- Take the same principle as the conversion from f64 to i64 with extra
necessary pre- and post-processing. It helps to reduce that conversion
sequence by half compared to legacy one.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D104427
It's still in use in a few places so we can't delete it yet but there's not
many at this point.
Differential Revision: https://reviews.llvm.org/D103352
Adjusting the load register type is a widenScalar type action, not a
lowering. lowerLoad should be reserved for operations that change the
memory access size, such as unaligned load decomposition. With this
trying to adjust the register type, it was hard to avoid infinite
loops in the legalizer. Adds a bandaid to avoid regressing a few
AArch64 tests, but I'm not sure what the exact condition is and
there's probably a cleaner way to do this.
For AMDGPU this regresses handling of some cases for unaligned loads,
but the way this is currently working is a pretty ugly hack.
Accesses to global module LDS variable start from null,
but kernel also thinks its variables start address is
null. Fixed by not using a null as an address.
Differential Revision: https://reviews.llvm.org/D102882
For gfx10 gradient (g16) and address (a16) can be independent. Previous
implementation assumed that a16 implied g16.
There are some other changes that fix the verification (as well as asm/disasm)
that are required for the included test to pass - the XFAIL will be removed in
those changes.
This also includes required fixes for GlobalISel
Differential Revision: https://reviews.llvm.org/D102066
Change-Id: I7d171cc90994de05f41669b66a6d0ffa2ed05d09
This includes gfx908 which only has a no-return version of the
global_atomic_add_f32 instruction, using the same hack that was
previously implemented for selecting from the
llvm.amdgcn.global.atomic.fadd intrinsic.
Differential Revision: https://reviews.llvm.org/D97767
Look throught G_PTRTOINT and G_PTR_ADD nodes when looking for constant
offset for buffer stores. This also helps with merging of these instructions
later on.
Differential Revision: https://reviews.llvm.org/D95242
Returning int64_t was arbitrarily limiting for wide integer types, and
the functions should handle the full generality of the IR.
Also changes the full form which returns the originally defined
vreg. Add another wrapper for the common case of just immediately
converting to int64_t (arguably this would be useful for the full
return value case as well).
One possible issue with this change is some of the existing uses did
break without conversion to getConstantVRegSExtVal, and it's possible
some without adequate test coverage are now broken.
It does not seem to fold offsets but this is not specific
to the flat scratch as getPtrBaseWithConstantOffset() does
not return the split for these tests unlike its SDag
counterpart.
Differential Revision: https://reviews.llvm.org/D93670
Remove immediate operand from SI_ELSE which indicates if EXEC has
been modified. Instead always emit code that handles EXEC and
remove unnecessary instructions during pre-RA optimisation.
This facilitates passes (i.e. SIWholeQuadMode) adding exec mask
manipulation post control flow lowering, and pre control flow
lower passes do not need to be aware of SI_ELSE handling.
Reviewed By: nhaehnle
Differential Revision: https://reviews.llvm.org/D89644
Summary:
This implements a workaround for a hardware bug in gfx8 and gfx9,
where register usage is not estimated correctly for image_store and
image_gather4 instructions when D16 is used.
Change-Id: I4e30744da6796acac53a9b5ad37ac1c2035c8899
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81172
uint8_t types are implicitly promoted to int, leading to a
unsigned-signed comparison.
Thanks for the heads-up @uabelho.
Differential Revision: https://reviews.llvm.org/D88876
Use tablegen generic tables to get the index of image intrinsic
arguments.
Before, the computation of which image intrinsic argument is at which
index was scattered in a few places, tablegen, the SDag instruction
selection and GlobalISel. This patch changes that, so only tablegen
contains code to compute indices and the ImageDimIntrinsicInfo table
provides these information.
Differential Revision: https://reviews.llvm.org/D86270
The addend in a REL32 reloc needs to be adjusted to account for the
offset from the PC value returned by the s_getpc instruction to the
point where the reloc is applied. This was being done correctly for
(GOTPC)REL32_LO but not for (GOTPC)REL32_HI. This will only make a
difference if the target symbol happens to get loaded almost exactly
a multiple of 4G away from the relocated instructions.
Differential Revision: https://reviews.llvm.org/D86938
If the condition output is negated, swap the branch targets. This is
similar to what SelectionDAG does for when SelectionDAGBuilder
decides to invert the condition and swap the branches.
This is leaving behind a dead constant def for some reason.
Most notably, we were incorrectly reporting <3 x s16> as a legal type
for these. Make sure these aren't legal to help make progress on
fixing the artifact combiner and vector legalizer
rules. Unfortunately, this means spreading the -global-isel-abort=0
hack, although this doesn't change the legalizer result in any
situation.
Features UnalignedBufferAccess and UnalignedDSAccess are now used to determine
whether hardware supports such access.
UnalignedAccessMode should be used to enable them.
hasUnalignedBufferAccessEnabled() and hasUnalignedDSAccessEnabled() can be
now used to quickly check both.
Differential Revision: https://reviews.llvm.org/D84522
Summary:
- HIP uses an unsized extern array `extern __shared__ T s[]` to declare
the dynamic shared memory, which size is not known at the
compile time.
Reviewers: arsenm, yaxunl, kpyzhov, b-sumner
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, dstuttard, tpr, t-tye, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82496
Assuming this is used to split a memory access into smaller pieces,
the new access should still have the same aliasing properties as the
original memory access. As far as I can tell, this wasn't
intentionally dropped. It may be necessary to drop this if you are
moving the operand outside of the bounds of the original object in
such a way that it may alias another IR object, but I don't think any
of the existing users are doing this. Some of the uses widen into
unused alignment padding, which I think is OK.
