LLVM IR doesn't currently allow atomic bool load/store operations, and the
transformation is dubious anyway because it isn't profitable on all platforms.
PR17163.
llvm-svn: 190357
Several architectures use the same instruction to perform both a comparison and
a subtract. The instruction selection framework does not allow to consider
different basic blocks to expose such fusion opportunities.
Therefore, these instructions are “merged” by CSE at MI IR level.
To increase the likelihood of CSE to apply in such situation, we reorder the
operands of the comparison, when they have the same complexity, so that they
matches the order of the most frequent subtract.
E.g.,
icmp A, B
...
sub B, A
<rdar://problem/14514580>
llvm-svn: 190352
The work on this project was left in an unfinished and inconsistent state.
Hopefully someone will eventually get a chance to implement this feature, but
in the meantime, it is better to put things back the way the were. I have
left support in the bitcode reader to handle the case-range bitcode format,
so that we do not lose bitcode compatibility with the llvm 3.3 release.
This reverts the following commits: 155464, 156374, 156377, 156613, 156704,
156757, 156804 156808, 156985, 157046, 157112, 157183, 157315, 157384, 157575,
157576, 157586, 157612, 157810, 157814, 157815, 157880, 157881, 157882, 157884,
157887, 157901, 158979, 157987, 157989, 158986, 158997, 159076, 159101, 159100,
159200, 159201, 159207, 159527, 159532, 159540, 159583, 159618, 159658, 159659,
159660, 159661, 159703, 159704, 160076, 167356, 172025, 186736
llvm-svn: 190328
instead of having its own implementation.
The implementation of isTBAAVtableAccess is in TypeBasedAliasAnalysis.cpp
since it is related to the format of TBAA metadata.
The path for struct-path tbaa will be exercised by
test/Instrumentation/ThreadSanitizer/read_from_global.ll, vptr_read.ll, and
vptr_update.ll when struct-path tbaa is on by default.
llvm-svn: 190216
This reverts commit r189886.
I found a corner case where this optimization is not valid:
Say we have a "linkonce_odr unnamed_addr" in two translation units:
* In TU 1 this optimization kicks in and makes it hidden.
* In TU 2 it gets const merged with a constant that is *not* unnamed_addr,
resulting in a non unnamed_addr constant with default visibility.
* The static linker rules for combining visibility them produce a hidden
symbol, which is incorrect from the point of view of the non unnamed_addr
constant.
The one place we can do this is when we know that the symbol is not used from
another TU in the same shared object, i.e., during LTO. I will move it there.
llvm-svn: 189954
"(icmp op i8 A, B)" is equivalent to "(icmp op i8 (A & 0xff), B)" as a
degenerate case. Allowing this as a "masked" comparison when analysing "(icmp)
&/| (icmp)" allows us to combine them in more cases.
rdar://problem/7625728
llvm-svn: 189931
Even in cases which aren't universally optimisable like "(A & B) != 0 && (A &
C) != 0", the masks can make one of the comparisons completely redundant. In
this case, since we've gone to the effort of spotting masked comparisons we
should combine them.
rdar://problem/7625728
llvm-svn: 189930
Original message:
If a constant or a function has linkonce_odr linkage and unnamed_addr, mark
hidden. Being linkonce_odr guarantees that it is available in every dso that
needs it. Being a constant/function with unnamed_addr guarantees that the
copies don't have to be merged.
llvm-svn: 189886
The reason that I am turning off this optimization is that there is an
additional case where a block can escape that has come up. Specifically, this
occurs when a block is used in a scope outside of its current scope.
This can cause a captured retainable object pointer whose life is preserved by
the objc_retainBlock to be deallocated before the block is invoked.
An example of the code needed to trigger the bug is:
----
\#import <Foundation/Foundation.h>
int main(int argc, const char * argv[]) {
void (^somethingToDoLater)();
{
NSObject *obj = [NSObject new];
somethingToDoLater = ^{
[obj self]; // Crashes here
};
}
NSLog(@"test.");
somethingToDoLater();
return 0;
}
----
In the next commit, I remove all the dead code that results from this.
Once I put in the fixing commit I will bring back the tests that I deleted in
this commit.
rdar://14802782.
rdar://14868830.
llvm-svn: 189869
This patch changes the default setting for the LateVectorization flag that controls where the loop-vectorizer is ran.
Perf gains:
SingleSource/Benchmarks/Shootout/matrix -37.33%
MultiSource/Benchmarks/PAQ8p/paq8p -22.83%
SingleSource/Benchmarks/Linpack/linpack-pc -16.22%
SingleSource/Benchmarks/Shootout-C++/ary3 -15.16%
MultiSource/Benchmarks/TSVC/NodeSplitting-flt/NodeSplitting-flt -10.34%
MultiSource/Benchmarks/TSVC/NodeSplitting-dbl/NodeSplitting-dbl -7.12%
Regressions:
SingleSource/Benchmarks/Misc/lowercase 15.10%
MultiSource/Benchmarks/TSVC/Equivalencing-flt/Equivalencing-flt 13.18%
SingleSource/Benchmarks/Shootout-C++/matrix 8.27%
SingleSource/Benchmarks/CoyoteBench/lpbench 7.30%
llvm-svn: 189858
1) If the width of vectorization list candidate is bigger than vector reg width, we will break it down to fit the vector reg.
2) We do not vectorize the width which is not power of two.
The performance result shows it will help some spec benchmarks. mesa improved 6.97% and ammp improved 1.54%.
llvm-svn: 189830
Select condition shadow was being ignored resulting in false negatives.
This change OR-s sign-extended condition shadow into the result shadow.
llvm-svn: 189785
The existing code missed some edge cases when e.g. we're going to emit sqrtf but
only the availability of sqrt was checked. This happens on odd platforms like
windows.
llvm-svn: 189724
PR17026. Also avoid undefined shifts and shift amounts larger than 64 bits
(those are always undef because we can't represent integer types that large).
llvm-svn: 189672
Revert unintentional commit (of an unreviewed change).
Original commit message:
Add getUnrollingPreferences to TTI
Allow targets to customize the default behavior of the generic loop unrolling
transformation. This will be used by the PowerPC backend when targeting the A2
core (which is in-order with a deep pipeline), and using more aggressive
defaults is important.
llvm-svn: 189566
Allow targets to customize the default behavior of the generic loop unrolling
transformation. This will be used by the PowerPC backend when targeting the A2
core (which is in-order with a deep pipeline), and using more aggressive
defaults is important.
llvm-svn: 189565
1. They are a kind of cannonicalization.
2. The performance measurements show that it is better to keep them in.
There should be no functional change if you are not enabling the LateVectorization mode.
llvm-svn: 189539
When unrolling is disabled in the pass manager, the loop vectorizer should also
not unroll loops. This will allow the -fno-unroll-loops option in Clang to
behave as expected (even for vectorizable loops). The loop vectorizer's
-force-vector-unroll option will (continue to) override the pass-manager
setting (including -force-vector-unroll=0 to force use of the internal
auto-selection logic).
In order to test this, I added a flag to opt (-disable-loop-unrolling) to force
disable unrolling through opt (the analog of -fno-unroll-loops in Clang). Also,
this fixes a small bug in opt where the loop vectorizer was enabled only after
the pass manager populated the queue of passes (the global_alias.ll test needed
a slight update to the RUN line as a result of this fix).
llvm-svn: 189499
This patch merges LoopVectorize of InnerLoopVectorizer and InnerLoopUnroller by adding checks for VF=1. This helps in erasing the Unroller code that is almost identical to the InnerLoopVectorizer code.
llvm-svn: 189391
The builder inserts from before the insert point,
not after, so this would insert before the last
instruction in the bundle instead of after it.
I'm not sure if this can actually be a problem
with any of the current insertions.
llvm-svn: 189285
This patch enables unrolling of loops when vectorization is legal but not profitable.
We add a new class InnerLoopUnroller, that extends InnerLoopVectorizer and replaces some of the vector-specific logic with scalars.
This patch does not introduce any runtime regressions and improves the following workloads:
SingleSource/Benchmarks/Shootout/matrix -22.64%
SingleSource/Benchmarks/Shootout-C++/matrix -13.06%
External/SPEC/CINT2006/464_h264ref/464_h264ref -3.99%
SingleSource/Benchmarks/Adobe-C++/simple_types_constant_folding -1.95%
llvm-svn: 189281
The code was erroneously reading overflow area shadow from the TLS slot,
bypassing the local copy. Reading shadow directly from TLS is wrong, because
it can be overwritten by a nested vararg call, if that happens before va_start.
llvm-svn: 189104
...so that it can be used for z too. Most of the code is the same.
The only real change is to use TargetTransformInfo to test when a sqrt
instruction is available.
The pass is opt-in because at the moment it only handles sqrt.
llvm-svn: 189097
The current version of StripDeadDebugInfo became stale and no longer actually
worked since it was expecting an older version of debug info.
This patch updates it to use DebugInfoFinder and the modern DebugInfo classes as
much as possible to make it more redundent to such changes. Additionally, the
only place where that was avoided (the code where we replace the old sets with
the new), I call verify on the DIContextUnit implying that if the format changes
and my live set changes no longer make sense an assert will be hit. In order to
ensure that that occurs I have included a test case.
The actual stripping of the dead debug info follows the same strategy as was
used before in this class: find the live set and replace the old set in the
given compile unit (which may contain dead global variables/functions) with the
new live one.
llvm-svn: 189078
DFSan changes the ABI of each function in the module. This makes it possible
for a function with the native ABI to be called with the instrumented ABI,
or vice versa, thus possibly invoking undefined behavior. A simple way
of statically detecting instances of this problem is to prepend the prefix
"dfs$" to the name of each instrumented-ABI function.
This will not catch every such problem; in particular function pointers passed
across the instrumented-native barrier cannot be used on the other side.
These problems could potentially be caught dynamically.
Differential Revision: http://llvm-reviews.chandlerc.com/D1373
llvm-svn: 189052
using GEPs. Previously, it used a number of different heuristics for
analyzing the GEPs. Several of these were conservatively correct, but
failed to fall back to SCEV even when SCEV might have given a reasonable
answer. One was simply incorrect in how it was formulated.
There was good code already to recursively evaluate the constant offsets
in GEPs, look through pointer casts, etc. I gathered this into a form
code like the SLP code can use in a previous commit, which allows all of
this code to become quite simple.
There is some performance (compile time) concern here at first glance as
we're directly attempting to walk both pointers constant GEP chains.
However, a couple of thoughts:
1) The very common cases where there is a dynamic pointer, and a second
pointer at a constant offset (usually a stride) from it, this code
will actually not do any unnecessary work.
2) InstCombine and other passes work very hard to collapse constant
GEPs, so it will be rare that we iterate here for a long time.
That said, if there remain performance problems here, there are some
obvious things that can improve the situation immensely. Doing
a vectorizer-pass-wide memoizer for each individual layer of pointer
values, their base values, and the constant offset is likely to be able
to completely remove redundant work and strictly limit the scaling of
the work to scrape these GEPs. Since this optimization was not done on
the prior version (which would still benefit from it), I've not done it
here. But if folks have benchmarks that slow down it should be straight
forward for them to add.
I've added a test case, but I'm not really confident of the amount of
testing done for different access patterns, strides, and pointer
manipulation.
llvm-svn: 189007
There are situations which can affect the correctness (or at least expectation)
of the gcov output. For instance, if a call to __gcov_flush() occurs within a
block before the execution count is registered and then the program aborts in
some way, then that block will not be marked as executed. This is not normally
what the user expects.
If we move the code that's registering when a block is executed to the
beginning, we can catch these types of situations.
PR16893
llvm-svn: 188849
Update iterator when the SLP vectorizer changes the instructions in the basic
block by restarting the traversal of the basic block.
Patch by Yi Jiang!
Fixes PR 16899.
llvm-svn: 188832
This adds a llvm.copysign intrinsic; We already have Libfunc recognition for
copysign (which is turned into the FCOPYSIGN SDAG node). In order to
autovectorize calls to copysign in the loop vectorizer, we need a corresponding
intrinsic as well.
In addition to the expected changes to the language reference, the loop
vectorizer, BasicTTI, and the SDAG builder (the intrinsic is transformed into
an FCOPYSIGN node, just like the function call), this also adds FCOPYSIGN to a
few lists in LegalizeVector{Ops,Types} so that vector copysigns can be
expanded.
In TargetLoweringBase::initActions, I've made the default action for FCOPYSIGN
be Expand for vector types. This seems correct for all in-tree targets, and I
think is the right thing to do because, previously, there was no way to generate
vector-values FCOPYSIGN nodes (and most targets don't specify an action for
vector-typed FCOPYSIGN).
llvm-svn: 188728
When both constants are positive or both constants are negative,
InstCombine already simplifies comparisons like this, but when
it's exactly zero and -1, the operand sorting ends up reversed
and the pattern fails to match. Handle that special case.
Follow up for rdar://14689217
llvm-svn: 188512
Summary:
When the -dfsan-debug-nonzero-labels parameter is supplied, the code
is instrumented such that when a call parameter, return value or load
produces a nonzero label, the function __dfsan_nonzero_label is called.
The idea is that a debugger breakpoint can be set on this function
in a nominally label-free program to help identify any bugs in the
instrumentation pass causing labels to be introduced.
Reviewers: eugenis
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1405
llvm-svn: 188472
This replaces the old incomplete greylist functionality with an ABI
list, which can provide more detailed information about the ABI and
semantics of specific functions. The pass treats every function in
the "uninstrumented" category in the ABI list file as conforming to
the "native" (i.e. unsanitized) ABI. Unless the ABI list contains
additional categories for those functions, a call to one of those
functions will produce a warning message, as the labelling behaviour
of the function is unknown. The other supported categories are
"functional", "discard" and "custom".
- "discard" -- This function does not write to (user-accessible) memory,
and its return value is unlabelled.
- "functional" -- This function does not write to (user-accessible)
memory, and the label of its return value is the union of the label of
its arguments.
- "custom" -- Instead of calling the function, a custom wrapper __dfsw_F
is called, where F is the name of the function. This function may wrap
the original function or provide its own implementation.
Differential Revision: http://llvm-reviews.chandlerc.com/D1345
llvm-svn: 188402
extremely subtle miscompilations (such as a load getting replaced with
the value stored *below* the load within a basic block) related to
promoting an alloca to an SSA value, there is the dim possibility that
you hit this. Please let me know if you won this unfortunate lottery.
The first half of mem2reg's core logic (as it is used both in the
standalone mem2reg pass and in SROA) builds up a mapping from
'Instruction *' to the index of that instruction within its basic block.
This allows quickly establishing which store dominate a particular load
even for large basic blocks. We cache this information throughout the
run of mem2reg over a function in order to amortize the cost of
computing it.
This is not in and of itself a strange pattern in LLVM. However, it
introduces a very important constraint: absolutely no instruction can be
deleted from the program without updating the mapping. Otherwise a newly
allocated instruction might get the same pointer address, and then end
up with a wrong index. Yes, LLVM routinely suffers from a *single
threaded* variant of the ABA problem. Most places in LLVM don't find
avoiding this an imposition because they don't both delete and create
new instructions iteratively, but mem2reg *loves* to do this... All the
time. Fortunately, the mem2reg code was really careful about updating
this cache to handle this eventuallity... except when it comes to the
debug declare intrinsic. Oops. The fix is to invalidate that pointer in
the cache when we delete it, the same as we do when deleting alloca
instructions and other instructions.
I've also caused the same bug in new code while working on a fix to
PR16867, so this seems to be a really unfortunate pattern. Hopefully in
subsequent patches the deletion of dead instructions can be consolidated
sufficiently to make it less likely that we'll see future occurences of
this bug.
Sorry for not having a test case, but I have literally no idea how to
reliably trigger this kind of thing. It may be single-threaded, but it
remains an ABA problem. It would require a really amazing number of
stars to align.
llvm-svn: 188367
Use the pointer size if datalayout is available.
Use i64 if it's not, which is consistent with what other
places do when the pointer size is unknown.
The test doesn't really test this in a useful way
since it will be transformed to that later anyway,
but this now tests it for non-zero arrays and when
datalayout isn't available. The cases in
visitGetElementPtrInst should save an extra re-visit to
the newly created GEP since it won't need to cleanup after
itself.
llvm-svn: 188339
When computing the use set of a store, we need to add the store to the write
set prior to iterating over later instructions. Otherwise, if there is a later
aliasing load of that store, that load will not be tagged as a use, and bad
things will happen.
trackUsesOfI still adds later dependent stores of an instruction to that
instruction's write set, but it never sees the original instruction, and so
when tracking uses of a store, the store must be added to the write set by the
caller.
Fixes PR16834.
llvm-svn: 188329
However, opt -O2 doesn't run mem2reg directly so nobody noticed until r188146
when SROA started sending more things directly down the PromoteMemToReg path.
