This better describes the intent of the method. Which for AArch64
is removing the top byte which includes the memory tags.
It does not include pointer signatures, for those we need to use
the ABI plugin. The rename makes this a little more clear.
It's a bit awkward that the memory tag manager is removing the whole
top byte not just the memory tags but it's an improvement for now.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D117671
Implement the qXfer:siginfo:read that is used to read the siginfo_t
(extended signal information) for the current thread. This is currently
implemented on FreeBSD and Linux.
Differential Revision: https://reviews.llvm.org/D117113
D116372, while fixing one kind of a race, ended up creating a new one.
The new issue could occur when one inferior thread exits while another
thread initiates termination of the entire process (exit_group(2)).
With some bad luck, we could start processing the exit notification
(PTRACE_EVENT_EXIT) only to have the become unresponsive (ESRCH) in the
middle of the MonitorCallback function. This function would then delete
the thread from our list even though it wasn't completely dead (it stays
zombified until we read the WIFEXITED event). The linux kernel will not
deliver the exited event for the entire process until we process
individual thread exits.
In a pre-D116372 world, this wouldn't be a problem because we would read
this event (even though we would not know what to do with it) with
waitpid(-1). Now, when we issue invididual waitpids, this event will
never be picked up, and we end up hanging.
The fix for this is actually quite simple -- don't delete the thread in
this situation. The thread will be deleted when the WIFEXITED event
comes.
This situation was kind of already tested by
TestCreateDuringInstructionStep (which is how I found this problem), but
it was mostly accidental, so I am also creating a dedicated test which
reproduces this situation.
The lldb-server code is currently set up in a way that each
NativeProcess instance does its own waitpid handling. This works fine
for BSDs, where the code can do a waitpid(process_id), and get
information for all threads in that process.
The situation is trickier on linux, because waitpid(pid) will only
return information for the main thread of the process (one whose tid ==
pid). For this reason the linux code does a waitpid(-1), to get
information for all threads. This was fine while we were supporting just
a single process, but becomes a problem when we have multiple processes
as they end up stealing each others events.
There are two possible solutions to this problem:
- call waitpid(-1) centrally, and then dispatch the events to the
appropriate process
- have each process call waitpid(tid) for all the threads it manages
This patch implements the second approach. Besides fitting better into
the existing design, it also has the added benefit of ensuring
predictable ordering for thread/process creation events (which come in
pairs -- one for the parent and one for the child). The first approach
OTOH, would make this ordering even more complicated since we would
have to keep the half-threads hanging in mid-air until we find the
process we should attach them to.
The downside to this approach is an increased number of syscalls (one
waitpid for each thread), but I think we're pretty far from optimizing
things like this, and so the cleanliness of the design is worth it.
The included test reproduces the circumstances which should demonstrate
the bug (which manifests as a hung test), but I have not been able to
get it to fail. The only place I've seen this failure modes are very
rare hangs in the thread sanitizer tests (tsan forks an addr2line
process to produce its error messages).
Differential Revision: https://reviews.llvm.org/D116372
The MonitorCallback function was assuming that the "exited" argument is
set whenever a thread exits, but the caller was only setting that flag
for the main thread.
This patch deletes the argument altogether, and lets MonitorCallback
compute what it needs itself.
This is almost NFC, since previously we would end up in the
"GetSignalInfo failed for unknown reasons" branch, which was doing the
same thing -- forgetting about the thread.
Support arbitrarily-sized FPR writes on ARM in order to fix writing qN
registers directly. Currently, writing them works only by accident
due to value_regs splitting them into smaller writes via dN and sN
registers.
Differential Revision: https://reviews.llvm.org/D112131
.. and reduce the scope of others. They don't follow llvm coding
standards (which say they should be used only when the same effect
cannot be achieved with the static keyword), and they set a bad example.
Usage of aux_size is guarded against elsewhere in this file, but is missing here.
Reviewed By: wallace
Differential Revision: https://reviews.llvm.org/D110269
Original Author: calebzulawski
This patch fixes register save/restore on expression call to also include SVE registers.
This will fix expression calls like:
re re p1
<Register Value P1 before expression>
p <var-name or function call>
re re p1
<Register Value P1 after expression>
In above example register P1 should remain the same before and after the expression evaluation.