Custom lower and widen odd sized loads up to the alignment. The
default set of legalization actions doesn't have a way to represent
this. This fixes naturally aligned <3 x s8> and <3 x s16> loads.
This also starts moving towards eliminating the buggy and
overcomplicated legalization rules for narrowing. All the memory size
changes should be done in the lower or custom action, not NarrowScalar
/ FewerElements. These currently have redundant and ambiguous code
with the lower action.
This mirrors the support for the equivalent extracts. This also
creates a huge mess that would be greatly improved if we had any bit
operation combines.
Use the same basic strategy as LegalizeVectorTypes. Try to index into
smaller pieces if there's a constant index, and otherwise fall back to
a stack temporary.
If we were to have an operation with an s16 def that needs to be
executed in a waterfall loop, not having s16 legal would place an
avoidable burden on RegBankSelect to widen it.
Get the argument register and ensure there's a copy to the virtual
register. AMDGPU and AArch64 have similarish code to get the livein
value, and I also want to use this in multiple places.
This is a bit more aggressive about setting the register class than
the original function, but that's probably OK.
I think we're missing a few verifier checks for function live ins. I
noticed AArch64's calling convention code is not actually adding
liveins to functions, only the entry block (which apparently might not
matter that much?). There should probably be a verifier check that
entry block live ins are also live into the function. We also might
need a verifier check that the copy to the livein virtual register is
in the entry block.
For AMDGPU, vectors with elements < 32 bits should be indexed in
32-bit elements and the desired bits extracted from there. For
elements > 64-bits, these should be reduce to 64/32 elements to enable
the normal dynamic indexing paths.
In the dynamic index cases, this produces shorter code most of the
time. This does immediately regress the constant index cases, but this
should be fixed once we have the most basic of shift combines.
The element size > 64 case is pretty much ported from the exisiting
DAG implementation for extract element promote. The increasing element
size case is new.
I still think it's highly questionable that we have two intrinsics
with identical behavior and only vary by the name of the libcall used
if it happens to be lowered that way, but try to reduce the feature
delta between SDAG and GlobalISel for recently added intrinsics. I'm
not sure which opcode should be considered the canonical one, but
lower roundeven back to round.
These aren't implemented and we're still relying on the AtomicExpand
pass, but mark these as lower to eliminate a few of the few remaining
no rules defined cases.
We don't really need these asserts. The LegalizerInfo is also
overly-aggressivly constructed, even when not in use. It needs to not
assert on dummy targets that have manually specified, unrelated
features.
Widen or narrow a type to a type with the same scalar size as
another. This can be used to force G_PTR_ADD/G_PTRMASK's scalar
operand to match the bitwidth of the pointer type. Use this to
disallow narrower types for G_PTRMASK.
Add support in LegalizerHelper for lowering G_SADDSAT etc. either
using add/subtract-with-overflow or using max/min instructions.
Enable this lowering for AMDGPU so it can be tested. The legalization
rules are still approximate and skips out on using the clamp bit to
treat these as legal, which has never been used before. This also
doesn't yet try to deal with expanding SALU cases.
Add narrowScalarFor action.
Add narrow scalar for typeIndex == 0 for G_FPTOSI/G_FPTOUI.
Legalize using narrowScalarFor as s16->s32 G_FPTOSI/G_FPTOUI
followed by s32->s64 G_SEXT/G_ZEXT.
Differential Revision: https://reviews.llvm.org/D84010
Add widenScalar for TypeIdx == 0 for G_SITOFP/G_UITOFP.
Legailize, using widenScalar, as s64->s32 G_SITOFP/G_UITOFP
followed by s32->s16 G_FPTRUNC.
Differential Revision: https://reviews.llvm.org/D83880
This avoids many instances of failing to legalize a vector truncstore
of <4 x s8> to 2 bytes. We don't perfectly handle every truncstore
yet, largely because the given set of legalization actions can't
actually differentiate between changing the result type and changing
the memory type.
This function is deceptive at best: it doesn't return what you'd expect.
If you have an arbitrary GlobalValue and you want to determine the
alignment of that pointer, Value::getPointerAlignment() returns the
correct value. If you want the actual declared alignment of a function
or variable, GlobalObject::getAlignment() returns that.
This patch switches all the users of GlobalValue::getAlignment to an
appropriate alternative.
Differential Revision: https://reviews.llvm.org/D80368
This was passing in all the parameters needed to construct a
LegalizerHelper in the custom legalization, when it's simpler to just
pass in the existing helper.
This is slightly more annoying to use in the common case where you
don't need the legalizer helper, but we could add back the common
parameters back in addition to the helper.
I didn't propagate this to all the internal target changes that this
logically implies, but did update a sample one for
legalizeMinNumMaxNum.
This is in preparation for moving AMDGPU load/store legalization
entirely into custom lowering. The current set of legalization actions
is really constraining and not really capable of expressing all the
actions needed to legalize loads/stores. In particular there's no way
to express when the memory access itself needs to change size vs. the
result type. There's also a lot of redundancy since the same
split/widen actions need to be applied in both vector and scalar
cases. All of the sub-cases logically belong as steps in the legalizer
helper, but it will be easier to consider everything at once in custom
lowering.