In order to revert r187191, I also revert dependent revisions r187296, r187322
and r188146. Fixes PR16867. Does not add the testcases from that PR, but both
of them should get added for both mem2reg and sroa when this revert gets
unreverted.
llvm-svn: 188327
Do not generate new vector values for the same entries because we know that the incoming values
from the same block must be identical.
llvm-svn: 188185
Summary:
Doing work in constructors is bad: this change suggests to
call SpecialCaseList::create(Path, Error) instead of
"new SpecialCaseList(Path)". Currently the latter may crash with
report_fatal_error, which is undesirable - sometimes we want to report
the error to user gracefully - for example, if he provides an incorrect
file as an argument of Clang's -fsanitize-blacklist flag.
Reviewers: pcc
Reviewed By: pcc
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1327
llvm-svn: 188156
These functions used to assume that the lsb of an integer corresponds
to vector element 0, whereas for big-endian it's the other way around:
the msb is in the first element and the lsb is in the last element.
Fixes MultiSource/Benchmarks/mediabench/gsm/toast for z.
llvm-svn: 188155
SROA-based analysis has enough information. This should work now that
both mem2reg *and* the SSAUpdater-based AllocaPromoter have been updated
to be able to promote the types of allocas that the SROA analysis
detects.
I've included tests for the AllocaPromoter that were only possible to
write once we fast-tracked promotable allocas without rewriting them.
This includes a test both for r187347 and r188145.
Original commit log for r187323:
"""
Now that mem2reg understands how to cope with a slightly wider set of uses of
an alloca, we can pre-compute promotability while analyzing an alloca for
splitting in SROA. That lets us short-circuit the common case of a bunch of
trivially promotable allocas. This cuts 20% to 30% off the run time of SROA for
typical frontend-generated IR sequneces I'm seeing. It gets the new SROA to
within 20% of ScalarRepl for such code. My current benchmark for these numbers
is PR15412, but it fits the general pattern of IR emitted by Clang so it should
be widely applicable.
"""
llvm-svn: 188146
the more general set of patterns that are now handled by mem2reg and that we
can detect quickly while doing SROA's initial analysis. Notably, this allows it
to promote through no-op bitcast and GEP sequences. A core part of the
SSAUpdater approach is the ability to test whether a particular instruction is
part of the set being promoted. Testing this becomes significantly more complex
in the world where the operand to every load and store isn't the alloca itself.
I ended up using the approach of walking up the def-chain until we find the
alloca. I benchmarked this against keeping a set of pointer operands and
keeping a set of the loads and stores we care about, and this one seemed faster
although the difference was very small.
No test case yet because currently the rewriting always "fixes" the inputs to
not require this. The next patch which re-enables early promotion of easy cases
in SROA will include a test case that specifically exercises this aspect of the
alloca promoter.
llvm-svn: 188145
our visiting datastructures in the AllocaPromoter/SSAUpdater path of
SROA. Also shift the order if clears around to be more consistent.
No functionality changed here, this is just a cleanup.
llvm-svn: 188144
It is breaking builbots with libgmalloc enabled on Mac OS X.
$ cd llvm ; mkdir release ; cd release
$ ../configure --enable-optimized —prefix=$PWD/install
$ make
$ make check
$ Release+Asserts/bin/llvm-lit -v --param use_gmalloc=1 --param \
gmalloc_path=/usr/lib/libgmalloc.dylib \
../test/Instrumentation/DataFlowSanitizer/args-unreachable-bb.ll
llvm-svn: 188142
I fixed the aforementioned problems that came up on some of the linux boxes.
Major thanks to Nick Lewycky for his help debugging!
rdar://14590914
llvm-svn: 188122
This moves removeUnreachableBlocksFromFn from SimplifyCFGPass.cpp
to Utils/Local.cpp and uses it to replace the implementation of
llvm::removeUnreachableBlocks, which appears to do a strict subset
of what removeUnreachableBlocksFromFn does.
Differential Revision: http://llvm-reviews.chandlerc.com/D1334
llvm-svn: 188119
This reverts commit r187941.
The commit was passing on my os x box, but it is failing on some non-osx
platforms. I do not have time to look into it now, so I am reverting and will
recommit after I figure this out.
llvm-svn: 187946
All libm floating-point rounding functions, except for round(), had their own
ISD nodes. Recent PowerPC cores have an instruction for round(), and so here I'm
adding ISD::FROUND so that round() can be custom lowered as well.
For the most part, this is straightforward. I've added an intrinsic
and a matching ISD node just like those for nearbyint() and friends. The
SelectionDAG pattern I've named frnd (because ISD::FP_ROUND has already claimed
fround).
This will be used by the PowerPC backend in a follow-up commit.
llvm-svn: 187926
DataFlowSanitizer is a generalised dynamic data flow analysis.
Unlike other Sanitizer tools, this tool is not designed to detect a
specific class of bugs on its own. Instead, it provides a generic
dynamic data flow analysis framework to be used by clients to help
detect application-specific issues within their own code.
Differential Revision: http://llvm-reviews.chandlerc.com/D965
llvm-svn: 187923
The globals being generated here were given the 'private' linkage type. However,
this caused them to end up in different sections with the wrong prefix. E.g.,
they would be in the __TEXT,__const section with an 'L' prefix instead of an 'l'
(lowercase ell) prefix.
The problem is that the linker will eat a literal label with 'L'. If a weak
symbol is then placed into the __TEXT,__const section near that literal, then it
cannot distinguish between the literal and the weak symbol.
Part of the problems here was introduced because the address sanitizer converted
some C strings into constant initializers with trailing nuls. (Thus putting them
in the __const section with the wrong prefix.) The others were variables that
the address sanitizer created but simply had the wrong linkage type.
llvm-svn: 187827
Our internal regex implementation does not cope with large numbers
of anchors very efficiently. Given a ~3600-entry special case list,
regex compilation can take on the order of seconds. This patch solves
the problem for the special case of patterns matching literal global
names (i.e. patterns with no regex metacharacters). Rather than
forming regexes from literal global name patterns, add them to
a StringSet which is checked before matching against the regex.
This reduces regex compilation time by an order of roughly thousands
when reading the aforementioned special case list, according to a
completely unscientific study.
No test cases. I figure that any new tests for this code should
check that regex metacharacters are properly recognised. However,
I could not find any documentation which documents the fact that the
syntax of global names in special case lists is based on regexes.
The extent to which regex syntax is supported in special case lists
should probably be decided on/documented before writing tests.
Differential Revision: http://llvm-reviews.chandlerc.com/D1150
llvm-svn: 187732
It will now only convert the arguments / return value and call
the underlying function if the types are able to be bitcasted.
This avoids using fp<->int conversions that would occur before.
llvm-svn: 187444
infrastructure to do promotion without a domtree the same smarts about
looking through GEPs, bitcasts, etc., that I just taught mem2reg about.
This way, if SROA chooses to promote an alloca which still has some
noisy instructions this code can cope with them.
I've not used as principled of an approach here for two reasons:
1) This code doesn't really need it as we were already set up to zip
through the instructions used by the alloca.
2) I view the code here as more of a hack, and hopefully a temporary one.
The SSAUpdater path in SROA is a real sore point for me. It doesn't make
a lot of architectural sense for many reasons:
- We're likely to end up needing the domtree anyways in a subsequent
pass, so why not compute it earlier and use it.
- In the future we'll likely end up needing the domtree for parts of the
inliner itself.
- If we need to we could teach the inliner to preserve the domtree. Part
of the re-work of the pass manager will allow this to be very powerful
even in large SCCs with many functions.
- Ultimately, computing a domtree has gotten significantly faster since
the original SSAUpdater-using code went into ScalarRepl. We no longer
use domfrontiers, and much of domtree is lazily done based on queries
rather than eagerly.
- At this point keeping the SSAUpdater-based promotion saves a total of
0.7% on a build of the 'opt' tool for me. That's not a lot of
performance given the complexity!
So I'm leaving this a bit ugly in the hope that eventually we just
remove all of this nonsense.
I can't even readily test this because this code isn't reachable except
through SROA. When I re-instate the patch that fast-tracks allocas
already suitable for promotion, I'll add a testcase there that failed
before this change. Before that, SROA will fix any test case I give it.
llvm-svn: 187347
standards for LLVM. Remove duplicated comments on the interface from the
implementation file (implementation comments are left there of course).
Also clean up, re-word, and fix a few typos and errors in the commenst
spotted along the way.
This is in preparation for changes to these files and to keep the
uninteresting tidying in a separate commit.
llvm-svn: 187335
uses of an alloca, we can pre-compute promotability while analyzing an
alloca for splitting in SROA. That lets us short-circuit the common case
of a bunch of trivially promotable allocas. This cuts 20% to 30% off the
run time of SROA for typical frontend-generated IR sequneces I'm seeing.
It gets the new SROA to within 20% of ScalarRepl for such code. My
current benchmark for these numbers is PR15412, but it fits the general
pattern of IR emitted by Clang so it should be widely applicable.
llvm-svn: 187323
their being optimized out in debug mode. Realistically, this just isn't
going to be the slow part anyways. This also fixes unused variable
warnings that are breaking LLD build bots. =/ I didn't see these at
first, and kept losing track of the fact that they were broken.
llvm-svn: 187297
analysis of the alloca. We don't need to visit all the users twice for
this. We build up a kill list during the analysis and then just process
it afterward. This recovers the tiny bit of performance lost by moving
to the visitor based analysis system as it removes one entire use-list
walk from mem2reg. In some cases, this is now faster than mem2reg was
previously.
llvm-svn: 187296
Adds unit tests for it too.
Split BasicBlockUtils into an analysis-half and a transforms-half, and put the
analysis bits into a new Analysis/CFG.{h,cpp}. Promote isPotentiallyReachable
into llvm::isPotentiallyReachable and move it into Analysis/CFG.
llvm-svn: 187283
Merge consecutive if-regions if they contain identical statements.
Both transformations reduce number of branches. The transformation
is guarded by a target-hook, and is currently enabled only for +R600,
but the correctness has been tested on X86 target using a variety of
CPU benchmarks.
Patch by: Mei Ye
llvm-svn: 187278
robust. It now uses an InstVisitor and worklist to actually walk the
uses of the Alloca transitively and detect the pattern which we can
directly promote: loads & stores of the whole alloca and instructions we
can completely ignore.
Also, with this new implementation teach both the predicate for testing
whether we can promote and the promotion engine itself to use the same
code so we no longer have strange divergence between the two code paths.
I've added some silly test cases to demonstrate that we can handle
slightly more degenerate code patterns now. See the below for why this
is even interesting.
Performance impact: roughly 1% regression in the performance of SROA or
ScalarRepl on a large C++-ish test case where most of the allocas are
basically ready for promotion. The reason is because of silly redundant
work that I've left FIXMEs for and which I'll address in the next
commit. I wanted to separate this commit as it changes the behavior.
Once the redundant work in removing the dead uses of the alloca is
fixed, this code appears to be faster than the old version. =]
So why is this useful? Because the previous requirement for promotion
required a *specific* visit pattern of the uses of the alloca to verify:
we *had* to look for no more than 1 intervening use. The end goal is to
have SROA automatically detect when an alloca is already promotable and
directly hand it to the mem2reg machinery rather than trying to
partition and rewrite it. This is a 25% or more performance improvement
for SROA, and a significant chunk of the delta between it and
ScalarRepl. To get there, we need to make mem2reg actually capable of
promoting allocas which *look* promotable to SROA without have SROA do
tons of work to massage the code into just the right form.
This is actually the tip of the iceberg. There are tremendous potential
savings we can realize here by de-duplicating work between mem2reg and
SROA.
llvm-svn: 187191
This patch provides basic support for powerpc64le as an LLVM target.
However, use of this target will not actually generate little-endian
code. Instead, use of the target will cause the correct little-endian
built-in defines to be generated, so that code that tests for
__LITTLE_ENDIAN__, for example, will be correctly parsed for
syntax-only testing. Code generation will otherwise be the same as
powerpc64 (big-endian), for now.
The patch leaves open the possibility of creating a little-endian
PowerPC64 back end, but there is no immediate intent to create such a
thing.
The LLVM portions of this patch simply add ppc64le coverage everywhere
that ppc64 coverage currently exists. There is nothing of any import
worth testing until such time as little-endian code generation is
implemented. In the corresponding Clang patch, there is a new test
case variant to ensure that correct built-in defines for little-endian
code are generated.
llvm-svn: 187179
The language reference says that:
"If a symbol appears in the @llvm.used list, then the compiler,
assembler, and linker are required to treat the symbol as if there is
a reference to the symbol that it cannot see"
Since even the linker cannot see the reference, we must assume that
the reference can be using the symbol table. For example, a user can add
__attribute__((used)) to a debug helper function like dump and use it from
a debugger.
llvm-svn: 187103
schedule an alloca for another iteration in SROA. This only showed up
with a mixture of promotable and unpromotable selects and phis. Added
a test case for this.
llvm-svn: 187031
pending speculation for a phi node. The problem here is that we were
using growth of the specluation set as an indicator of whether
speculation would occur, and if the phi node is already in the set we
don't see it grow. This is a symptom of the fact that this signal is
a total hack.
Unfortunately, I couldn't really come up with a non-hacky way of
signaling that promotion remains valid *after* speculation occurs, such
that we only speculate when all else looks good for promotion. In the
end, I went with at least a much more explicit approach of doing the
work of queuing inside the phi and select processing and setting
a preposterously named flag to convey that we're in the special state of
requiring speculating before promotion.
Thanks to Richard Trieu and Nick Lewycky for the excellent work reducing
a testcase for this from a pretty giant, nasty assert in a big
application. =] The testcase was excellent.
llvm-svn: 187029
We don't have tests for the effect of if-conversion loops because it requires a big test (that includes if-converted loops) and it is difficult to find and balance a loop to do the right thing.
llvm-svn: 186845
helper function. This leaves both trivial cases handled entirely in
helper functions and merely manages the list of allocas to process in
the run method.
The next step will be to handle all of the trivial promotion work prior
to even creating the core class and the subsequent simplifications that
enables.
llvm-svn: 186784
a single block into the helper routine. This takes advantage of the fact
that we can directly replace uses prior to any store with undef to
simplify matters and unconditionally promote allocas only used within
one block.
I've removed the special handling for the case of no stores existing.
This has no semantic effect but might slow things down. I'll fix that in
a later patch when I refactor this entire thing to be easier to manage
the different cases.
llvm-svn: 186783
handles the general cases.
The hope is to refactor this so that we don't end up building the entire
class for the trivial cases. I also want to lift a lot of the early
pre-processing in the initial segment of run() into a separate routine,
and really none of it needs to happen inside the primary promotion
class.
These routines in particular used none of the actual state in the
promotion class, so they don't really make sense as members.
llvm-svn: 186781
This struct is nicely independent of everything else, and we already
needed a foward declaration here. It's simpler to just define it
immediately.
llvm-svn: 186780
GlobalOpt simplifies llvm.compiler.used by removing any members that are also
in the more strict llvm.used. Handle the special case where llvm.compiler.used
becomes empty.
llvm-svn: 186778
We were incorrectly using compiler_used instead of compiler.used. Unfortunately
the passes using the broken name had tests also using the broken name.
llvm-svn: 186705
implementation of the SROA algorithm. We were using the term 'partition'
in many places that no longer ever represented an actual partition, but
rather just an arbitrary slice of an alloca.
No functionality change intended here. Mostly just renaming of types,
functions, variables, and rewording of comments. Several comments were
rewritten to make a lot more sense in the new structure of things.
The stats are still weird and not reflective of how this really works.
I'll fix those up in a separate patch as it is a touch more semantic of
a change...
llvm-svn: 186659
SROA.
The crux of the issue is that now we track uses of a partition of the
alloca in two places: the iterators over the partitioning uses and the
previously collected split uses vector. We weren't accounting for the
fact that the split uses might invalidate integer widening in ways other
than due to their width (in this case due to being volatile).
Further reduced testcase added to the tests.
llvm-svn: 186655
end of a vector. This was found with ASan. I've had one other report of
a crasher, but thus far been unable to reproduce the crash. It may well
be fixed with this version, and if not I'd like to get more information
from the build bots about what is happening.
See r186316 for the full commit log for the new implementation of the
SROA algorithm.
llvm-svn: 186565
Duncan pointed out a mistake in my fix in r186425 when only one of the allocas
being compared had the target-default alignment. This is essentially his
suggested solution. Thanks!
llvm-svn: 186510
This check does not always work because not all of the GEPs use a constant offset, but it happens often enough to reduce the number of times we use SCEV.
llvm-svn: 186465
For safety, the inliner cannot decrease the allignment on an alloca when
merging it with another.
I've included two variants of the test case for this: one with DataLayout
available, and one without. When DataLayout is not available, if only one of
the allocas uses the default alignment (getAlignment() == 0), then they cannot
be safely merged.
llvm-svn: 186425
a bot.
This reverts the commit which introduced a new implementation of the
fancy SROA pass designed to reduce its overhead. I'll skip the huge
commit log here, refer to r186316 if you're looking for how this all
works and why it works that way.
llvm-svn: 186332
different core implementation strategy.
Previously, SROA would build a relatively elaborate partitioning of an
alloca, associate uses with each partition, and then rewrite the uses of
each partition in an attempt to break apart the alloca into chunks that
could be promoted. This was very wasteful in terms of memory and compile
time because regardless of how complex the alloca or how much we're able
to do in breaking it up, all of the datastructure work to analyze the
partitioning was done up front.
