Changes the Offset arguments to both functions from int64_t to TypeSize
& updates all uses of the functions to create the offset using TypeSize::Fixed()
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D85220
This patch stops unconditionally transforming FSUB(-0,X) into an FNEG(X) while building the DAG. There is also one small change to handle the new FSUB(-0,X) similarly to FNEG(X) in the AMDGPU backend.
Differential Revision: https://reviews.llvm.org/D84056
Range that f16 can represent fits into i32.
Lower as f16->i32->i64 instead of f16->f32->i64
since f32->i64 has long expansion.
Differential Revision: https://reviews.llvm.org/D84166
These are treated identically to value aggregates placed in the kernel
argument list. A %struct.foo or %struct.foo addrspace(4)*
byref(sizeof(%struct.foo)) align(alignof(%struct.foo)) argument should
produce the same offsets and argument metadata.
This handles all 3 kernel ABI implementations, and the two HSA
metadata emission paths.
Fix two obvious errors in the code and also update the test check.
Also add one test to catch the failure.
Patch by Ruiling Song!
Differential Revision: https://reviews.llvm.org/D83280
This function is deceptive at best: it doesn't return what you'd expect.
If you have an arbitrary GlobalValue and you want to determine the
alignment of that pointer, Value::getPointerAlignment() returns the
correct value. If you want the actual declared alignment of a function
or variable, GlobalObject::getAlignment() returns that.
This patch switches all the users of GlobalValue::getAlignment to an
appropriate alternative.
Differential Revision: https://reviews.llvm.org/D80368
Implement them on top of sdiv/udiv, similar to what we do for integer
types.
Potential future work: implementing i8/i16 srem/urem, optimizations for
constant divisors, optimizing the mul+sub to mls.
Differential Revision: https://reviews.llvm.org/D81511
This was promoting booleans to i32 to perform a comparison against
them to feed to a select condition. Just use the booleans
directly. This produces the same final code, since the combiner is
unable to undo the mess this creates. I untangled this logic when I
ported this code to GlobalISel, so port the cleanups back.
Tweak a few constant expressions involving numbers::pi etc to avoid
rounding errors. NFCI though it's possible some of these will now be
more accurate in the last bit.
We have the getNegatibleCost/getNegatedExpression to evaluate the cost and negate the expression.
However, during negating the expression, the cost might change as we are changing the DAG,
and then, hit the assertion if we negated the wrong expression as the cost is not trustful anymore.
This patch is target to remove the getNegatibleCost to avoid the out of sync with getNegatedExpression,
and check the cost during negating the expression. It also reduce the duplicated code between
getNegatibleCost and getNegatedExpression. And fix the crash for the test in D76638
Reviewed By: RKSimon, spatel
Differential Revision: https://reviews.llvm.org/D77319
We need to use it to handle <16 x double> indirect indexes
in the AMDGPU BE.
The only visible change from adding it is in ARM cost model.
To me it looks reasonable. With doubling a vector size it
quadruples the cost up to the size 8 and then it did only
double it. Now it also quadruples, which seems a logical
progression to me.
Actual AMDGPU code is to follow, this is a common part, plus
load/store legalization in the AMDGPU BE not to break what
works now.
Differential Revision: https://reviews.llvm.org/D79952
We can produce such vectors in the Promote Alloca pass,
but we are unable to use movrel to operate it and lower
via scratch. Making it legal makes SI_INDIRECT patterns
work.
There is more work to do in subsequent changes:
1. We initialize m0 twice to access each dword. It shall
be possible to only do it once and increment base register
number instead.
2. We also need v16i64/v16f64 but these first need to be
added to tablegen.
Differential Revision: https://reviews.llvm.org/D79808
We have the getNegatibleCost/getNegatedExpression to evaluate the cost and negate the expression.
However, during negating the expression, the cost might change as we are changing the DAG,
and then, hit the assertion if we negated the wrong expression as the cost is not trustful anymore.
This patch is target to remove the getNegatibleCost to avoid the out of sync with getNegatedExpression,
and check the cost during negating the expression. It also reduce the duplicated code between
getNegatibleCost and getNegatedExpression. And fix the crash for the test in D76638
Reviewed By: RKSimon, spatel
Differential Revision: https://reviews.llvm.org/D77319
This patch allows ISD::FSHR(i32) patterns to lower to ALIGNBIT instructions.
This improves test coverage of ISD::FSHR matching - x86 has both FSHL/FSHR instructions and we prefer FSHL by default.
