such as `CXXMethodDecl`,
`CXXConstructorDecl`, `CXXDestructorDecl` etc. This patch fixes this
issue by using a template metaprogram.
The patch also introduces a new matcher `hasAnyBody` which matches
declarations which have a body present in the AST but not necessarily
belonging to that particular declaration.
Differential Revision: https://reviews.llvm.org/D87527
The analysis for const-ness of local variables required a view generally useful
matchers that are extracted into its own patch.
They are decompositionDecl and forEachArgumentWithParamType, that works
for calls through function pointers as well.
This is a reupload of https://reviews.llvm.org/D72505, that already landed,
but had to be reverted due to a GCC crash on powerpc
(https://reviews.llvm.org/rG4c48ea68e491cb42f1b5d43ffba89f6a7f0dadc4)
Because this took a long time to adress, i decided to redo this patch and
have a clean workflow.
I try to coordinate with someone that has a PPC to apply this patch and
test for the crash. If everything is fine, I intend to just commit.
If the crash is still happening, i hope to at least find the cause.
Differential Revision: https://reviews.llvm.org/D87588