The new implementation attempts to form partitions of the alloca lazily
and on the fly, rewriting the uses that make up that partition as it
goes. This has a few significant effects:
1) Much simpler data structures are used throughout.
2) No more double walk of the recursive use graph of the alloca, only
walk it once.
3) No more complex algorithms for associating a particular use with
a particular partition.
4) PHI and Select speculation is simplified and happens lazily.
5) More precise information is available about a specific use of the
alloca, removing the need for some side datastructures.
Ultimately, I think this is a much better implementation. It removes
about 300 lines of code, but arguably removes more like 500 considering
that some code grew in the process of being factored apart and cleaned
up for this all to work.
I've re-used as much of the old implementation as possible, which
includes the lion's share of code in the form of the rewriting logic.
The interesting new logic centers around how the uses of a partition are
sorted, and split into actual partitions.
Each instruction using a pointer derived from the alloca gets
a 'Partition' entry. This name is totally wrong, but I'll do a rename in
a follow-up commit as there is already enough churn here. The entry
describes the offset range accessed and the nature of the access. Once
we have all of these entries we sort them in a very specific way:
increasing order of begin offset, followed by whether they are
splittable uses (memcpy, etc), followed by the end offset or whatever.
Sorting by splittability is important as it simplifies the collection of
uses into a partition.
Once we have these uses sorted, we walk from the beginning to the end
building up a range of uses that form a partition of the alloca.
Overlapping unsplittable uses are merged into a single partition while
splittable uses are broken apart and carried from one partition to the
next. A partition is also introduced to bridge splittable uses between
the unsplittable regions when necessary.
I've looked at the performance PRs fairly closely. PR15471 no longer
will even load (the module is invalid). Not sure what is up there.
PR15412 improves by between 5% and 10%, however it is nearly impossible
to know what is holding it up as SROA (the entire pass) takes less time
than reading the IR for that test case. The analysis takes the same time
as running mem2reg on the final allocas. I suspect (without much
evidence) that the new implementation will scale much better however,
and it is just the small nature of the test cases that makes the changes
small and noisy. Either way, it is still simpler and cleaner I think.
llvm-svn: 186316
If an outside loop user of the reduction value uses the header phi node we
cannot just reduce the vectorized phi value in the vector code epilog because
we would loose VF-1 reductions.
lp:
p = phi (0, lv)
lv = lv + 1
...
brcond , lp, outside
outside:
usr = add 0, p
(Say the loop iterates two times, the value of p coming out of the loop is one).
We cannot just transform this to:
vlp:
p = phi (<0,0>, lv)
lv = lv + <1,1>
..
brcond , lp, outside
outside:
p_reduced = p[0] + [1];
usr = add 0, p_reduced
(Because the original loop iterated two times the vectorized loop would iterate
one time, but p_reduced ends up being zero instead of one).
We would have to execute VF-1 iterations in the scalar remainder loop in such
cases. For now, just disable vectorization.
PR16522
llvm-svn: 186256
In general, one should always complete CFG modifications first, update
CFG-based analyses, like Dominatores and LoopInfo, then generate
instruction sequences.
LoopVectorizer was creating a new loop, calling SCEVExpander to
generate checks, then updating LoopInfo. I just changed the order.
llvm-svn: 186241
Address calculation for gather/scather in vectorized code can incur a
significant cost making vectorization unbeneficial. Add infrastructure to add
cost.
Tests and cost model for targets will be in follow-up commits.
radar://14351991
llvm-svn: 186187
against a constant."
This reverts commit r186107. It didn't handle wrapping arithmetic in the
loop correctly and thus caused the following C program to count from
0 to UINT64_MAX instead of from 0 to 255 as intended:
#include <stdio.h>
int main() {
unsigned char first = 0, last = 255;
do { printf("%d\n", first); } while (first++ != last);
}
Full test case and instructions to reproduce with just the -indvars pass
sent to the original review thread rather than to r186107's commit.
llvm-svn: 186152
Before we could vectorize PHINodes scanning successors was a good way of finding candidates. Now we can vectorize the phinodes which is simpler.
llvm-svn: 186139
Patch by Michele Scandale!
Adds a special handling of the case where, during the loop exit
condition rewriting, the exit value is a constant of bitwidth lower
than the type of the induction variable: instead of introducing a
trunc operation in order to match correctly the operand types, it
allows to convert the constant value to an equivalent constant,
depending on the initial value of the induction variable and the trip
count, in order have an equivalent comparison between the induction
variable and the new constant.
llvm-svn: 186107
We can vectorize them because in the case where we wrap in the address space the
unvectorized code would have had to access a pointer value of zero which is
undefined behavior in address space zero according to the LLVM IR semantics.
(Thank you Duncan, for pointing this out to me).
Fixes PR16592.
llvm-svn: 186088
predecessors of the two blocks it is attempting to merge supply the
same incoming values to any phi in the successor block. This change
allows merging in the case where there is one or more incoming values
that are undef. The undef values are rewritten to match the non-undef
value that flows from the other edge. Patch by Mark Lacey.
llvm-svn: 186069
Without the changes introduced into this patch, if TRE saw any allocas at all,
TRE would not perform TRE *or* mark callsites with the tail marker.
Because TRE runs after mem2reg, this inadequacy is not a death sentence. But
given a callsite A without escaping alloca argument, A may not be able to have
the tail marker placed on it due to a separate callsite B having a write-back
parameter passed in via an argument with the nocapture attribute.
Assume that B is the only other callsite besides A and B only has nocapture
escaping alloca arguments (*NOTE* B may have other arguments that are not passed
allocas). In this case not marking A with the tail marker is unnecessarily
conservative since:
1. By assumption A has no escaping alloca arguments itself so it can not
access the caller's stack via its arguments.
2. Since all of B's escaping alloca arguments are passed as parameters with
the nocapture attribute, we know that B does not stash said escaping
allocas in a manner that outlives B itself and thus could be accessed
indirectly by A.
With the changes introduced by this patch:
1. If we see any escaping allocas passed as a capturing argument, we do
nothing and bail early.
2. If we do not see any escaping allocas passed as captured arguments but we
do see escaping allocas passed as nocapture arguments:
i. We do not perform TRE to avoid PR962 since the code generator produces
significantly worse code for the dynamic allocas that would be created
by the TRE algorithm.
ii. If we do not return twice, mark call sites without escaping allocas
with the tail marker. *NOTE* This excludes functions with escaping
nocapture allocas.
3. If we do not see any escaping allocas at all (whether captured or not):
i. If we do not have usage of setjmp, mark all callsites with the tail
marker.
ii. If there are no dynamic/variable sized allocas in the function,
attempt to perform TRE on all callsites in the function.
Based off of a patch by Nick Lewycky.
rdar://14324281.
llvm-svn: 186057
A special case list can now specify categories for specific globals,
which can be used to instruct an instrumentation pass to treat certain
functions or global variables in a specific way, such as by omitting
certain aspects of instrumentation while keeping others, or informing
the instrumentation pass that a specific uninstrumentable function
has certain semantics, thus allowing the pass to instrument callers
according to those semantics.
For example, AddressSanitizer now uses the "init" category instead of
global-init prefixes for globals whose initializers should not be
instrumented, but which in all other respects should be instrumented.
The motivating use case is DataFlowSanitizer, which will have a
number of different categories for uninstrumentable functions, such
as "functional" which specifies that a function has pure functional
semantics, or "discard" which indicates that a function's return
value should not be labelled.
Differential Revision: http://llvm-reviews.chandlerc.com/D1092
llvm-svn: 185978
The following transforms are valid if -C is a power of 2:
(icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
(icmp ult (xor X, C), -C) -> (icmp uge X, C)
These are nice, they get rid of the xor.
llvm-svn: 185915
Commit 185883 fixes a bug in the IRBuilder that should fix the ASan bot. AssertingVH can help in exposing some RAUW problems.
Thanks Ben and Alexey!
llvm-svn: 185886
Back in r179493 we determined that two transforms collided with each
other. The fix back then was to reorder the transforms so that the
preferred transform would give it a try and then we would try the
secondary transform. However, it was noted that the best approach would
canonicalize one transform into the other, removing the collision and
allowing us to optimize IR given to us in that form.
llvm-svn: 185808
This is a complete re-write if the bottom-up vectorization class.
Before this commit we scanned the instruction tree 3 times. First in search of merge points for the trees. Second, for estimating the cost. And finally for vectorization.
There was a lot of code duplication and adding the DCE exposed bugs. The new design is simpler and DCE was a part of the design.
In this implementation we build the tree once. After that we estimate the cost by scanning the different entries in the constructed tree (in any order). The vectorization phase also works on the built tree.
llvm-svn: 185774
This is the first patch in a series of 3 patches which clean up how we create
runtime function declarations in the ARC optimizer when they do not exist
already in the IR.
Currently we have a bunch of duplicated code in ObjCARCOpts, ObjCARCContract
that does this. This patch refactors that code into a separate class called
ARCRuntimeEntryPoints which lazily creates the declarations for said
entrypoints.
The next two patches will consist of the work of refactoring
ObjCARCContract/ObjCARCOpts to use this new code.
llvm-svn: 185740
This transform was originally added in r185257 but later removed in
r185415. The original transform would create instructions speculatively
and then discard them if the speculation was proved incorrect. This has
been replaced with a scheme that splits the transform into two parts:
preflight and fold. While we preflight, we build up fold actions that
inform the folding stage on how to act.
llvm-svn: 185667
This allows us to create switches even if instcombine has munged two of the
incombing compares into one and some bit twiddling. This was motivated by enum
compares that are common in clang.
llvm-svn: 185632
This implies annotating it as nounwind and its arguments as nocapture. To be
conservative, we do not annotate the arguments with noalias since some platforms
do not have restrict on the declaration for gettimeofday.
llvm-svn: 185502
I'm reverting this commit because:
1. As discussed during review, it needs to be rewritten (to avoid creating and
then deleting instructions).
2. This is causing optimizer crashes. Specifically, I'm seeing things like
this:
While deleting: i1 %
Use still stuck around after Def is destroyed: <badref> = select i1 <badref>, i32 0, i32 1
opt: /src/llvm-trunk/lib/IR/Value.cpp:79: virtual llvm::Value::~Value(): Assertion `use_empty() && "Uses remain when a value is destroyed!"' failed.
I'd guess that these will go away once we're no longer creating/deleting
instructions here, but just in case, I'm adding a regression test.
Because the code is bring rewritten, I've just XFAIL'd the original regression test. Original commit message:
InstCombine: Be more agressive optimizing 'udiv' instrs with 'select' denoms
Real world code sometimes has the denominator of a 'udiv' be a
'select'. LLVM can handle such cases but only when the 'select'
operands are symmetric in structure (both select operands are a constant
power of two or a left shift, etc.). This falls apart if we are dealt a
'udiv' where the code is not symetric or if the select operands lead us
to more select instructions.
Instead, we should treat the LHS and each select operand as a distinct
divide operation and try to optimize them independently. If we can
to simplify each operation, then we can replace the 'udiv' with, say, a
'lshr' that has a new select with a bunch of new operands for the
select.
llvm-svn: 185415
Math functions are mark as readonly because they read the floating point
rounding mode. Because we don't vectorize loops that would contain function
calls that set the rounding mode it is safe to ignore this memory read.
llvm-svn: 185299
Changing the sign when comparing the base pointer would introduce all
sorts of unexpected things like:
%gep.i = getelementptr inbounds [1 x i8]* %a, i32 0, i32 0
%gep2.i = getelementptr inbounds [1 x i8]* %b, i32 0, i32 0
%cmp.i = icmp ult i8* %gep.i, %gep2.i
%cmp.i1 = icmp ult [1 x i8]* %a, %b
%cmp = icmp ne i1 %cmp.i, %cmp.i1
ret i1 %cmp
into:
%cmp.i = icmp slt [1 x i8]* %a, %b
%cmp.i1 = icmp ult [1 x i8]* %a, %b
%cmp = xor i1 %cmp.i, %cmp.i1
ret i1 %cmp
By preserving the original sign, we now get:
ret i1 false
This fixes PR16483.
llvm-svn: 185259
Real world code sometimes has the denominator of a 'udiv' be a
'select'. LLVM can handle such cases but only when the 'select'
operands are symmetric in structure (both select operands are a constant
power of two or a left shift, etc.). This falls apart if we are dealt a
'udiv' where the code is not symetric or if the select operands lead us
to more select instructions.
Instead, we should treat the LHS and each select operand as a distinct
divide operation and try to optimize them independently. If we can
to simplify each operation, then we can replace the 'udiv' with, say, a
'lshr' that has a new select with a bunch of new operands for the
select.
llvm-svn: 185257
We may, after other optimizations, find ourselves with IR that looks
like:
%shl = shl i32 1, %y
%cmp = icmp ult i32 %shl, 32
Instead, we should just compare the shift count:
%cmp = icmp ult i32 %y, 5
llvm-svn: 185242
To support this we have to insert 'extractelement' instructions to pick the right lane.
We had this functionality before but I removed it when we moved to the multi-block design because it was too complicated.
llvm-svn: 185230
In this code we keep track of pointers that we are allowed to read from, if they are accessed by non-predicated blocks.
We use this list to allow vectorization of conditional loads in predicated blocks because we know that these addresses don't segfault.
llvm-svn: 185214
- Build debug metadata for 'bare' Modules using DIBuilder
- DebugIR can be constructed to generate an IR file (to be seen by a debugger)
or not in cases where the user already has an IR file on disk.
llvm-svn: 185193
I used the class to safely reset the state of the builder's debug location. I
think I have caught all places where we need to set the debug location to a new
one. Therefore, we can replace the class by a function that just sets the debug
location.
llvm-svn: 185165
No functionality change.
It should suffice to check the type of a debug info metadata, instead of
calling Verify. For cases where we know the type of a DI metadata, use
assert.
Also update testing cases to make them conform to the format of DI classes.
llvm-svn: 185135
This reverts commit r185099.
Looks like both the ppc-64 and mips bots are still failing after I reverted this
change.
Since:
1. The mips bot always performs a clean build,
2. The ppc64-bot failed again after a clean build (I asked the ppc-64
maintainers to clean the bot which they did... Thanks Will!),
I think it is safe to assume that this change was not the cause of the failures
that said builders were seeing. Thus I am recomitting.
llvm-svn: 185111
This reverts commit r185095. This is causing a FileCheck failure on
the 3dnow intrinsics on at least the mips/ppc bots but not on the x86
bots.
Reverting while I figure out what is going on.
llvm-svn: 185099
The category which an APFloat belongs to should be dependent on the
actual value that the APFloat has, not be arbitrarily passed in by the
user. This will prevent inconsistency bugs where the category and the
actual value in APFloat differ.
I also fixed up all of the references to this constructor (which were
only in LLVM).
llvm-svn: 185095
When we store values for reversed induction stores we must not store the
reversed value in the vectorized value map. Another instruction might use this
value.
This fixes 3 test cases of PR16455.
llvm-svn: 185051
The Builtin attribute is an attribute that can be placed on function call site that signal that even though a function is declared as being a builtin,
rdar://problem/13727199
llvm-svn: 185049
debug statements to add a missing newline. Also canonicalize to '\n' instead of
"\n"; the latter calls a function with a loop the former does not.
llvm-svn: 184897
When a 1-element vector alloca is promoted, a store instruction can often be
rewritten without converting the value to a scalar and using an insertelement
instruction to stuff it into the new alloca. This patch just adds a check
to skip that conversion when it is unnecessary. This turns out to be really
important for some ARM Neon operations where <1 x i64> is used to get around
the fact that i64 is not a legal type.
llvm-svn: 184870
This should hopefully have fixed the stage2/stage3 miscompare on the dragonegg
testers.
"LoopVectorize: Use the dependence test utility class
We now no longer need alias analysis - the cases that alias analysis would
handle are now handled as accesses with a large dependence distance.
We can now vectorize loops with simple constant dependence distances.
for (i = 8; i < 256; ++i) {
a[i] = a[i+4] * a[i+8];
}
for (i = 8; i < 256; ++i) {
a[i] = a[i-4] * a[i-8];
}
We would be able to vectorize about 200 more loops (in many cases the cost model
instructs us no to) in the test suite now. Results on x86-64 are a wash.
I have seen one degradation in ammp. Interestingly, the function in which we
now vectorize a loop is never executed so we probably see some instruction
cache effects. There is a 2% improvement in h264ref. There is one or the other
TSCV loop kernel that speeds up.
radar://13681598"
llvm-svn: 184724
CGSCC pass manager. This should insulate the inlining decisions from the
vectorization decisions, however it may have both compile time and code
size problems so it is just an experimental option right now.
Adding this based on a discussion with Arnold and it seems at least
worth having this flag for us to both run some experiments to see if
this strategy is workable. It may solve some of the regressions seen
with the loop vectorizer.
llvm-svn: 184698
We now no longer need alias analysis - the cases that alias analysis would
handle are now handled as accesses with a large dependence distance.