Differential Revision: https://reviews.llvm.org/D76070
Instead, emit a trap and a warning. We force inlining of this
situation, so any function where this happens should be dead as
indirect or external calls are not yet supported. This should avoid
erroring on dead code.
Interpret these as extending to the next multiple of 32-bits. This had
no effect with i48 for example, which is really split into {i32, i16},
which should extend the high part.
GetDemandedBits mostly just calls SimplifyMultipleUseDemandedBits now, but it does a very blunt constant simplification that SimplifyMultipleUseDemandedBits avoids.
If we need to demand bits from constants we should handle this through ShrinkDemandedConstant/targetShrinkDemandedConstant.
@arsenm confirmed that the sign extended immediates are better for code size.
Differential Revision: https://reviews.llvm.org/D74857
We probably want this, and I've meant to turn this on for a long
time. SC actually emits a special case to early-out for a 1
denominator, which perhaps should also be considered.
The isNegatibleForFree/getNegatedExpression methods currently rely on a raw char value to indicate whether a negation is beneficial or not.
This patch replaces the char return value with an NegatibleCost enum to more clearly demonstrate what is implied.
It also renames isNegatibleForFree to getNegatibleCost to more accurately reflect whats going on.
Differential Revision: https://reviews.llvm.org/D74221
https://reviews.llvm.org/D72312 introduced an infinite loop which involves
DAGCombiner::visitFMA and AMDGPUTargetLowering::performFNegCombine.
fma( a, fneg(b), fneg(c) ) => fneg( fma (a, b, c) ) => fma( a, fneg(b), fneg(c) ) ...
This only breaks with types where 'isFNegFree' returns flase, e.g. v4f32.
Reproducing the issue also needs the attribute 'no-signed-zeros-fp-math',
and no source mods allowed on one of the users of the Op.
This fix makes changes to indicate that it is not free to negate a fma if it
has users with source mods.
Differential Revision: https://reviews.llvm.org/D73939
Prepare to accurately track the future denormal-fp-math attribute
changes. The way to actually set these separately is not wired in yet.
This is just a mechanical change, and mostly still assumes the input
and output mode match. This should be refined for some cases. For
example, fcanonicalize lowering should use the flushing variant if
either input or output flushing is enabled
Manually select this is as a tablegen workraound. Both SelectionDAG
and GlobalISel end up misplacing the copy to m0 when both instructions
in the output need it. Neither considers that both output instructions
depend on m0. I don't know of any other pattern we need to handle this
case, so it's less effort to just workaround this for now.
Currently BE allows only a little load narrowing because
of the fear it will produce sub-dword ext loads. However,
we can always allow narrowing if we are shrinking one
multi-dword load to another multi-dword load.
In particular we were unable to reduce s_load_dwordx8 into
s_load_dwordx4 if identity shuffle was used to extract
low 4 dwords.
Differential Revision: https://reviews.llvm.org/D73133
I'm mildly worried about potentially reordering exp/exp_done with
IntrWriteMem on the intrinsic.
Requires hacking out the illegal type on SI, so manually select that
case during lowering.
This allows us to clean up some places that were peeking through
the MERGE_VALUES node after the call. By returning the SDValues
directly, we can clean that up.
Unfortunately, there are several call sites in AMDGPU that wanted
the MERGE_VALUES and now need to create their own.
Summary:
At present, the code calculating known bits of AMDGPU MUL_I24 confuses the concepts of "non-negative number" and "positive number".
In some situations, it results in incorrect code. I have a case where the optimizer replaces the result of calculating MUL_I24(-5, 0) with -8.
Reviewers: foad, arsenm
Reviewed By: arsenm
Subscribers: foad, arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, hiraditya, llvm-commits
Tags: #llvm
Patch by Eugene Kuznetsov.
Differential Revision: https://reviews.llvm.org/D70367
Summary:
The use of a boolean isInteger flag (generally initialized using
VT.isInteger()) caused errors in our out-of-tree CHERI backend
(https://github.com/CTSRD-CHERI/llvm-project).
In our backend, pointers use a separate ValueType (iFATPTR) and therefore
.isInteger() returns false. This meant that getSetCCInverse() was using the
floating-point variant and generated incorrect code for us:
`(void *)0x12033091e < (void *)0xffffffffffffffff` would return false.
Committing this change will significantly reduce our merge conflicts
for each upstream merge.