Reviewed By: DavidSpickett
Differential Revision: https://reviews.llvm.org/D108739
This patch removed some typos from NativeRegisterContextLinux_arm and
NativeRegisterContextLinux_arm64. Some of the log/error messages were
being reported as x86_64.
In the latest Linux kernels synchronous tag faults
include the tag bits in their address.
This change adds logical and allocation tags to the
description of synchronous tag faults.
(asynchronous faults have no address)
Process 1626 stopped
* thread #1, name = 'a.out', stop reason = signal SIGSEGV: sync tag check fault (fault address: 0x900fffff7ff9010 logical tag: 0x9 allocation tag: 0x0)
This extends the existing description and will
show as much as it can on the rare occasion something
fails.
This change supports AArch64 MTE only but other
architectures could be added by extending the
switch at the start of AnnotateSyncTagCheckFault.
The rest of the function is generic code.
Tests have been added for synchronous and asynchronous
MTE faults.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D105178
This is implemented using the QMemTags packet, as specified
by GDB in:
https://sourceware.org/gdb/current/onlinedocs/gdb/General-Query-Packets.html#General-Query-Packets
(recall that qMemTags was previously added to read tags)
On receipt of a valid packet lldb-server will:
* align the given address and length to granules
(most of the time lldb will have already done this
but the specification doesn't guarantee it)
* Repeat the supplied tags as many times as needed to cover
the range. (if tags > range we just use as many as needed)
* Call ptrace POKEMTETAGS to write the tags.
The ptrace step will loop just like the tag read does,
until all tags are written or we get an error.
Meaning that if ptrace succeeds it could be a partial write.
So we call it again and if we then get an error, return an error to
lldb.
We are not going to attempt to restore tags after a partial
write followed by an error. This matches the behaviour of the
existing memory writes.
The lldb-server tests have been extended to include read and
write in the same test file. With some updated function names
since "qMemTags" vs "QMemTags" isn't very clear when they're
next to each other.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D105180
AArch64 architecture support virtual addresses with some of the top bits ignored.
These ignored bits can host memory tags or bit masks that can serve to check for
authentication of address integrity. We need to clear away the top ignored bits
from watchpoint address to reliably hit and set watchpoints on addresses
containing tags or masks in their top bits.
This patch adds support to watch tagged addresses on AArch64/Linux.
Reviewed By: DavidSpickett
Differential Revision: https://reviews.llvm.org/D101361
Commit 090306fc80 (August 2020) changed most of the arm64 SVE_PT*
macros, but apparently did not make the changes in the
NativeRegisterContextLinux_arm64.* files (or those files were pulled
over from someplace else after that commit). This change replaces the
macros NativeRegisterContextLinux_arm64.cpp with the replacement
definitions in LinuxPTraceDefines_arm64sve.h. It also includes
LinuxPTraceDefines_arm64sve.h in NativeRegisterContextLinux_arm64.h.
Differential Revision: https://reviews.llvm.org/D104826
This adds memory tag reading using the new "qMemTags"
packet and ptrace on AArch64 Linux.
This new packet is following the one used by GDB.
(https://sourceware.org/gdb/current/onlinedocs/gdb/General-Query-Packets.html)
On AArch64 Linux we use ptrace's PEEKMTETAGS to read
tags and we assume that lldb has already checked that the
memory region actually has tagging enabled.
We do not assume that lldb has expanded the requested range
to granules and expand it again to be sure.
(although lldb will be sending aligned ranges because it happens
to need them client side anyway)
Also we don't assume untagged addresses. So for AArch64 we'll
remove the top byte before using them. (the top byte includes
MTE and other non address data)
To do the ptrace read NativeProcessLinux will ask the native
register context for a memory tag manager based on the
type in the packet. This also gives you the ptrace numbers you need.
(it's called a register context but it also has non register data,
so it saves adding another per platform sub class)
The only supported platform for this is AArch64 Linux and the only
supported tag type is MTE allocation tags. Anything else will
error.
Ptrace can return a partial result but for lldb-server we will
be treating that as an error. To succeed we need to get all the tags
we expect.
(Note that the protocol leaves room for logical tags to be
read via qMemTags but this is not going to be implemented for lldb
at this time.)
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D95601
This feature "memory-tagging+" indicates that lldb-server
supports memory tagging packets. (added in a later patch)
We check HWCAP2_MTE to decide whether to enable this
feature for Linux.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D97282
This adds a basic SB API for creating and stopping traces.