We can now vectorize loops with simple constant dependence distances.
for (i = 8; i < 256; ++i) {
a[i] = a[i+4] * a[i+8];
}
for (i = 8; i < 256; ++i) {
a[i] = a[i-4] * a[i-8];
}
We would be able to vectorize about 200 more loops (in many cases the cost model
instructs us no to) in the test suite now. Results on x86-64 are a wash.
I have seen one degradation in ammp. Interestingly, the function in which we
now vectorize a loop is never executed so we probably see some instruction
cache effects. There is a 2% improvement in h264ref. There is one or the other
TSCV loop kernel that speeds up.
radar://13681598
llvm-svn: 184685
This class checks dependences by subtracting two Scalar Evolution access
functions allowing us to catch very simple linear dependences.
The checker assumes source order in determining whether vectorization is safe.
We currently don't reorder accesses.
Positive true dependencies need to be a multiple of VF otherwise we impede
store-load forwarding.
llvm-svn: 184684
Sets of dependent accesses are built by unioning sets based on underlying
objects. This class will be used by the upcoming dependence checker.
llvm-svn: 184683
Untill now we detected the vectorizable tree and evaluated the cost of the
entire tree. With this patch we can decide to trim-out branches of the tree
that are not profitable to vectorizer.
Also, increase the max depth from 6 to 12. In the worse possible case where all
of the code is made of diamond-shaped graph this can bring the cost to 2**10,
but diamonds are not very common.
llvm-svn: 184681
Rewrote the SLP-vectorization as a whole-function vectorization pass. It is now able to vectorize chains across multiple basic blocks.
It still does not vectorize PHIs, but this should be easy to do now that we scan the entire function.
I removed the support for extracting values from trees.
We are now able to vectorize more programs, but there are some serious regressions in many workloads (such as flops-6 and mandel-2).
llvm-svn: 184647
This is apart of a series of patches to encapsulate PtrState.RRI and
make PtrState.RRI a private field of PtrState.
*NOTE* This is actually the second commit in the patch stream. I should
have put this note on the first such commit r184528.
llvm-svn: 184532
This commit completely removes what is left of the simplify-libcalls
pass. All of the functionality has now been migrated to the instcombine
and functionattrs passes. The following C API functions are now NOPs:
1. LLVMAddSimplifyLibCallsPass
2. LLVMPassManagerBuilderSetDisableSimplifyLibCalls
llvm-svn: 184459
We collect gather sequences when we vectorize basic blocks. Gather sequences are excellent
hints for vectorization of other basic blocks.
llvm-svn: 184444
Prior to this change, the considered addressing modes may be invalid since the
maximum and minimum offsets were not taking into account.
This was causing an assertion failure.
The added test case exercices that behavior.
<rdar://problem/14199725> Assertion failed: (CurScaleCost >= 0 && "Legal
addressing mode has an illegal cost!")
llvm-svn: 184341
The type <3 x i8> is a common in graphics and we want to be able to vectorize it.
This changes accelerates bullet by 12% and 471_omnetpp by 5%.
llvm-svn: 184317
This pass was assuming that if hasAddressTaken() returns false for a
function, the function's only uses are call sites. That's not true
because there can be references by BlockAddresses too.
Fix the pass to handle this case. Fix
BlockAddress::replaceUsesOfWithOnConstant() to allow a function's type
to be changed by RAUW'ing the function with a bitcast of the recreated
function.
Patch by Mark Seaborn.
llvm-svn: 183933
Instead of a custom implementation of replaceAllUsesWith, we just call
replaceAllUsesWith and recreate llvm.used and llvm.compiler-used.
This change is particularity interesting because it makes llvm see
through what clang is doing with static used functions in extern "C"
contexts. With this change, running clang -O2 in
extern "C" {
__attribute__((used)) static void foo() {}
}
produces
@llvm.used = appending global [1 x i8*] [i8* bitcast (void ()* @foo to
i8*)], section "llvm.metadata"
define internal void @foo() #0 {
entry:
ret void
}
llvm-svn: 183756
r183584 tries to derive some info from the code *AFTER* a call and apply
these derived info to the code *BEFORE* the call, which is not always safe
as the call in question may never return, and in this case, the derived
info is invalid.
Thank Duncan for pointing out this potential bug.
rdar://14073661
llvm-svn: 183606
The MemCpyOpt pass is capable of optimizing:
callee(&S); copy N bytes from S to D.
into:
callee(&D);
subject to some legality constraints.
Assertion is triggered when the compiler tries to evalute "sizeof(typeof(D))",
while D is an opaque-typed, 'sret' formal argument of function being compiled.
i.e. the signature of the func being compiled is something like this:
T caller(...,%opaque* noalias nocapture sret %D, ...)
The fix is that when come across such situation, instead of calling some
utility functions to get the size of D's type (which will crash), we simply
assume D has at least N bytes as implified by the copy-instruction.
rdar://14073661
llvm-svn: 183584
IndVarSimplify is willing to move divide instructions outside of their
loop bodies if they are invariant of the loop. However, it may not be
safe to expand them if we do not know if they can trap.
Instead, check to see if it is not safe to expand the instruction and
skip the expansion.
This fixes PR16041.
Testcase by Rafael Ávila de Espíndola.
llvm-svn: 183239
The problem this time seems to be a thinko. We were assuming that in the CFG
A
| \
| B
| /
C
speculating the basic block B would cause only the phi value for the B->C edge
to be speculated. That is not true, the phi's are semantically in the edges, so
if the A->B->C path is taken, any code needed for A->C is not executed and we
have to consider it too when deciding to speculate B.
llvm-svn: 183226
PR16069 is an interesting case where an incoming value to a PHI is a
trap value while also being a 'ConstantExpr'.
We do not consider this case when performing the 'HoistThenElseCodeToIf'
optimization.
Instead, make our modifications more conservative if we detect that we
cannot transform the PHI to a select.
llvm-svn: 183152
index greater than the size of the vector is invalid. The shuffle may be
shrinking the size of the vector. Fixes a crash!
Also drop the maximum recursion depth of the safety check for this
optimization to five.
llvm-svn: 183080
Use ScalarEvolution's getBackedgeTakenCount API instead of getExitCount since
that is really what we want to know. Using the more specific getExitCount was
safe because we made sure that there is only one exiting block.
No functionality change.
llvm-svn: 183047
Account for the cost of scaling factor in Loop Strength Reduce when rating the
formulae. This uses a target hook.
The default implementation of the hook is: if the addressing mode is legal, the
scaling factor is free.
<rdar://problem/13806271>
llvm-svn: 183045
We check that instructions in the loop don't have outside users (except if
they are reduction values). Unfortunately, we skipped this check for
if-convertable PHIs.
Fixes PR16184.
llvm-svn: 183035
Namely, check if the target allows to fold more that one register in the
addressing mode and if yes, adjust the cost accordingly.
Prior to this commit, reg1 + scale * reg2 accesses were artificially preferred
to reg1 + reg2 accesses. Indeed, the cost model wrongly assumed that reg1 + reg2
needs a temporary register for the computation, whereas it was correctly
estimated for reg1 + scale * reg2.
<rdar://problem/13973908>
llvm-svn: 183021
Before this change, each module defined a weak_odr global __msan_track_origins
with a value of 1 if origin tracking is enabled, 0 if disabled. If there are
modules with different values, any of them may win. If 0 wins, and there is at
least one module with 1, the program will most likely crash.
With this change, __msan_track_origins is only emitted if origin tracking is
on. Then runtime library detects if there is at least one module with origin
tracking, and enables runtime support for it.
llvm-svn: 182997
- llvm.loop.parallel metadata has been renamed to llvm.loop to be more generic
by making the root of additional loop metadata.
- Loop::isAnnotatedParallel now looks for llvm.loop and associated
llvm.mem.parallel_loop_access
- document llvm.loop and update llvm.mem.parallel_loop_access
- add support for llvm.vectorizer.width and llvm.vectorizer.unroll
- document llvm.vectorizer.* metadata
- add utility class LoopVectorizerHints for getting/setting loop metadata
- use llvm.vectorizer.width=1 to indicate already vectorized instead of
already_vectorized
- update existing tests that used llvm.loop.parallel and
llvm.vectorizer.already_vectorized
Reviewed by: Nadav Rotem
llvm-svn: 182802
Extend LinkModules to pass a ValueMaterializer to RemapInstruction and friends to lazily create Functions for lazily linked globals. This is a big win when linking small modules with large (mostly unused) library modules.
llvm-svn: 182776
as the BinaryOperator, *not* in the block where the IRBuilder is currently
inserting into. Fixes a bug where scalarizePHI would create instructions
that would not dominate all uses.
llvm-svn: 182639
- move AsmWriter.h from public headers into lib
- marked all AssemblyWriter functions as non-virtual; no need to override them
- DebugIR now "plugs into" AssemblyWriter with an AssemblyAnnotationWriter helper
- exposed flags to control hiding of a) debug metadata b) debug intrinsic calls
C/R: Paul Redmond
llvm-svn: 182617
We are not working on a DAG and I ran into a number of problems when I enabled the vectorizations of 'diamond-trees' (trees that share leafs).
* Imroved the numbering API.
* Changed the placement of new instructions to the last root.
* Fixed a bug with external tree users with non-zero lane.
* Fixed a bug in the placement of in-tree users.
llvm-svn: 182508
The earlier change list introduced the following inst combines:
B * (uitofp i1 C) —> select C, B, 0
A * (1 - uitofp i1 C) —> select C, 0, A
select C, 0, B + select C, A, 0 —> select C, A, B
Together these 3 changes would simplify :
A * (1 - uitofp i1 C) + B * uitofp i1 C
down to :
select C, B, A
In practice we found that the first two substitutions can have a
negative effect on performance, because they reduce opportunities to
use FMA contractions; between the two options FMAs are often the
better choice. This change list amends the previous one to enable
just these inst combines:
select C, B, 0 + select C, 0, A —> select C, B, A
A * (1 - uitofp i1 C) + B * uitofp i1 C —> select C, B, A
llvm-svn: 182499
The Value pointers we store in the induction variable list can be RAUW'ed by a
call to SCEVExpander::expandCodeFor, use a TrackingVH instead. Do the same thing
in some other places where we store pointers that could potentially be RAUW'ed.
Fixes PR16073.
llvm-svn: 182485
Other passes, PPC counter-loop formation for example, also need to add loop
preheaders outside of the regular loop simplification pass. This makes
InsertPreheaderForLoop a global function so that it can be used by other
passes.
No functionality change intended.
llvm-svn: 182299
We only want to check this once, not for every conditional block in the loop.
No functionality change (except that we don't perform a check redudantly
anymore).
llvm-svn: 181942
InstCombine can be uncooperative to vectorization and sink loads into
conditional blocks. This prevents vectorization.
Undo this optimization if there are unconditional memory accesses to the same
addresses in the loop.
radar://13815763
llvm-svn: 181860
CXAAtExitFn was set outside a loop and before optimizations where functions
can be deleted. This patch will set CXAAtExitFn inside the loop and after
optimizations.
Seg fault when running LTO because of accesses to a deleted function.
rdar://problem/13838828
llvm-svn: 181838
We used to give up if we saw two integer inductions. After this patch, we base
further induction variables on the chosen one like we do in the reverse
induction and pointer induction case.
Fixes PR15720.
radar://13851975
llvm-svn: 181746
In the presense of a block being initialized, the frontend will emit the
objc_retain on the original pointer and the release on the pointer loaded from
the alloca. The optimizer will through the provenance analysis realize that the
two are related (albiet different), but since we only require KnownSafe in one
direction, will match the inner retain on the original pointer with the guard
release on the original pointer. This is fixed by ensuring that in the presense
of allocas we only unconditionally remove pointers if both our retain and our
release are KnownSafe (i.e. we are KnownSafe in both directions) since we must
deal with the possibility that the frontend will emit what (to the optimizer)
appears to be unbalanced retain/releases.
An example of the miscompile is:
%A = alloca
retain(%x)
retain(%x) <--- Inner Retain
store %x, %A
%y = load %A
... DO STUFF ...
release(%y)
call void @use(%x)
release(%x) <--- Guarding Release
getting optimized to:
%A = alloca
retain(%x)
store %x, %A
%y = load %A
... DO STUFF ...
release(%y)
call void @use(%x)
rdar://13750319
llvm-svn: 181743
This makes the statistics gathering completely independent of the actual
optimization occuring, preventing any sort of bleeding over from occuring.
Additionally, it simplifies a switch statement in the non-statistic gathering case.
llvm-svn: 181719
The external user does not have to be in lane #0. We have to save the lane for each scalar so that we know which vector lane to extract.
llvm-svn: 181674
There are two transforms in visitUrem that conflict with each other.
*) One, if a divisor is a power of two, subtracts one from the divisor
and turns it into a bitwise-and.
*) The other unwraps both operands if they are surrounded by zext
instructions.
Flipping the order allows the subtraction to go beneath the sign
extension.
llvm-svn: 181668
Use the widest induction type encountered for the cannonical induction variable.
We used to turn the following loop into an empty loop because we used i8 as
induction variable type and truncated 1024 to 0 as trip count.
int a[1024];
void fail() {
int reverse_induction = 1023;
unsigned char forward_induction = 0;
while ((reverse_induction) >= 0) {
forward_induction++;
a[reverse_induction] = forward_induction;
--reverse_induction;
}
}
radar://13862901
llvm-svn: 181667
The shift amount may be larger than the type leading to undefined behavior.
Limit the transform to constant shift amounts. While there update the bits to
clear in the result which may enable additional optimizations.
PR15959.
llvm-svn: 181604
iteration.
This on step toward non-iterative GVN. My local hack suggests that getting rid
of iteration will speedup GVN by 30%+ on a medium sized input (2k LOC, C++).
I cannot explain why not 2x or more at this moment.
llvm-svn: 181532
That's obviously wrong. Conservatively restrict it to the sign bit, which
matches the original intention of this analysis. Fixes PR15940.
llvm-svn: 181518
A computable loop exit count does not imply the presence of an induction
variable. Scalar evolution can return a value for an infinite loop.
Fixes PR15926.
llvm-svn: 181495
- requires existing debug information to be present
- fixes up file name and line number information in metadata
- emits a "<orig_filename>-debug.ll" succinct IR file (without !dbg metadata
or debug intrinsics) that can be read by a debugger
- initialize pass in opt tool to enable the "-debug-ir" flag
- lit tests to follow
llvm-svn: 181467
The two nested loops were confusing and also conservative in identifying
reduction variables. This patch replaces them by a worklist based approach.
llvm-svn: 181369
We were passing an i32 to ConstantInt::get where an i64 was needed and we must
also pass the sign if we pass negatives numbers. The start index passed to
getConsecutiveVector must also be signed.
Should fix PR15882.
llvm-svn: 181286
Test case by Michele Scandale!
Fixes PR10293: Load not hoisted out of loop with multiple exits.
There are few regressions with this patch, now tracked by
rdar:13817079, and a roughly equal number of improvements. The
regressions are almost certainly back luck because LoopRotate has very
little idea of whether rotation is profitable. Doing better requires a
more comprehensive solution.
This checkin is a quick fix that lacks generality (PR10293 has
a counter-example). But it trivially fixes the case in PR10293 without
interfering with other cases, and it does satify the criteria that
LoopRotate is a loop canonicalization pass that should avoid
heuristics and special cases.
I can think of two approaches that would probably be better in
the long run. Ultimately they may both make sense.
(1) LoopRotate should check that the current header would make a good
loop guard, and that the loop does not already has a sufficient
guard. The artifical SimplifiedLoopLatch check would be unnecessary,
and the design would be more general and canonical. Two difficulties:
- We need a strong guarantee that we won't endlessly rotate, so the
analysis would need to be precise in order to avoid the
SimplifiedLoopLatch precondition.
- Analysis like this are usually based on SCEV, which we don't want to
rely on.
(2) Rotate on-demand in late loop passes. This could even be done by
shoving the loop back on the queue after the optimization that needs
it. This could work well when we find LICM opportunities in
multi-branch loops. This requires some work, and it doesn't really
solve the problem of SCEV wanting a loop guard before the analysis.
llvm-svn: 181230
A * (1 - (uitofp i1 C)) -> select C, 0, A
B * (uitofp i1 C) -> select C, B, 0
select C, 0, A + select C, B, 0 -> select C, B, A
These come up in code that has been hand-optimized from a select to a linear blend,
on platforms where that may have mattered. We want to undo such changes
with the following transform:
A*(1 - uitofp i1 C) + B*(uitofp i1 C) -> select C, A, B
llvm-svn: 181216
We used to disable constant merging not only if a constant is llvm.used, but
also if an alias of a constant is llvm.used. This change fixes that.
llvm-svn: 181175
Add support for min/max reductions when "no-nans-float-math" is enabled. This
allows us to assume we have ordered floating point math and treat ordered and
unordered predicates equally.
radar://13723044
llvm-svn: 181144
This function consists of following steps:
1. Collect dependent memory accesses.
2. Analyze availability.
3. Perform fully redundancy elimination, or
4. Perform PRE, depending on the availability
Step 2, 3 and 4 are now moved to three helper routines.
llvm-svn: 181047
By supporting the vectorization of PHINodes with more than two incoming values we can increase the complexity of nested if statements.