Reviewers: spatel, bogner
Reviewed By: bogner
Subscribers: wuzish, arsenm, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, jrtc27, atanasyan, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70917
Start moving towards treating this as a property of the calling
convention, and not the subtarget. The default denormal mode should
not be part of the subtarget, and be moved into a separate function
attribute.
This patch is still NFC. The denormal mode remains as a subtarget
feature for now, but make the necessary changes to switch to using an
attribute.
The usage of target boolean checks is overly inflexible, since sext
and zext of a compare are equally cheap. The choice is arbitrary, but
using 0/1 to some degree is the choice of lower resistance since
that's what most targets use. This enables a few combines that don't
bother to support ZeroOrNegativeOneBooleanContent.
Rename old function to explicitly show that it cares only about alignment.
The new allowsMemoryAccess call the function related to alignment by default
and can be overridden by target to inform whether the memory access is legal or
not.
Differential Revision: https://reviews.llvm.org/D67121
llvm-svn: 372935
The static analyzer is warning about a potential null dereference, but we should be able to use cast<LoadSDNode> directly and if not assert will fire for us.
llvm-svn: 372528
* Reordered MVT simple types to group scalable vector types
together.
* New range functions in MachineValueType.h to only iterate over
the fixed-length int/fp vector types.
* Stopped backends which don't support scalable vector types from
iterating over scalable types.
Reviewers: sdesmalen, greened
Reviewed By: greened
Differential Revision: https://reviews.llvm.org/D66339
llvm-svn: 372099
The same stack is loaded for each workitem ID, and each use. Nothing
prevents you from creating multiple fixed stack objects with the same
offsets, so this was creating a load for each unique frame index,
despite them being the same offset. Re-use the same frame index so the
loads are CSEable.
llvm-svn: 371148
The problem these are supposed to work around can occur before the
intrinsics are lowered into the nodes. Try to directly simplify them
so they are matched before the bit assert operations can be optimized
out.
llvm-svn: 369994
I might look at improving PR43065 which will require being
able to mark a 256 and 512 bit vector of f16 as Legal.
Differential Revision: https://reviews.llvm.org/D66515
llvm-svn: 369565
AMDGPU has some buffer intrinsics which theoretically could use
this. Some of the generated tables include the 3 and 4 element vector
versions of these rounded to 64-bits, which is ambiguous. Add these to
help the table disambiguate these.
Assertion change is for the path odd sized vectors now take for R600.
v3i16 is widened to v4i16, which then needs to be promoted to v4i32.
llvm-svn: 369038
This is the more natural lowering, and presents more opportunities to
reduce 64-bit ops to 32-bit.
This should also help avoid issues graphics shaders have had with
64-bit values, and simplify argument lowering in globalisel.
llvm-svn: 366578
Now that the patterns use the new PatFrag address space support, the
only blocker to importing most load patterns is the addressing mode
complex patterns.
llvm-svn: 366237
These should really use v32f32, but were defined as v32i32
due to the lack of the v32f32 type.
Differential Revision: https://reviews.llvm.org/D64667
llvm-svn: 365972
Basically the problem is that X86 doesn't set the Fast flag from
allowsMemoryAccess on certain CPUs due to slow unaligned memory
subtarget features. This prevents bitcasts from being folded into
loads and stores. But all vector loads and stores of the same width
are the same cost on X86.
This patch merges the allowsMemoryAccess call into isLoadBitCastBeneficial to allow X86 to skip it.
Differential Revision: https://reviews.llvm.org/D64295
llvm-svn: 365549
Summary:
The symbols use the processor-specific SHN_AMDGPU_LDS section index
introduced with a previous change. The linker is then expected to resolve
relocations, which are also emitted.
Initially disabled for HSA and PAL environments until they have caught up
in terms of linker and runtime loader.
Some notes:
- The llvm.amdgcn.groupstaticsize intrinsics can no longer be lowered
to a constant at compile times, which means some tests can no longer
be applied.
The current "solution" is a terrible hack, but the intrinsic isn't
used by Mesa, so we can keep it for now.
- We no longer know the full LDS size per kernel at compile time, which
means that we can no longer generate a relevant error message at
compile time. It would be possible to add a check for the size of
individual variables, but ultimately the linker will have to perform
the final check.
Change-Id: If66dbf33fccfbf3609aefefa2558ac0850d42275
Reviewers: arsenm, rampitec, t-tye, b-sumner, jsjodin
Subscribers: qcolombet, kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61494
llvm-svn: 364297
As discussed on D62910, we need to check whether particular types of memory access are allowed, not just their alignment/address-space.