Note: This doesn't add any APIs for inspecting individual instructions. That'd be a more complicated change and it might be better to enhande the dump functionality to output the data in binary format. I'll leave that for a later diff.
This also enhances the existing tests so that they test the same flow using both the command interface and the SB API.
I also did some cleanup of legacy code.
Differential Revision: https://reviews.llvm.org/D103500
The C headers are deprecated so as requested in D102845, this is replacing them
all with their (not deprecated) C++ equivalent.
Reviewed By: shafik
Differential Revision: https://reviews.llvm.org/D103084
Remove hardcoded platform list for QPassSignals, qXfer:auxv:read
and qXfer:libraries-svr4:read and instead query the process plugin
via the GetSupportedExtensions() API.
Differential Revision: https://reviews.llvm.org/D101241
Enable reporting fork/vfork events to the server when supported.
At this moment, this is used only to test the server code, as real
client does not report fork-events and vfork-events as supported.
Differential Revision: https://reviews.llvm.org/D100208
This commit has caused the following tests to be flaky:
TestThreadSpecificBpPlusCondition.py
TestExitDuringExpression.py
The exact cause is not known yet, but since both tests deal with
threads, my guess is it has something to do with the tracking of
creation of new threads (which the commit touches upon).
This reverts the following commits:
d01bff8cbd,
ba62ebc48e,
e761b6b4c5,
a345419ee0.
In all this time, we've never used more than one delegate. The logic to
support multiple delegates is therefore untested, and becomes
particularly unwieldy once we need to support multiple processes.
Just remove it.
Watch for fork(2)/vfork(2) (also fork/vfork-style clone(2) on Linux)
notifications and explicitly detach the forked child process, and add
initial tests for these cases. The code covers FreeBSD, Linux
and NetBSD process plugins. There is no new user-visible functionality
provided -- this change lays foundations over subsequent work on fork
support.
Differential Revision: https://reviews.llvm.org/D98822
This reverts commit 71b648f715.
There was a typo in the last commit which was causing LLDB AArch64 Linux
buildbot testsuite failures. Now fixed in current version.
This fixes (works around) two errors with gcc-6.5.
- in the RegisterContext_x86 files, gcc is unable to synthesize a
default constructor -- it thinks it needs to initialize the virtual
base class, even though said classes are abstract. I fix that by
providing a dummy constructor.
- In ReproducerInstrumentationTest, it is not able to deduce that the
TestingRegistry class is movable (it contains a map of unique
pointers). I change the type from Optional<TestingRegistry> to
unique_ptr<TestingRegistry), so that moving is not required
(copying/moving a polymorphic type is not a very good idea in any
case).
This implements the interactive trace start and stop methods.
This diff ended up being much larger than I anticipated because, by doing it, I found that I had implemented in the beginning many things in a non optimal way. In any case, the code is much better now.
There's a lot of boilerplate code due to the gdb-remote protocol, but the main changes are:
- New tracing packets: jLLDBTraceStop, jLLDBTraceStart, jLLDBTraceGetBinaryData. The gdb-remote packet definitions are quite comprehensive.
- Implementation of the "process trace start|stop" and "thread trace start|stop" commands.
- Implementaiton of an API in Trace.h to interact with live traces.
- Created an IntelPTDecoder for live threads, that use the debugger's stop id as checkpoint for its internal cache.
- Added a functionality to stop the process in case "process tracing" is enabled and a new thread can't traced.
- Added tests
I have some ideas to unify the code paths for post mortem and live threads, but I'll do that in another diff.
Differential Revision: https://reviews.llvm.org/D91679
This patch adds two new dynamic register sets for AArch64 MTE and
Pointer Authentication features. These register sets are dynamic and
will only be available if underlying hardware support either of these
features. LLDB will pull in Aux vector information and create register
infos based on that information.
A follow up patch will add a test case to test these feature registers.
Reviewed By: labath, DavidSpickett
Differential Revision: https://reviews.llvm.org/D96460
This is patch adds support for adding dynamic register sets for
AArch64 dynamic features in LLDB. AArch64 has optional features like
SVE, Pointer Authentication and MTE which means LLDB needs to decide
at run time which registers it needs to pull in for the current
executable based on underlying support for a certain feature.