We can now vectorize this loop:
int foo(int *A, int *B, int n) {
for (int i=0; i < n; i++) {
int x = 9;
if (A[i] > B[i]) {
if (A[i] > 19) {
x = 3;
} else if (B[i] < 4 ) {
x = 4;
} else {
x = 5;
}
}
A[i] = x;
}
}
llvm-svn: 181037
Actually it took me couple of hours trying to make sense of them and
only to find they are dead code. I guess the original author used
"allSingleSucc" to indicate if there are any critial edge emanating
from some blocks, and tried to perform code motion (actually speculation)
in the presence of these critical edges; but later on he/she changed mind
and decided to perform edge-splitting first.
llvm-svn: 180951
the things, and renames it to CBindingWrapping.h. I also moved
CBindingWrapping.h into Support/.
This new file just contains the macros for defining different wrap/unwrap
methods.
The calls to those macros, as well as any custom wrap/unwrap definitions
(like for array of Values for example), are put into corresponding C++
headers.
Doing this required some #include surgery, since some .cpp files relied
on the fact that including Wrap.h implicitly caused the inclusion of a
bunch of other things.
This also now means that the C++ headers will include their corresponding
C API headers; for example Value.h must include llvm-c/Core.h. I think
this is harmless, since the C API headers contain just external function
declarations and some C types, so I don't believe there should be any
nasty dependency issues here.
llvm-svn: 180881
This reverts commit r180802
There's ongoing discussion about whether this is the right place to make
this transformation. Reverting for now while we figure it out.
llvm-svn: 180834
Always fold a shuffle-of-shuffle into a single shuffle when there's only one
input vector in the first place. Continue to be more conservative when there's
multiple inputs.
rdar://13402653
PR15866
llvm-svn: 180802
This fixes the optimization introduced in r179748 and reverted in r179750.
While the optimization was sound, it did not properly respect differences in
bit-width.
llvm-svn: 180777
This resurrects r179957, but adds code that makes sure we don't touch
atomic/volatile stores:
This transformation will transform a conditional store with a preceeding
uncondtional store to the same location:
a[i] =
may-alias with a[i] load
if (cond)
a[i] = Y
into an unconditional store.
a[i] = X
may-alias with a[i] load
tmp = cond ? Y : X;
a[i] = tmp
We assume that on average the cost of a mispredicted branch is going to be
higher than the cost of a second store to the same location, and that the
secondary benefits of creating a bigger basic block for other optimizations to
work on outway the potential case where the branch would be correctly predicted
and the cost of the executing the second store would be noticably reflected in
performance.
hmmer's execution time improves by 30% on an imac12,2 on ref data sets. With
this change we are on par with gcc's performance (gcc also performs this
transformation). There was a 1.2 % performance improvement on a ARM swift chip.
Other tests in the test-suite+external seem to be mostly uninfluenced in my
experiments:
This optimization was triggered on 41 tests such that the executable was
different before/after the patch. Only 1 out of the 40 tests (dealII) was
reproducable below 100% (by about .4%). Given that hmmer benefits so much I
believe this to be a fair trade off.
llvm-svn: 180731
Turning retains into retainRV calls disrupts the data flow analysis in
ObjCARCOpts. Thus we move it as late as we can by moving it into
ObjCARCContract.
We leave in the conversion from retainRV -> retain in ObjCARCOpt since
it enables the dataflow analysis.
rdar://10813093
llvm-svn: 180698
When Reassociator optimize "(x | C1)" ^ "(X & C2)", it may swap the two
subexpressions, however, it forgot to swap cached constants (of C1 and C2)
accordingly.
rdar://13739160
llvm-svn: 180676
Since we can't guarantee that the original dbg.declare instrinsic
is removed by LowerDbgDeclare(), we need to make sure that we are
not inserting the same dbg.value intrinsic over and over.
This removes tons of redundant DIEs when compiling optimized code.
rdar://problem/13056109
llvm-svn: 180615
This reverts commit r180222.
I think this might tie in with a different problem which will require a
different approach potentially. I am reverting this in the case I need to go
down that second path.
My apologies for the noise. = /.
llvm-svn: 180590
Due to the semantics of ARC, we must be extremely conservative with autorelease
calls inserted by the frontend since ARC gaurantees that said object will be in
the autorelease pool after that point, an optimization invariant that the
optimizer must respect.
On the other hand, we are allowed significantly more flexibility with
autoreleaseRV instructions.
Often times though this flexibility is disrupted by early transformations which
transform objc_autoreleaseRV => objc_autorelease if said instruction is no
longer being used as part of an RV pair (generally due to inlining). Since we
can not tell the difference in between an autorelease put into place by the
frontend and one created through said ``strength reduction'' we can not perform
these optimizations.
The addition of this set gets around said issues by allowing us to differentiate
in between said two cases.
rdar://problem/13697741.
llvm-svn: 180222
This patch disables memory-instruction vectorization for types that need padding
bytes, e.g., x86_fp80 has 10 bytes store size with 6 bytes padding in darwin on
x86_64. Because the load/store vectorization is performed by the bit casting to
a packed vector, which has incompatible memory layout due to the lack of padding
bytes, the present vectorizer produces inconsistent result for memory
instructions of those types.
This patch checks an equality of the AllocSize of a scalar type and allocated
size for each vector element, to ensure that there is no padding bytes and the
array can be read/written using vector operations.
Patch by Daisuke Takahashi!
Fixes PR15758.
llvm-svn: 180196
debug location. This solves a problem where range of an inlined
subroutine is emitted wrongly.
Patch by Manman Ren.
Fixes rdar://problem/12415623
llvm-svn: 180140
even if erroneously annotated with the parallel loop metadata.
Fixes Bug 15794:
"Loop Vectorizer: Crashes with the use of llvm.loop.parallel metadata"
llvm-svn: 180081
This is an edge case that can happen if we modify a chain of multiple selects.
Update all operands in that case and remove the assert. PR15805.
llvm-svn: 179982
There is the temptation to make this tranform dependent on target information as
it is not going to be beneficial on all (sub)targets. Therefore, we should
probably do this in MI Early-Ifconversion.
This reverts commit r179957. Original commit message:
"SimplifyCFG: If convert single conditional stores
This transformation will transform a conditional store with a preceeding
uncondtional store to the same location:
a[i] =
may-alias with a[i] load
if (cond)
a[i] = Y
into an unconditional store.
a[i] = X
may-alias with a[i] load
tmp = cond ? Y : X;
a[i] = tmp
We assume that on average the cost of a mispredicted branch is going to be
higher than the cost of a second store to the same location, and that the
secondary benefits of creating a bigger basic block for other optimizations to
work on outway the potential case were the branch would be correctly predicted
and the cost of the executing the second store would be noticably reflected in
performance.
hmmer's execution time improves by 30% on an imac12,2 on ref data sets. With
this change we are on par with gcc's performance (gcc also performs this
transformation). There was a 1.2 % performance improvement on a ARM swift chip.
Other tests in the test-suite+external seem to be mostly uninfluenced in my
experiments:
This optimization was triggered on 41 tests such that the executable was
different before/after the patch. Only 1 out of the 40 tests (dealII) was
reproducable below 100% (by about .4%). Given that hmmer benefits so much I
believe this to be a fair trade off.
I am going to watch performance numbers across the builtbots and will revert
this if anything unexpected comes up."
llvm-svn: 179980
This will make it clearer when we are actually resetting a sequence's progress
vs just changing state. This is an important distinction because the former case
clears any pointers that we are tracking while the later does not.
llvm-svn: 179963
This transformation will transform a conditional store with a preceeding
uncondtional store to the same location:
a[i] =
may-alias with a[i] load
if (cond)
a[i] = Y
into an unconditional store.
a[i] = X
may-alias with a[i] load
tmp = cond ? Y : X;
a[i] = tmp
We assume that on average the cost of a mispredicted branch is going to be
higher than the cost of a second store to the same location, and that the
secondary benefits of creating a bigger basic block for other optimizations to
work on outway the potential case were the branch would be correctly predicted
and the cost of the executing the second store would be noticably reflected in
performance.
hmmer's execution time improves by 30% on an imac12,2 on ref data sets. With
this change we are on par with gcc's performance (gcc also performs this
transformation). There was a 1.2 % performance improvement on a ARM swift chip.
Other tests in the test-suite+external seem to be mostly uninfluenced in my
experiments:
This optimization was triggered on 41 tests such that the executable was
different before/after the patch. Only 1 out of the 40 tests (dealII) was
reproducable below 100% (by about .4%). Given that hmmer benefits so much I
believe this to be a fair trade off.
I am going to watch performance numbers across the builtbots and will revert
this if anything unexpected comes up.
llvm-svn: 179957
The logic that actually compares the types considers pointers and integers the
same if they are of the same size. This created a strange mismatch between hash
and reality and made the test case for this fail on some platforms (yay,
test cases).
llvm-svn: 179905
Also make some static function class functions to avoid having to mention the
class namespace for enums all the time.
No functionality change intended.
llvm-svn: 179886
A min/max operation is represented by a select(cmp(lt/le/gt/ge, X, Y), X, Y)
sequence in LLVM. If we see such a sequence we can treat it just as any other
commutative binary instruction and reduce it.
This appears to help bzip2 by about 1.5% on an imac12,2.
radar://12960601
llvm-svn: 179773
This occurs due to an alloca representing a separate ownership from the
original pointer. Thus consider the following pseudo-IR:
objc_retain(%a)
for (...) {
objc_retain(%a)
%block <- %a
F(%block)
objc_release(%block)
}
objc_release(%a)
From the perspective of the optimizer, the %block is a separate
provenance from the original %a. Thus the optimizer pairs up the inner
retain for %a and the outer release from %a, resulting in segfaults.
This is fixed by noting that the signature of a mismatch of
retain/releases inside the for loop is a Use/CanRelease top down with an
None bottom up (since bottom up the Retain-CanRelease-Use-Release
sequence is completed by the inner objc_retain, but top down due to the
differing provenance from the objc_release said sequence is not
completed). In said case in CheckForCFGHazards, we now clear the state
of %a implying that no pairing will occur.
Additionally a test case is included.
rdar://12969722
llvm-svn: 179747
If a switch instruction has a case for every possible value of its type,
with the same successor, SimplifyCFG would replace it with an icmp ult,
but the computation of the bound overflows in that case, which inverts
the test.
Patch by Jed Davis!
llvm-svn: 179587
Two return types are not equivalent if one is a pointer and the other is an
integral. This is because we cannot bitcast a pointer to an integral value.
PR15185
llvm-svn: 179569
One performs: (X == 13 | X == 14) -> X-13 <u 2
The other: (A == C1 || A == C2) -> (A & ~(C1 ^ C2)) == C1
The problem is that there are certain values of C1 and C2 that
trigger both transforms but the first one blocks out the second,
this generates suboptimal code.
Reordering the transforms should be better in every case and
allows us to do interesting stuff like turn:
%shr = lshr i32 %X, 4
%and = and i32 %shr, 15
%add = add i32 %and, -14
%tobool = icmp ne i32 %add, 0
into:
%and = and i32 %X, 240
%tobool = icmp ne i32 %and, 224
llvm-svn: 179493
This is basically the same fix in three different places. We use a set to avoid
walking the whole tree of a big ConstantExprs multiple times.
For example: (select cmp, (add big_expr 1), (add big_expr 2))
We don't want to visit big_expr twice here, it may consist of thousands of
nodes.
The testcase exercises this by creating an insanely large ConstantExprs out of
a loop. It's questionable if the optimizer should ever create those, but this
can be triggered with real C code. Fixes PR15714.
llvm-svn: 179458
When trying to collapse sequences of insertelement/extractelement
instructions into single shuffle instructions, there is one specific
case where the Instruction Combiner wrongly updates the resulting
Mask of shuffle indexes.
The problem is in function CollectShuffleElments.
If we have a sequence of insert/extract element instructions
like the one below:
%tmp1 = extractelement <4 x float> %LHS, i32 0
%tmp2 = insertelement <4 x float> %RHS, float %tmp1, i32 1
%tmp3 = extractelement <4 x float> %RHS, i32 2
%tmp4 = insertelement <4 x float> %tmp2, float %tmp3, i32 3
Where:
. %RHS will have a mask of [4,5,6,7]
. %LHS will have a mask of [0,1,2,3]
The Mask of shuffle indexes is wrongly computed to [4,1,6,7]
instead of [4,0,6,7].
When analyzing %tmp2 in order to compute the Mask for the
resulting shuffle instruction, the algorithm forgets to update
the mask index at position 1 with the index associated to the
element extracted from %LHS by instruction %tmp1.
Patch by Andrea DiBiagio!
llvm-svn: 179291
This commit adds the infrastructure for performing bottom-up SLP vectorization (and other optimizations) on parallel computations.
The infrastructure has three potential users:
1. The loop vectorizer needs to be able to vectorize AOS data structures such as (sum += A[i] + A[i+1]).
2. The BB-vectorizer needs this infrastructure for bottom-up SLP vectorization, because bottom-up vectorization is faster to compute.
3. A loop-roller needs to be able to analyze consecutive chains and roll them into a loop, in order to reduce code size. A loop roller does not need to create vector instructions, and this infrastructure separates the chain analysis from the vectorization.
This patch also includes a simple (100 LOC) bottom up SLP vectorizer that uses the infrastructure, and can vectorize this code:
void SAXPY(int *x, int *y, int a, int i) {
x[i] = a * x[i] + y[i];
x[i+1] = a * x[i+1] + y[i+1];
x[i+2] = a * x[i+2] + y[i+2];
x[i+3] = a * x[i+3] + y[i+3];
}
llvm-svn: 179117
I brazenly think this change is slightly simpler than r178793 because:
- no "state" in functor
- "OpndPtrs[i]" looks simpler than "&Opnds[OpndIndices[i]]"
While I can reproduce the probelm in Valgrind, it is rather difficult to come up
a standalone testing case. The reason is that when an iterator is invalidated,
the stale invalidated elements are not yet clobbered by nonsense data, so the
optimizer can still proceed successfully.
Thank Benjamin for fixing this bug and generously providing the test case.
llvm-svn: 179062
The fix for PR14972 in r177055 introduced a real think-o in the *store*
side, likely because I was much more focused on the load side. While we
can arbitrarily widen (or narrow) a loaded value, we can't arbitrarily
widen a value to be stored, as that changes the width of memory access!
Lock down the code path in the store rewriting which would do this to
only handle the intended circumstance.
All of the existing tests continue to pass, and I've added a test from
the PR.
llvm-svn: 178974
The normal dataflow sequence in the ARC optimizer consists of the following
states:
Retain -> CanRelease -> Use -> Release
The optimizer before this patch stored the uses that determine the lifetime of
the retainable object pointer when it bottom up hits a retain or when top down
it hits a release. This is correct for an imprecise lifetime scenario since what
we are trying to do is remove retains/releases while making sure that no
``CanRelease'' (which is usually a call) deallocates the given pointer before we
get to the ``Use'' (since that would cause a segfault).
If we are considering the precise lifetime scenario though, this is not
correct. In such a situation, we *DO* care about the previous sequence, but
additionally, we wish to track the uses resulting from the following incomplete
sequences:
Retain -> CanRelease -> Release (TopDown)
Retain <- Use <- Release (BottomUp)
*NOTE* This patch looks large but the most of it consists of updating
test cases. Additionally this fix exposed an additional bug. I removed
the test case that expressed said bug and will recommit it with the fix
in a little bit.
llvm-svn: 178921
This optimization is unstable at this moment; it
1) block us on a very important application
2) PR15200
3) test6 and test7 in test/Transforms/ScalarRepl/dynamic-vector-gep.ll
(the CHECK command compare the output against wrong result)
I personally believe this optimization should not have any impact on the
autovectorized code, as auto-vectorizer is supposed to put gather/scatter
in a "right" way. Although in theory downstream optimizaters might reveal
some gather/scatter optimization opportunities, the chance is quite slim.
For the hand-crafted vectorizing code, in term of redundancy elimination,
load-CSE, copy-propagation and DSE can collectively achieve the same result,
but in much simpler way. On the other hand, these optimizers are able to
improve the code in a incremental way; in contrast, SROA is sort of all-or-none
approach. However, SROA might slighly win in stack size, as it tries to figure
out a stretch of memory tightenly cover the area accessed by the dynamic index.
rdar://13174884
PR15200
llvm-svn: 178912
Pass down the fact that an operand is going to be a vector of constants.
This should bring the performance of MultiSource/Benchmarks/PAQ8p/paq8p on x86
back. It had degraded to scalar performance due to my pervious shift cost change
that made all shifts expensive on x86.
radar://13576547
llvm-svn: 178809
OpndPtrs stored pointers into the Opnd vector that became invalid when the
vector grows. Store indices instead. Sadly I only have a large testcase that
only triggers under valgrind, so I didn't include it.
llvm-svn: 178793
Cleaned up trailing whitespace and added extra slashes in front of a
function level comment so that it follow the convention of having 3
slashes.
llvm-svn: 178712
The semantics of ARC implies that a pointer passed into an objc_autorelease
must live until some point (potentially down the stack) where an
autorelease pool is popped. On the other hand, an
objc_autoreleaseReturnValue just signifies that the object must live
until the end of the given function at least.