This NFC patch adds a MachineMemOperand::Flags argument to allowsMemoryAccess and allowsMisalignedMemoryAccesses, and wires up calls to pass the relevant flags to them.
If people are happy with this approach I can then update X86TargetLowering::allowsMisalignedMemoryAccesses to handle misaligned NT load/stores.
Differential Revision: https://reviews.llvm.org/D63075
llvm-svn: 363179
Summary:
SGPR in CC can be either hw initialized or set by other chained shaders
and so this increases the SGPR count availalbe to CC to 105.
Change-Id: I3dfadc750fe4a3e2bd07117a2899fd13f3e2fef3
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61261
llvm-svn: 360778
This was committed in rL358887 but reverted in rL360066 due to a x86 regression, really it should be have been pre-committed instead of being part of the SimplifyDemandedBits bitcast patch.
llvm-svn: 360263
Reverts "[X86] Remove (V)MOV64toSDrr/m and (V)MOVDI2SSrr/m. Use 128-bit result MOVD/MOVQ and COPY_TO_REGCLASS instead"
Reverts "[TargetLowering][AMDGPU][X86] Improve SimplifyDemandedBits bitcast handling"
Eric Christopher and Jorge Gorbe Moya reported some issues with these patches to me off list.
Removing the CodeGenOnly instructions has changed how fneg is handled during fast-isel with sse/sse2. We're now emitting fsub -0.0, x instead
moving to the integer domain(in a GPR), xoring the sign bit, and then moving back to xmm. This is because the fast isel table no longer
contains an entry for (f32/f64 bitcast (i32/i64)) so the target independent fneg code fails. The use of fsub changes the behavior of nan with
respect to -O2 codegen which will always use a pxor. NOTE: We still have a difference with double with -m32 since the move to GPR doesn't work
there. I'll file a separate PR for that and add test cases.
Since removing the CodeGenOnly instructions was fixing PR41619, I'm reverting r358887 which exposed that PR. Though I wouldn't be surprised
if that bug can still be hit independent of that.
This should hopefully get Google back to green. I'll work with Simon and other X86 folks to figure out how to move forward again.
llvm-svn: 360066
This patch adds support for BigBitWidth -> SmallBitWidth bitcasts, splitting the DemandedBits/Elts accordingly.
The AMDGPU backend needed an extra (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) combine to encourage BFE creation, I investigated putting this in DAGCombine but it caused a lot of noise on other targets - some improvements, some regressions.
The X86 changes are all definite wins.
Differential Revision: https://reviews.llvm.org/D60462
llvm-svn: 358887
fneg combining attempts to turn it into fadd(fneg(A), fneg(0)), but
creating the new fadd folds to just fneg(A). When A has multiple uses,
this confuses it and you get an assert. Fixed.
Differential Revision: https://reviews.llvm.org/D60633
Change-Id: I0ddc9b7286abe78edc0cd8d734fdeb05ff09821c
llvm-svn: 358640
Now we have vec3 MVTs, this commit implements dwordx3 variants of the
buffer intrinsics.
On gfx6, a dwordx3 buffer load intrinsic is implemented as a dwordx4
instruction, and a dwordx3 buffer store intrinsic is not supported.
We need to support the dwordx3 load intrinsic because it is generated by
subtarget-unaware code in InstCombine.
Differential Revision: https://reviews.llvm.org/D58904
Change-Id: I016729d8557b98a52f529638ae97c340a5922a4e
llvm-svn: 356755
They are not used by anything yet, but a subsequent commit will start
using them for image ops that return 5 dwords.
Differential Revision: https://reviews.llvm.org/D58903
Change-Id: I63e1904081e39a6d66e4eb96d51df25ad399d271
llvm-svn: 356735
Added support for dwordx3 for most load/store types, but not DS, and not
intrinsics yet.
SI (gfx6) does not have dwordx3 instructions, so they are not enabled
there.
Some of this patch is from Matt Arsenault, also of AMD.
Differential Revision: https://reviews.llvm.org/D58902
Change-Id: I913ef54f1433a7149da8d72f4af54dbb13436bd9
llvm-svn: 356659
This allows better code size for aarch64 floating point materialization
in a future patch.
Reviewers: evandro
Differential Revision: https://reviews.llvm.org/D58690
llvm-svn: 356389