This patch makes necessary adjustments to make way for dynamic
register infos and dynamic register sets.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D96458
As discussed on lldb-dev
<https://lists.llvm.org/pipermail/lldb-dev/2021-March/016777.html> the
mips code is unmaintained and untested. It also carries a lot of
technical debt which is not limited to mips-specific code.
Generic mips support remains (and is going to be used by the upcoming
freebsd code). Resurrecting mips support should be a matter of re-adding
the relevant register context files (while avoiding reintroducing the
debt).
Split out the common base of Linux hardware breakpoint/watchpoint
support for AArch64 into a Utility class, and use it to implement
the matching support on FreeBSD.
Differential Revision: https://reviews.llvm.org/D96548
Introduce mips64 support to match the legacy FreeBSD plugin. Similarly
to the legacy plugin, the code does not support FPU registers at the
moment. The support for them will be submitted separately as it
requires changes to the register context shared by both plugins.
This also includes software single-stepping support that is moved from
the Linux plugin into a common Utility class. The FreeBSD code also
starts explicitly ignoring EINVAL from PT_CLEARSTEP since this is easier
to implement than checking whether hardware single-stepping were used.
Differential Revision: https://reviews.llvm.org/D95802
This patch builds on previously submitted SVE patches regarding expedited
register set and per thread register infos. (D82853 D82855 and D82857)
We need to resize SVE register based on value received in expedited list.
Also we need to resize SVE registers when we write vg register using
register write vg command. The resize will result in a updated offset
for all of fpr and sve register set. This offset will be configured
in native register context by RegisterInfoInterface and will also be
be updated on client side in GDBRemoteRegisterContext.
A follow up patch will provide a API test to verify this change.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D82863
This patch carries forward our aim to remove offset field from qRegisterInfo
packets and XML register description. I have created a new function which
returns if offset fields are dynamic meaning client can calculate offset on
its own based on register number sequence and register size. For now this
function only returns true for NativeRegisterContextLinux_arm64 but we can
test this for other architectures and make it standard later.
As a consequence we do not send offset field from lldb-server (arm64 for now)
while other stubs dont have an offset field so it wont effect them for now.
On the client side we have replaced previous offset calculation algorithm
with a new scheme, where we sort all primary registers in increasing
order of remote regnum and then calculate offset incrementally.
This committ also includes a test to verify all of above functionality
on Arm64.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D91241
This came up while putting together our new strategy to create g/G packets
in compliance with GDB RSP protocol where register offsets are calculated in
increasing order of register numbers without any unused spacing.
RegisterInfoPOSIX_arm64::GPR size was being calculated after alignment
correction to 8 bytes which meant there was a 4 bytes unused space between
last gpr (cpsr) and first vector register V. We have put LLVM_PACKED_START
decorator on RegisterInfoPOSIX_arm64::GPR to make sure single byte
alignment is enforced. Moreover we are now doing to use arm64 user_pt_regs
struct defined in ptrace.h for accessing ptrace user registers.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D92063
This patch ovverides GetExpeditedRegisterSet for
NativeRegisterContextLinux_arm64 to send vector granule register in
expedited register set if SVE mode is selected.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D82855
Translate between abridged and full ftag values in order to expose
the latter in the gdb-remote protocol while the former are used by
FXSAVE/XSAVE... This matches the gdb behavior.
The Shell/Register tests now rely on the new behavior, and therefore
are run on non-Darwin systems only. The Python (API) test relies
on the legacy behavior, and is run on Darwin only.
Differential Revision: https://reviews.llvm.org/D91504
This extends the "memory region" command to
show tagged regions on AArch64 Linux when the MTE
extension is enabled.
(lldb) memory region the_page
[0x0000fffff7ff8000-0x0000fffff7ff9000) rw-
memory tagging: enabled
This is done by adding an optional "flags" field to
the qMemoryRegion packet. The only supported flag is
"mt" but this can be extended.
This "mt" flag is read from /proc/{pid}/smaps on Linux,
other platforms will leave out the "flags" field.
Where this "mt" flag is received "memory region" will
show that it is enabled. If it is not or the target
doesn't support memory tagging, the line is not shown.
(since majority of the time tagging will not be enabled)
Testing is added for the existing /proc/{pid}/maps
parsing and the new smaps parsing.
Minidump parsing has been updated where needed,
though it only uses maps not smaps.
Target specific tests can be run with QEMU and I have
added MTE flags to the existing helper scripts.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D87442