Thus objc_autorelease is stronger than objc_autoreleaseReturnValue in
terms of the semantics of ARC* implying that performing the given
strength reduction without any knowledge of how this relates to
the autorelease pool pop that is further up the stack violates the
semantics of ARC.
*Even though objc_autoreleaseReturnValue if you know that no RV
optimization will occur is more computationally expensive.
llvm-svn: 178612
The iterator could be invalidated when it's recursively deleting a whole bunch
of constant expressions in a constant initializer.
Note: This was only reproducible if `opt' was run on a `.bc' file. If `opt' was
run on a `.ll' file, it wouldn't crash. This is why the test first pushes the
`.ll' file through `llvm-as' before feeding it to `opt'.
PR15440
llvm-svn: 178531
clang.arc.used is an interesting call for ARC since ObjCARCContract
needs to run to remove said intrinsic to avoid a linker error (since the
call does not exist).
llvm-svn: 178369
Since we handle optimizable objc_retainBlocks through strength reduction
in OptimizableIndividualCalls, we know that all code after that point
will only see non-optimizable objc_retainBlock calls. IsForwarding is
only called by functions after that point, so it is ok to just classify
objc_retainBlock as non-forwarding.
<rdar://problem/13249661>.
llvm-svn: 178285
If an objc_retainBlock has the copy_on_escape metadata attached to it
AND if the block pointer argument only escapes down the stack, we are
allowed to strength reduce the objc_retainBlock to to an objc_retain and
thus optimize it.
Current there is logic in the ARC data flow analysis to handle
this case which is complicated and involved making distinctions in
between objc_retainBlock and objc_retain in certain places and
considering them the same in others.
This patch simplifies said code by:
1. Performing the strength reduction in the initial ARC peephole
analysis (ObjCARCOpts::OptimizeIndividualCalls).
2. Changes the ARC dataflow analysis (which runs after the peephole
analysis) to consider all objc_retainBlock calls to not be optimizable
(since if the call was optimizable, we would have strength reduced it
already).
This patch leaves in the infrastructure in the ARC dataflow analysis to
handle this case, which due to 2 will just be dead code. I am doing this
on purpose to separate the removal of the old code from the testing of
the new code.
<rdar://problem/13249661>.
llvm-svn: 178284
If we compile a single source program, the `.gcda' file will be generated where
the program was executed. This isn't desirable, because that place may be at an
unpredictable place (the program could call `chdir' for instance).
Instead, we will output the `.gcda' file in the same place we output the `.gcno'
file. I.e., the directory where the executable was generated. This matches GCC's
behavior.
<rdar://problem/13061072> & PR11809
llvm-svn: 178084
The OptimizeIntToFloatBitCast converts shift-truncate sequences
into extractelement operations. The computation of the element
index to be used in the resulting operation is currently only
correct for little-endian targets.
This commit fixes the element index computation to be correct
for big-endian targets as well. If the target byte order is
unknown, the optimization cannot be performed at all.
llvm-svn: 178031
This will allow for verification and analysis of the merge function of
the data flow analyses in the ARC optimizer.
The actual implementation of this feature is by introducing calls to
the functions llvm.arc.annotation.{bottomup,topdown}.{bbstart,bbend}
which are only declared. Each such call takes in a pointer to a global
with the same name as the pointer whose provenance is being tracked and
a pointer whose name is one of our Sequence states and points to a
string that contains the same name.
To ensure that the optimizer does not consider these annotations in any
way, I made it so that the annotations are considered to be of IC_None
type.
A test case is included for this commit and the previous
ObjCARCAnnotation commit.
llvm-svn: 177952
Previously the inner works of the data flow analysis in ObjCARCOpts was hard to
get out of the optimizer for analysis of bugs or testing. All of the current ARC
unit tests are based off of testing the effect of the data flow
analysis (i.e. what statements are removed or moved, etc.). This creates
weakness in the current unit testing regimem since we are not actually testing
what effects various instructions have on the modeled pointer state.
Additionally in order to analyze a bug in the optimizer, one would need to track
by hand what the optimizer was actually doing either through use of DEBUG
statements or through the usage of a debugger, both yielding large loses in
developer productivity.
This patch deals with these two issues by providing ARC annotation
metadata that annotates instructions with the state changes that they cause in
various pointers as well as provides metadata to annotate provenance sources.
Specifically, we introduce the following metadata types:
1. llvm.arc.annotation.bottomup.
2. llvm.arc.annotation.topdown.
3. llvm.arc.annotation.provenancesource.
llvm.arc.annotation.{bottomup,topdown}: These annotations describes a state
change in a pointer when we are visiting instructions bottomup/topdown
respectively. The output format for both is the same:
!1 = metadata !{metadata !"(test,%x)", metadata !"S_Release", metadata !"S_Use"}
The first element is a string tuple with the following format:
(function,variable name)
The second two elements of the metadata show the previous state of the
pointer (in this case S_Release) and the new state of the pointer (S_Use). We
write the metadata in such a manner to ensure that it is easy for outside tools
to parse. This is important since I am currently working on a tool for taking
this information and pretty printing it besides the IR and that can be used for
LIT style testing via the generation of an index.
llvm.arc.annotation.provenancesource: This metadata is used to annotate
instructions which act as provenance sources, i.e. ones that introduce a
new (from the optimizer's perspective) non-argument pointer to track. This
enables cross-referencing in between provenance sources and the state changes
that occur to them.
This is still a work in progress. Additionally I plan on committing
later today additions to the annotations that annotate at the top/bottom
of basic blocks the state of the various pointers being tracked.
*NOTE* The metadata support is conditionally compiled into libObjCARCOpts only
when we are producing a debug build of llvm/clang and even so are
disabled by default. To enable the annotation metadata, pass in
-enable-objc-arc-annotations to opt.
llvm-svn: 177951
The problem is that the code mistakenly took for granted that following constructor
is able to create an APFloat from a *SIGNED* integer:
APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value)
rdar://13486998
llvm-svn: 177906
This simplification happens at 2 places :
- using the nsw attribute when the shl / mul is used by a sign test
- when the shl / mul is compared for (in)equality to zero
llvm-svn: 177856
Before: the function name was stored by the compiler as a constant string
and the run-time was printing it.
Now: the PC is stored instead and the run-time prints the full symbolized frame.
This adds a couple of instructions into every function with non-empty stack frame,
but also reduces the binary size because we store less strings (I saw 2% size reduction).
This change bumps the asan ABI version to v3.
llvm part.
Example of report (now):
==31711==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7fffa77cf1c5 at pc 0x41feb0 bp 0x7fffa77cefb0 sp 0x7fffa77cefa8
READ of size 1 at 0x7fffa77cf1c5 thread T0
#0 0x41feaf in Frame0(int, char*, char*, char*) stack-oob-frames.cc:20
#1 0x41f7ff in Frame1(int, char*, char*) stack-oob-frames.cc:24
#2 0x41f477 in Frame2(int, char*) stack-oob-frames.cc:28
#3 0x41f194 in Frame3(int) stack-oob-frames.cc:32
#4 0x41eee0 in main stack-oob-frames.cc:38
#5 0x7f0c5566f76c (/lib/x86_64-linux-gnu/libc.so.6+0x2176c)
#6 0x41eb1c (/usr/local/google/kcc/llvm_cmake/a.out+0x41eb1c)
Address 0x7fffa77cf1c5 is located in stack of thread T0 at offset 293 in frame
#0 0x41f87f in Frame0(int, char*, char*, char*) stack-oob-frames.cc:12 <<<<<<<<<<<<<< this is new
This frame has 6 object(s):
[32, 36) 'frame.addr'
[96, 104) 'a.addr'
[160, 168) 'b.addr'
[224, 232) 'c.addr'
[288, 292) 's'
[352, 360) 'd'
llvm-svn: 177724
The original code used i32, and i64 if legal. This introduced unneeded
casts when they aren't legal, or when the index variable i has another
type. In order of preference: try to use i's type; use the smallest
fitting legal type (using an added DataLayout method); default to i32.
A testcase checks that this works when the index gep operand is i16.
Patch by : Ahmed Bougacha <ahmed.bougacha@gmail.com>
Reviewed by : Duncan
llvm-svn: 177712
How did this ever work?
Basically, if you have a function that's inlined into the caller, it may not
have any 'call' instructions, but any 'resume' instructions it may have should
still be forwarded to the outer (caller's) landing pad. This requires that all
of the 'landingpad' instructions in the callee have their clauses merged with
the caller's outer 'landingpad' instruction (hence the bit of ugly code in the
`forwardResume' method).
Testcase in a follow commit to the test-suite repository.
<rdar://problem/13360379> & PR15555
llvm-svn: 177680
The key part of this is ensuring that name prefixes remain in a Twine
form until we get to a point where we can nuke them under NDEBUG. This
is tricky using the old APIs as they played fast and loose with Twine,
which is prone to serious error. The inserter is much cleaner as it is
actually in the call stack leading to the setName call, and so has
a good opportunity to prepend the prefix.
This matters more than you might imagine because most runs over an
alloca find a single partition, and rewrite 3 or 4 instructions
referring to it. As a consequence doing this lazily and exclusively with
Twine allows the optimizer to delete more of it and shaves another 2% to
3% off of the release build's SROA run time for PR15412. I also think
the APIs are cleaner, and the use of Twine is more reliable, so
I consider it a win-win despite the churn required to reach this state.
llvm-svn: 177631
The simplify-libcalls pass implemented a doInitialization hook to infer
function prototype attributes for well-known functions. Given that the
simplify-libcalls pass is going away *and* that the functionattrs pass
is already in place to deduce function attributes, I am moving this logic
to the functionattrs pass. This approach was discussed during patch
review:
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20121126/157465.html.
llvm-svn: 177619
Use the new `llvm_gcov_init' function to register the writeout and flush
functions. The initialization function will also call `atexit' for some cleanups
and final writout calls. But it does this only once. This is better than
checking for the `main' function, because in a library that function may not
exist.
<rdar://problem/12439551>
llvm-svn: 177579
This is espcially important because the new SROA pass goes to great
lengths to provide helpful names for debugging, and as a consequence
they can become very slow to render.
Good for between 5% and 15% of the SROA runtime on some slow test cases
such as the one in PR15412.
llvm-svn: 177495
We don't want to write out >1000 files at the same time. That could make things
prohibitively expensive. Instead, register the "writeout" function so that it's
emitted serially.
<rdar://problem/12439551>
llvm-svn: 177437
- it is trivially known to be used inside the loop in a way that can not be optimized away
- there is no use outside of the loop which can take advantage of the computation hoisting
llvm-svn: 177432
For each compile unit, we want to register a function that will flush that
compile unit. Otherwise, __gcov_flush() would only flush the counters within the
current compile unit, and not any outside of it.
PR15191 & <rdar://problem/13167507>
llvm-svn: 177340
Rules include:
1)1 x*y +/- x*z => x*(y +/- z)
(the order of operands dosen't matter)
2) y/x +/- z/x => (y +/- z)/x
The transformation is disabled if the new add/sub expr "y +/- z" is a
denormal/naz/inifinity.
rdar://12911472
llvm-svn: 177088
The fundamental problem is that SROA didn't allow for overly wide loads
where the bits past the end of the alloca were masked away and the load
was sufficiently aligned to ensure there is no risk of page fault, or
other trapping behavior. With such widened loads, SROA would delete the
load entirely rather than clamping it to the size of the alloca in order
to allow mem2reg to fire. This was exposed by a test case that neatly
arranged for GVN to run first, widening certain loads, followed by an
inline step, and then SROA which miscompiles the code. However, I see no
reason why this hasn't been plaguing us in other contexts. It seems
deeply broken.
Diagnosing all of the above took all of 10 minutes of debugging. The
really annoying aspect is that fixing this completely breaks the pass.
;] There was an implicit reliance on the fact that no loads or stores
extended past the alloca once we decided to rewrite them in the final
stage of SROA. This was used to encode information about whether the
loads and stores had been split across multiple partitions of the
original alloca. That required threading explicit tracking of whether
a *use* of a partition is split across multiple partitions.
Once that was done, another problem arose: we allowed splitting of
integer loads and stores iff they were loads and stores to the entire
alloca. This is a really arbitrary limitation, and splitting at least
some integer loads and stores is crucial to maximize promotion
opportunities. My first attempt was to start removing the restriction
entirely, but currently that does Very Bad Things by causing *many*
common alloca patterns to be fully decomposed into i8 operations and
lots of or-ing together to produce larger integers on demand. The code
bloat is terrifying. That is still the right end-goal, but substantial
work must be done to either merge partitions or ensure that small i8
values are eagerly merged in some other pass. Sadly, figuring all this
out took essentially all the time and effort here.
So the end result is that we allow splitting only when the load or store
at least covers the alloca. That ensures widened loads and stores don't
hurt SROA, and that we don't rampantly decompose operations more than we
have previously.
All of this was already fairly well tested, and so I've just updated the
tests to cover the wide load behavior. I can add a test that crafts the
pass ordering magic which caused the original PR, but that seems really
brittle and to provide little benefit. The fundamental problem is that
widened loads should Just Work.
llvm-svn: 177055
constructs default arguments. It can now take default arguments from
cl::opt'ions. Add a new -default-gcov-version=... option, and actually test it!
Sink the reverse-order of the version into GCOVProfiling, hiding it from our
users.
llvm-svn: 177002
emitProfileNotes(), similar to emitProfileArcs(). Also update its comment.
Also add a comment on Version[4] (there will be another comment in clang later),
and compress lines that exceeded 80 columns.
llvm-svn: 176994
Nadav reported a performance regression due to the work I did to
merge the library call simplifier into instcombine [1]. The issue
is that a new LibCallSimplifier object is being created whenever
InstCombiner::runOnFunction is called. Every time a LibCallSimplifier
object is used to optimize a call it creates a hash table to map from
a function name to an object that optimizes functions of that name.
For short-lived LibCallSimplifier instances this is quite inefficient.
Especially for cases where no calls are actually simplified.
This patch fixes the issue by dropping the hash table and implementing
an explicit lookup function to correlate the function name to the object
that optimizes functions of that name. This avoids the cost of always
building and destroying the hash table in cases where the LibCallSimplifier
object is short-lived and avoids the cost of building the table when no
simplifications are actually preformed.
On a benchmark containing 100,000 calls where none of them are simplified
I noticed a 30% speedup. On a benchmark containing 100,000 calls where
all of them are simplified I noticed an 8% speedup.
[1] http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20130304/167639.html
llvm-svn: 176840
We want vectorization to happen at -g. Ignore calls to the dbg.value intrinsic
and don't transfer them to the vectorized code.
radar://13378964
llvm-svn: 176768
it. Fortunately, versions of gcov that predate the extra checksum also ignore
any extra data, so this isn't a problem. There will be a matching commit in
compiler-rt.
llvm-svn: 176745
into the actual gcov file.
Instead of using the bottom 4 bytes as the function identifier, use a counter.
This makes the identifier numbers stable across multiple runs.
llvm-svn: 176616
Fixes rdar:13349374.
Volatile loads and stores need to be preserved even if the language
standard says they are undefined. "volatile" in this context means "get
out of the way compiler, let my platform handle it".
Additionally, this is the only way I know of with llvm to write to the
first page (when hardware allows) without dropping to assembly.
llvm-svn: 176599
When considering folding a bitcast of an alloca into the alloca itself,
make sure we don't shrink the amount of memory being allocated, or
things rapidly go sideways.
rdar://13324424
llvm-svn: 176547
* Only apply divide bypass optimization when not optimizing for size.
* Fixed bug caused by constant for 0 value of type Int32,
used dividend type to generate the constant instead.
* For atom x86-64 apply the divide bypass to use 16-bit divides instead of
64-bit divides when operand values are small enough.
* Added lit tests for 64-bit divide bypass.
Patch by Tyler Nowicki!
llvm-svn: 176442
The LoopVectorizer often runs multiple times on the same function due to inlining.
When this happens the loop vectorizer often vectorizes the same loops multiple times, increasing code size and adding unneeded branches.
With this patch, the vectorizer during vectorization puts metadata on scalar loops and marks them as 'already vectorized' so that it knows to ignore them when it sees them a second time.
PR14448.
llvm-svn: 176399
The instcombine recognized pattern looks like:
a = b * c
d = a +/- Cst
or
a = b * c
d = Cst +/- a
When creating the new operands for fadd or fsub instruction following the related fmul, the first operand was created with the second original operand (M0 was created with C1) and the second with the first (M1 with Opnd0).
The fix consists in creating the new operands with the appropriate original operand, i.e., M0 with Opnd0 and M1 with C1.
llvm-svn: 176300
Shadow checks are disabled and memory loads always produce fully initialized
values in functions that don't have a sanitize_memory attribute. Value and
argument shadow is propagated as usual.
This change also updates blacklist behaviour to match the above.
llvm-svn: 176247
This properly asks TargetLibraryInfo if a call is available and if it is, it
can be translated into the corresponding LLVM builtin. We don't vectorize sqrt()
yet because I'm not sure about the semantics for negative numbers. The other
intrinsic should be exact equivalents to the libm functions.
Differential Revision: http://llvm-reviews.chandlerc.com/D465
llvm-svn: 176188
enhancement done the trivial way; by extending inputs and truncating outputs
which is addequate for targets with little or no support for integer arithmetic
on integer types less than 32 bits.
llvm-svn: 176139
These are two related changes (one in llvm, one in clang).
LLVM:
- rename address_safety => sanitize_address (the enum value is the same, so we preserve binary compatibility with old bitcode)
- rename thread_safety => sanitize_thread
- rename no_uninitialized_checks -> sanitize_memory
CLANG:
- add __attribute__((no_sanitize_address)) as a synonym for __attribute__((no_address_safety_analysis))
- add __attribute__((no_sanitize_thread))
- add __attribute__((no_sanitize_memory))
for S in address thread memory
If -fsanitize=S is present and __attribute__((no_sanitize_S)) is not
set llvm attribute sanitize_S
llvm-svn: 176075
This is a common pattern with dyn_cast and similar constructs, when the
PHI no longer depends on the select it can often be turned into a simpler
construct or even get hoisted out of the loop.
PR15340.
llvm-svn: 175995
The 'nobuiltin' attribute is applied to call sites to indicate that LLVM should
not treat the callee function as a built-in function. I.e., it shouldn't try to
replace that function with different code.
llvm-svn: 175835
Storing the load/store instructions with the values
and inspect them using Alias Analysis to make sure
they don't alias, since the GEP pointer operand doesn't
take the offset into account.
Trying hard to not add any extra cost to loads and stores
that don't overlap on global values, AA is *only* calculated
if all of the previous attempts failed.
Using biggest vector register size as the stride for the
vectorization access, as we're being conservative and
the cost model (which calculates the real vectorization
factor) is only run after the legalization phase.
We might re-think this relationship in the future, but
for now, I'd rather be safe than sorry.
llvm-svn: 175818
This patch makes asan instrument memory accesses with unusual sizes (e.g. 5 bytes or 10 bytes), e.g. long double or
packed structures.
Instrumentation is done with two 1-byte checks
(first and last bytes) and if the error is found
__asan_report_load_n(addr, real_size) or
__asan_report_store_n(addr, real_size)
is called.
Also, call these two new functions in memset/memcpy
instrumentation.
asan-rt part will follow.
llvm-svn: 175507
This fixes PR15289. This bug was introduced (recently) in r175215; collecting
all std::vector references for candidate pairs to delete at once is invalid
because subsequent lookups in the owning DenseMap could invalidate the
references.
bugpoint was able to reduce a useful test case. Unfortunately, because whether
or not this asserts depends on memory layout, this test case will sometimes
appear to produce valid output. Nevertheless, running under valgrind will
reveal the error.
llvm-svn: 175397
(or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
By the time the OR is visited, both the SELECTs have been visited and not
optimized and the OR itself hasn't been transformed so we do this transform in
the hopes that the new ORs will be optimized.
The transform is explicitly disabled for vector-selects until "codegen matures
to handle them better".
Patch by Muhammad Tauqir!
llvm-svn: 175380
Several functions and variable names used the term 'tree' to refer
to what is actually a DAG. Correcting this mistake will, hopefully,
prevent confusion in the future.
No functionality change intended.
llvm-svn: 175278
It enables to work with a smaller constant, which is target friendly for those which can compare to immediates.
It also avoids inserting a shift in favor of a trunc, which can be free on some targets.
This used to work until LLVM-3.1, but regressed with the 3.2 release.
llvm-svn: 175270
For some basic blocks, it is possible to generate many candidate pairs for
relatively few pairable instructions. When many (tens of thousands) of these pairs
are generated for a single instruction group, the time taken to generate and
rank the different vectorization plans can become quite large. As a result, we now
cap the number of candidate pairs within each instruction group. This is done by
closing out the group once the threshold is reached (set now at 3000 pairs).
Although this will limit the overall compile-time impact, this may not be the best
way to achieve this result. It might be better, for example, to prune excessive
candidate pairs after the fact the prevent the generation of short, but highly-connected
groups. We can experiment with this in the future.
This change reduces the overall compile-time slowdown of the csa.ll test case in
PR15222 to ~5x. If 5x is still considered too large, a lower limit can be
used as the default.
This represents a functionality change, but only for very large inputs
(thus, there is no regression test).
llvm-svn: 175251
All instances of std::multimap have now been replaced by
DenseMap<K, std::vector<V> >, and this yields a speedup of 5% on the
csa.ll test case from PR15222.
No functionality change intended.
llvm-svn: 175216
This is another commit on the road to removing std::multimap from
BBVectorize. This gives an ~1% speedup on the csa.ll test case
in PR15222.
No functionality change intended.
llvm-svn: 175215
It's possible (e.g. after an LTO build) that an internal global may be used for
debugging purposes. If that's the case appending a '.b' to it makes it hard to
find that variable. Steal the name from the old GV before deleting it so that
they can find that variable again.
llvm-svn: 175104
When building the pairable-instruction dependency map, don't search
past the last pairable instruction. For large blocks that have been
divided into multiple instruction groups, searching past the last
instruction in each group is very wasteful. This gives a 32% speedup
on the csa.ll test case from PR15222 (when using 50 instructions
in each group).
No functionality change intended.
llvm-svn: 174915
This map is queried only for instructions in pairs of pairable
instructions; so make sure that only pairs of pairable
instructions are added to the map. This gives a 3.5% speedup
on the csa.ll test case from PR15222.
No functionality change intended.
llvm-svn: 174914
This eliminates one more linear search over a range of
std::multimap entries. This gives a 22% speedup on the
csa.ll test case from PR15222.
No functionality change intended.
llvm-svn: 174893
This flag makes asan use a small (<2G) offset for 64-bit asan shadow mapping.
On x86_64 this saves us a register, thus achieving ~2/3 of the
zero-base-offset's benefits in both performance and code size.
Thanks Jakub Jelinek for the idea.
llvm-svn: 174886
This removes the last of the linear searches over ranges of std::multimap
iterators, giving a 7% speedup on the doduc.bc input from PR15222.
No functionality change intended.
llvm-svn: 174859
Profiling suggests that getInstructionTypes is performance-sensitive,
this cleans up some double-casting in that function in favor of
using dyn_cast.
No functionality change intended.
llvm-svn: 174857
By itself, this does not have much of an effect, but only because in the default
configuration the full cycle checks are used only for small problem sizes.
This is part of a general cleanup of uses of iteration over std::multimap
ranges only for the purpose of checking membership.
No functionality change intended.
llvm-svn: 174856
This reverts r171041. This was a nice idea that didn't work out well.
Clang warnings need to be associated with warning groups so that they can
be selectively disabled, promoted to errors, etc. This simplistic patch didn't
allow for that. Enhancing it to provide some way for the backend to specify
a front-end warning type seems like overkill for the few uses of this, at
least for now.
llvm-svn: 174748
This is a follow-up to the cost-model change in r174713 which splits
the cost of a memory operation between the address computation and the
actual memory access. In r174713, this cost is always added to the
memory operation cost, and so BBVectorize will do the same.
Currently, this new cost function is used only by ARM, and I don't
have any ARM test cases for BBVectorize. Assistance in generating some
good ARM test cases for BBVectorize would be greatly appreciated!
llvm-svn: 174743
isn't using the default calling convention. However, if the transformation is
from a call to inline IR, then the calling convention doesn't matter.
rdar://13157990
llvm-svn: 174724
Adds a function to target transform info to query for the cost of address
computation. The cost model analysis pass now also queries this interface.
The code in LoopVectorize adds the cost of address computation as part of the
memory instruction cost calculation. Only there, we know whether the instruction
will be scalarized or not.
Increase the penality for inserting in to D registers on swift. This becomes
necessary because we now always assume that address computation has a cost and
three is a closer value to the architecture.
radar://13097204
llvm-svn: 174713
We don't want too many classes in a pass and the classes obscure the details. I
was going a little overboard with object modeling here. Replace classes by
generic code that handles both loads and stores.
No functionality change intended.
llvm-svn: 174646
1. Moved a comment from ObjCARCOpts.cpp -> ObjCARCContract.cpp.
2. Removed a comment from ObjCARCOpts.cpp that was already moved to
ObjCARCAliasAnalysis.h/.cpp.
llvm-svn: 174581
In the loop vectorizer cost model, we used to ignore stores/loads of a pointer
type when computing the widest type within a loop. This meant that if we had
only stores/loads of pointers in a loop we would return a widest type of 8bits
(instead of 32 or 64 bit) and therefore a vector factor that was too big.
Now, if we see a consecutive store/load of pointers we use the size of a pointer
(from data layout).
This problem occured in SingleSource/Benchmarks/Shootout-C++/hash.cpp (reduced
test case is the first test in vector_ptr_load_store.ll).
radar://13139343
llvm-svn: 174377
says, but that's a defect (to be filed). "Cls::purevfn()" is still an odr use.
Also fixes a bug in the previous patch that caused us to not mark the function
referenced just because we didn't want to mark it odr used.
llvm-svn: 174240
the SCEV vector size in LoopStrengthReduce. It is observed that
the BaseRegs vector size is 4 in most cases,
and elements are frequently copied when it is initialized as
SmallVector<const SCEV *, 2> BaseRegs.
Our benchmark results show that the compilation time performance
improved by ~0.5%.
Patch by Wan Xiaofei.
llvm-svn: 174219
This is a re-worked version of r174048.
Given source IR:
call void @llvm.dbg.declare(metadata !{i32* %argc.addr}, metadata !14), !dbg !15
we used to generate
call void @llvm.dbg.declare(metadata !27, metadata !28), !dbg !29!27 = metadata !{null}
With this patch, we will correctly generate
call void @llvm.dbg.declare(metadata !{i32* %argc.addr}, metadata !27), !dbg !28
Looking up %argc.addr in ValueMap will return null, since %argc.addr is already
correctly set up, we can use identity mapping.
rdar://problem/13089880
llvm-svn: 174093
Given source IR:
call void @llvm.dbg.declare(metadata !{i32* %argc.addr}, metadata !14), !dbg !15
we used to generate
call void @llvm.dbg.declare(metadata !27, metadata !28), !dbg !29!27 = metadata !{null}
With this patch, we will correctly generate
call void @llvm.dbg.declare(metadata !{i32* %argc.addr}, metadata !27), !dbg !28
Looking up %argc.addr in ValueMap will return null, since %argc.addr is already
correctly set up, we can use identity mapping.
llvm-svn: 173946
This was missed since whenever I was including ObjCARCAliasAnalysis.h, I
was including ObjCARC.h before it which included these includes
(resulting in no compilation breakage).
llvm-svn: 173764
This also required adding 2x headers Dependency Analysis.h/Provenance Analysis.h
and a .cpp file DependencyAnalysis.cpp to unentangle the dependencies inbetween
ObjCARCContract and ObjCARCOpts.
llvm-svn: 173760
Because BBVectorize may significantly shorten a loop body, unroll
again after vectorization. This is especially important when using
runtime or partial unrolling.
llvm-svn: 173730
It is way too slow. Change the default option value to 0.
Always do exact shadow propagation for unsigned ICmp with constants, it is
cheap (under 1% cpu time) and required for correctness.
llvm-svn: 173682
When flipping the pair of subvectors that form a vector, if the
vector length is 2, we can use the SK_Reverse shuffle kind to get
more-accurate cost information. Also we can use the SK_ExtractSubvector
shuffle kind to get accurate subvector extraction costs.
The current cost model implementations don't yet seem complex enough
for this to make a difference (thus, there are no test cases with this
commit), but it should help in future.
Depending on how the various targets optimize and combine shuffles in
practice, we might be able to get more-accurate costs by combining the
costs of multiple shuffle kinds. For example, the cost of flipping the
subvector pairs could be modeled as two extractions and two subvector
insertions. These changes, however, should probably be motivated
by specific test cases.
llvm-svn: 173621
This name change does the following:
1. Causes the function name to use proper ARC terminology.
2. Makes it clear what the function truly does.
llvm-svn: 173609
In the future, AttributeWithIndex won't be used anymore. Besides, it exposes the
internals of the AttributeSet to outside users, which isn't goodness.
llvm-svn: 173602
In the future, AttributeWithIndex won't be used anymore. Besides, it exposes the
internals of the AttributeSet to outside users, which isn't goodness.
llvm-svn: 173601
In the future, AttributeWithIndex won't be used anymore. Besides, it exposes the
internals of the AttributeSet to outside users, which isn't goodness.
llvm-svn: 173600
The 'getSlot' function and its ilk allow introspection into the AttributeSet
class. However, that class should be opaque. Allow access through accessor
methods instead.
llvm-svn: 173522
Only for integers, pointers, and vectors of those. No floats.
Instrumentation seems very heavy, and may need to be replaced
with some approximation in the future.
llvm-svn: 173452
loops over instructions in the basic block or the use-def list of the
value, neither of which are really efficient when repeatedly querying
about values in the same basic block.
What's more, we already know that the CondBB is small, and so we can do
a much more efficient test by counting the uses in CondBB, and seeing if
those account for all of the uses.
Finally, we shouldn't blanket fail on any such instruction, instead we
should conservatively assume that those instructions are part of the
cost.
Note that this actually fixes a bug in the pass because
isUsedInBasicBlock has a really terrible bug in it. I'll fix that in my
next commit, but the fix for it would make this code suddenly take the
compile time hit I thought it already was taking, so I wanted to go
ahead and migrate this code to a faster & better pattern.
The bug in isUsedInBasicBlock was also causing other tests to test the
wrong thing entirely: for example we weren't actually disabling
speculation for floating point operations as intended (and tested), but
the test passed because we failed to speculate them due to the
isUsedInBasicBlock failure.
llvm-svn: 173417
Original commit message:
Plug TTI into the speculation logic, giving it a real cost interface
that can be specialized by targets.
The goal here is not to be more aggressive, but to just be more accurate
with very obvious cases. There are instructions which are known to be
truly free and which were not being modeled as such in this code -- see
the regression test which is distilled from an inner loop of zlib.
Everywhere the TTI cost model is insufficiently conservative I've added
explicit checks with FIXME comments to go add proper modelling of these
cost factors.
If this causes regressions, the likely solution is to make TTI even more
conservative in its cost estimates, but test cases will help here.
llvm-svn: 173357
that can be specialized by targets.
The goal here is not to be more aggressive, but to just be more accurate
with very obvious cases. There are instructions which are known to be
truly free and which were not being modeled as such in this code -- see
the regression test which is distilled from an inner loop of zlib.
Everywhere the TTI cost model is insufficiently conservative I've added
explicit checks with FIXME comments to go add proper modelling of these
cost factors.
If this causes regressions, the likely solution is to make TTI even more
conservative in its cost estimates, but test cases will help here.
llvm-svn: 173342
a cost fuction that seems both a bit ad-hoc and also poorly suited to
evaluating constant expressions.
Notably, it is missing any support for trivial expressions such as
'inttoptr'. I could fix this routine, but it isn't clear to me all of
the constraints its other users are operating under.
The core protection that seems relevant here is avoiding the formation
of a select instruction wich a further chain of select operations in
a constant expression operand. Just explicitly encode that constraint.
Also, update the comments and organization here to make it clear where
this needs to go -- this should be driven off of real cost measurements
which take into account the number of constants expressions and the
depth of the constant expression tree.
llvm-svn: 173340
terms of cost rather than hoisting a single instruction.
This does *not* change the cost model! We still set the cost threshold
at 1 here, it's just that we track it by accumulating cost rather than
by storing an instruction.
The primary advantage is that we no longer leave no-op intrinsics in the
basic block. For example, this will now move both debug info intrinsics
and a single instruction, instead of only moving the instruction and
leaving a basic block with nothing bug debug info intrinsics in it, and
those intrinsics now no longer ordered correctly with the hoisted value.
Instead, we now splice the entire conditional basic block's instruction
sequence.
This also places the code for checking the safety of hoisting next to
the code computing the cost.
Currently, the only observable side-effect of this change is that debug
info intrinsics are no longer abandoned. I'm not sure how to craft
a test case for this, and my real goal was the refactoring, but I'll
talk to Dave or Eric about how to add a test case for this.
llvm-svn: 173339
Previously, the code would scan the PHI nodes and build up a small
setvector of candidate value pairs in phi nodes to go and rewrite. Once
certain the rewrite could be performed, the code walks the set, and for
each one re-scans the entire PHI node list looking for nodes to rewrite
operands.
Instead, scan the PHI nodes once to check for hazards, and then scan it
a second time to rewrite the operands to selects. No set vector, and
a max of two scans.
The only downside is that we might form identical selects, but
instcombine or anything else should fold those easily, and it seems
unlikely to happen often.
llvm-svn: 173337
pretty in doxygen, adding some of the details actually present in
a classic example where this matters (a loop from gzip and many other
compression algorithms), and a cautionary note about the risks inherent
in the transform. This has come up on the mailing lists recently, and
I suspect folks reading this code could benefit from going and looking
at the MI pass that can really deal with these issues.
llvm-svn: 173329
used uninitialized, since it fails to understand that Array is only used when
SingleValue is not, and outputs a warning. It also seems generally safer given
that the constructor is non-trivial and has plenty of early exits.
llvm-svn: 173242
SSPStrong applies a heuristic to insert stack protectors in these situations:
* A Protector is required for functions which contain an array, regardless of
type or length.
* A Protector is required for functions which contain a structure/union which
contains an array, regardless of type or length. Note, there is no limit to
the depth of nesting.
* A protector is required when the address of a local variable (i.e., stack
based variable) is exposed. (E.g., such as through a local whose address is
taken as part of the RHS of an assignment or a local whose address is taken as
part of a function argument.)
This patch implements the SSPString attribute to be equivalent to
SSPRequired. This will change in a subsequent patch.
llvm-svn: 173230
Collections of attributes are handled via the AttributeSet class now. This
finally frees us up to make significant changes to how attributes are structured.
llvm-svn: 173228
The method PerformCodePlacement was doing too much (i.e. 3x loops, lots of
different checking). This refactoring separates the analysis section of the
method into a separate function while leaving the actual code placement and
analysis preparation in PerformCodePlacement.
*NOTE* Really this part of ObjCARC should be refactored out of the main pass
class into its own seperate class/struct. But, it is not time to make that
change yet though (don't want to make such an invasive change without fixing all
of the bugs first).
llvm-svn: 173201
Use the AttributeSet when we're talking about more than one attribute. Add a
function that adds a single attribute. No functionality change intended.
llvm-svn: 173196
generic function calls and intrinsics. This is somewhat overlapping with
an existing intrinsic cost method, but that one seems targetted at
vector intrinsics. I'll merge them or separate their names and use cases
in a separate commit.
This sinks the test of 'callIsSmall' down into TTI where targets can
control it. The whole thing feels very hack-ish to me though. I've left
a FIXME comment about the fundamental design problem this presents. It
isn't yet clear to me what the users of this function *really* care
about. I'll have to do more analysis to figure that out. Putting this
here at least provides it access to proper analysis pass tools and other
such. It also allows us to more cleanly implement the baseline cost
interfaces in TTI.
With this commit, it is now theoretically possible to simplify much of
the inline cost analysis's handling of calls by calling through to this
interface. That conversion will have to happen in subsequent commits as
it requires more extensive restructuring of the inline cost analysis.
The CodeMetrics class is now really only in the business of running over
a block of code and aggregating the metrics on that block of code, with
the actual cost evaluation done entirely in terms of TTI.
llvm-svn: 173148
This is more code to isolate the use of the Attribute class to that of just
holding one attribute instead of a collection of attributes.
llvm-svn: 173094
is free. The whole CodeMetrics API should probably be reworked more, but
this is enough to allow deleting the duplicate code there for computing
whether an instruction is free.
All of the passes using this have been updated to pull in TTI and hand
it to the CodeMetrics stuff. Further, a dead CodeMetrics API
(analyzeFunction) is nuked for lack of users.
llvm-svn: 173036
a dynamic analysis done on each call to the routine. However, now it can
use the standard pass infrastructure to reference other analyses,
instead of a silly setter method. This will become more interesting as
I teach it about more analysis passes.
This updates the two inliner passes to use the inline cost analysis.
Doing so highlights how utterly redundant these two passes are. Either
we should find a cheaper way to do always inlining, or we should merge
the two and just fiddle with the thresholds to get the desired behavior.
I'm leaning increasingly toward the latter as it would also remove the
Inliner sub-class split.
llvm-svn: 173030
We ignore the cpu frontend and focus on pipeline utilization. We do this because we
don't have a good way to estimate the loop body size at the IR level.
llvm-svn: 172964
This separates the check for "too few elements to run the vector loop" from the
"memory overlap" check, giving a lot nicer code and allowing to skip the memory
checks when we're not going to execute the vector code anyways. We still leave
the decision of whether to emit the memory checks as branches or setccs, but it
seems to be doing a good job. If ugly code pops up we may want to emit them as
separate blocks too. Small speedup on MultiSource/Benchmarks/MallocBench/espresso.
Most of this is legwork to allow multiple bypass blocks while updating PHIs,
dominators and loop info.
llvm-svn: 172902
Because the Attribute class is going to stop representing a collection of
attributes, limit the use of it as an aggregate in favor of using AttributeSet.
This replaces some of the uses for querying the function attributes.
llvm-svn: 172844
Specifically according to the semantics of ARC -fno-objc-arc-exception simply
states that it is expected that the unwind path out of a call *MAY* not release
objects. Thus we can have the situation where a release gets moved into a catch
block which we ignore when we remove a retain/release pair resulting in (even
though we assume the program is exiting anyways) the cleanup code path
potentially blowing up before program exit.
llvm-svn: 172599
some optimization opportunities (in the enclosing supper-expressions).
rule 1. (-0.0 - X ) * Y => -0.0 - (X * Y)
if expression "-0.0 - X" has only one reference.
rule 2. (0.0 - X ) * Y => -0.0 - (X * Y)
if expression "0.0 - X" has only one reference, and
the instruction is marked "noSignedZero".
2. Eliminate negation (The compiler was already able to handle these
opt if the 0.0s are replaced with -0.0.)
rule 3: (0.0 - X) * (0.0 - Y) => X * Y
rule 4: (0.0 - X) * C => X * -C
if the expr is flagged "noSignedZero".
3.
Rule 5: (X*Y) * X => (X*X) * Y
if X!=Y and the expression is flagged with "UnsafeAlgebra".
The purpose of this transformation is two-fold:
a) to form a power expression (of X).
b) potentially shorten the critical path: After transformation, the
latency of the instruction Y is amortized by the expression of X*X,
and therefore Y is in a "less critical" position compared to what it
was before the transformation.
4. Remove the InstCombine code about simplifiying "X * select".
The reasons are following:
a) The "select" is somewhat architecture-dependent, therefore the
higher level optimizers are not able to precisely predict if
the simplification really yields any performance improvement
or not.
b) The "select" operator is bit complicate, and tends to obscure
optimization opportunities. It is btter to keep it as low as
possible in expr tree, and let CodeGen to tackle the optimization.
llvm-svn: 172551
---------------------------------------------------------------------------
C_A: reassociation is allowed
C_R: reciprocal of a constant C is appropriate, which means
- 1/C is exact, or
- reciprocal is allowed and 1/C is neither a special value nor a denormal.
-----------------------------------------------------------------------------
rule1: (X/C1) / C2 => X / (C2*C1) (if C_A)
=> X * (1/(C2*C1)) (if C_A && C_R)
rule 2: X*C1 / C2 => X * (C1/C2) if C_A
rule 3: (X/Y)/Z = > X/(Y*Z) (if C_A && at least one of Y and Z is symbolic value)
rule 4: Z/(X/Y) = > (Z*Y)/X (similar to rule3)
rule 5: C1/(X*C2) => (C1/C2) / X (if C_A)
rule 6: C1/(X/C2) => (C1*C2) / X (if C_A)
rule 7: C1/(C2/X) => (C1/C2) * X (if C_A)
llvm-svn: 172488
The reason that this occurs is that tail calling objc_autorelease eventually
tail calls -[NSObject autorelease] which supports fast autorelease. This can
cause us to violate the semantic gaurantees of __autoreleasing variables that
assignment to an __autoreleasing variables always yields an object that is
placed into the innermost autorelease pool.
The fix included in this patch works by:
1. In the peephole optimization function OptimizeIndividualFunctions, always
remove tail call from objc_autorelease.
2. Whenever we convert to/from an objc_autorelease, set/unset the tail call
keyword as appropriate.
*NOTE* I also handled the case where objc_autorelease is converted in
OptimizeReturns to an autoreleaseRV which still violates the ARC semantics. I
will be removing that in a later patch and I wanted to make sure that the tree
is in a consistent state vis-a-vis ARC always.
Additionally some test cases are provided and all tests that have tail call marked
objc_autorelease keywords have been modified so that tail call has been removed.
*NOTE* One test fails due to a separate bug that I am going to commit soon. Thus
I marked the check line TMP: instead of CHECK: so make check does not fail.
llvm-svn: 172287
Specifically:
1. Added a missing new line when we emit a debug message saying that we are marking a global variable as constant.
2. Added debug messages that describe what is occuring when GlobalOpt is evaluating a block/function.
3. Added a debug message that says what specific constructor is being evaluated.
llvm-svn: 172247
We don't have a detailed analysis on which values are vectorized and which stay scalars in the vectorized loop so we use
another method. We look at reduction variables, loads and stores, which are the only ways to get information in and out
of loop iterations. If the data types are extended and truncated then the cost model will catch the cost of the vector
zext/sext/trunc operations.
llvm-svn: 172178
This fixes va_start/va_copy of a va_list field which happens to not
be laid out at a 16-byte boundary.
Differential Revision: http://llvm-reviews.chandlerc.com/D276
llvm-svn: 172128
1. Added debug messages when in OptimizeIndividualCalls we move calls into predecessors and then erase the original call.
2. Added debug messages when in the process of moving calls in ObjCARCOpt::MoveCalls we create new RR and delete old RR.
3. Added a debug message when we visit a specific retain instruction in ObjCARCOpt::PerformCodePlacement.
llvm-svn: 171988
small loops. On small loops post-loop that handles scalars (and runs slower) can take more time to execute than the
rest of the loop. This patch disables widening of loops with a small static trip count.
llvm-svn: 171798
o. X/C1 * C2 => X * (C2/C1) (if C2/C1 is neither special FP nor denormal)
o. X/C1 * C2 -> X/(C1/C2) (if C2/C1 is either specical FP or denormal, but C1/C2 is a normal Fp)
Let MDC denote multiplication or dividion with one & only one operand being a constant
o. (MDC ± C1) * C2 => (MDC * C2) ± (C1 * C2)
(so long as the constant-folding doesn't yield any denormal or special value)
llvm-svn: 171793
turning a code like this:
if (foo)
free(foo)
into that:
free(foo)
Move a call to free from basic block FB into FB's predecessor, P,
when the path from P to FB is taken only if the argument of free is
not equal to NULL.
Some restrictions apply on P and FB to be sure that this code motion
is profitable. Namely:
1. FB must have only one predecessor P.
2. FB must contain only the call to free plus an unconditional
branch to S.
3. P's successors are FB and S.
Because of 1., we will not increase the code size when moving the call
to free from FB to P.
Because of 2., FB will be empty after the move.
Because of 2. and 3., P's branch instruction becomes useless, so as FB
(simplifycfg will do the job).
llvm-svn: 171762
peculiar headers under include/llvm.
This struct still doesn't make a lot of sense, but it makes more sense
down in TargetLowering than it did before.
llvm-svn: 171739
already in a class, just inline the four of them. I suspect that this
class could be simplified some to not always keep distinct variables for
these things, but it wasn't clear to me how given the usage so I opted
for a trivial and mechanical translation.
This removes one of the two remaining users of a header in include/llvm
which does nothing more than define a 4 member struct.
llvm-svn: 171738
TargetTransformInfo rather than TargetLowering, removing one of the
primary instances of the layering violation of Transforms depending
directly on Target.
This is a really big deal because LSR used to be a "special" pass that
could only be tested fully using llc and by looking at the full output
of it. It also couldn't run with any other loop passes because it had to
be created by the backend. No longer is this true. LSR is now just
a normal pass and we should probably lift the creation of LSR out of
lib/CodeGen/Passes.cpp and into the PassManagerBuilder. =] I've not done
this, or updated all of the tests to use opt and a triple, because
I suspect someone more familiar with LSR would do a better job. This
change should be essentially without functional impact for normal
compilations, and only change behvaior of targetless compilations.
The conversion required changing all of the LSR code to refer to the TTI
interfaces, which fortunately are very similar to TargetLowering's
interfaces. However, it also allowed us to *always* expect to have some
implementation around. I've pushed that simplification through the pass,
and leveraged it to simplify code somewhat. It required some test
updates for one of two things: either we used to skip some checks
altogether but now we get the default "no" answer for them, or we used
to have no information about the target and now we do have some.
I've also started the process of removing AddrMode, as the TTI interface
doesn't use it any longer. In some cases this simplifies code, and in
others it adds some complexity, but I think it's not a bad tradeoff even
there. Subsequent patches will try to clean this up even further and use
other (more appropriate) abstractions.
Yet again, almost all of the formatting changes brought to you by
clang-format. =]
llvm-svn: 171735
being present. Make a member of one of the helper classes a reference as
part of this.
Reformatting goodness brought to you by clang-format.
llvm-svn: 171726
This makes the loop vectorizer match the pattern followed by roughly all
other passses. =]
Notably, this header file was braken in several regards: it contained
a using namespace directive, global #define's that aren't globaly
appropriate, and global constants defined directly in the header file.
As a side benefit, lots of the types in this file become internal, which
will cause the optimizer to chew on this pass more effectively.
llvm-svn: 171723
This could be simplified further, but Hal has a specific feature for
ignoring TTI, and so I preserved that.
Also, I needed to use it because a number of tests fail when switching
from a null TTI to the NoTTI nonce implementation. That seems suspicious
to me and so may be something that you need to look into Hal. I worked
it by preserving the old behavior for these tests with the flag that
ignores all target info.
llvm-svn: 171722
this patch brought to you by the tool clang-format.
I wanted to fix up the names of constructor parameters because they
followed a bit of an anti-pattern by naming initialisms with CamelCase:
'Tti', 'Se', etc. This appears to have been in an attempt to not overlap
with the names of member variables 'TTI', 'SE', etc. However,
constructor arguments can very safely alias members, and in fact that's
the conventional way to pass in members. I've fixed all of these I saw,
along with making some strang abbreviations such as 'Lp' be simpler 'L',
or 'Lgl' be the word 'Legal'.
However, the code I was touching had indentation and formatting somewhat
all over the map. So I ran clang-format and fixed them.
I also fixed a few other formatting or doxygen formatting issues such as
using ///< on trailing comments so they are associated with the correct
entry.
There is still a lot of room for improvement of the formating and
cleanliness of this code. ;] At least a few parts of the coding
standards or common practices in LLVM's code aren't followed, the enum
naming rules jumped out at me. I may mix some of these while I'm here,
but not all of them.
llvm-svn: 171719
I'm sorry for duplicating bad style here, but I wanted to keep
consistency. I've pinged the code review thread where this style was
reviewed and changes were requested.
llvm-svn: 171714
through as a reference rather than a pointer. There is always *some*
implementation of this available, so this simplifies code by not having
to test for whether it is available or not.
Further, it turns out there were piles of places where SimplifyCFG was
recursing and not passing down either TD or TTI. These are fixed to be
more pedantically consistent even though I don't have any particular
cases where it would matter.
llvm-svn: 171691
next to its only user. This helper relies on TargetLowering information
that shouldn't be generally used throughout the Transfoms library, and
so it made little sense as a generic utility.
This also consolidates the file where we need to remove the remaining
uses of TargetLowering in favor of the IR-layer abstract interface in
TargetTransformInfo.
llvm-svn: 171590
1. Add code to estimate register pressure.
2. Add code to select the unroll factor based on register pressure.
3. Add bits to TargetTransformInfo to provide the number of registers.
llvm-svn: 171469
code that includes Intrinsics.gen directly.
This never showed up in my testing because the old Intrinsics.gen was
still kicking around in the make build system and was correct there. =[
Thankfully, some of the bots to clean rebuilds and that caught this.
llvm-svn: 171373
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
utils/sort_includes.py script.
Most of these are updating the new R600 target and fixing up a few
regressions that have creeped in since the last time I sorted the
includes.
llvm-svn: 171362
Specifically these calls return their argument verbatim, as a low-level
optimization. However, this makes high-level optimizations
harder. We undo any uses of this optimization that the front-end
emitted. We redo them later in the contract pass.
llvm-svn: 171346
The later API is nicer than the former, and is correct regarding wrap-around offsets (if anyone cares).
There are a few more places left with duplicated code, which I'll remove soon.
llvm-svn: 171259
directly.
This is in preparation for removing the use of the 'Attribute' class as a
collection of attributes. That will shift to the AttributeSet class instead.
llvm-svn: 171253
LCSSA PHIs may have undef values. The vectorizer updates values that are used by outside users such as PHIs.
The bug happened because undefs are not loop values. This patch handles these PHIs.
PR14725
llvm-svn: 171251
such as by a compiler warning, a check in clang -fsanitizer=undefined, being
optimized to unreachable, or a combination of the above. PR14722.
llvm-svn: 171119
For the time being this includes only some dummy test cases. Once the
generic implementation of the intrinsics cost function does something other
than assuming scalarization in all cases, or some target specializes the
interface, some real test cases can be added.
Also, for consistency, I changed the type of IID from unsigned to Intrinsic::ID
in a few other places.
llvm-svn: 171079
When the backend is used from clang, it should produce proper diagnostics
instead of just printing messages to errs(). Other clients may also want to
register their own error handlers with the LLVMContext, and the same handler
should work for warnings in the same way as the existing emitError methods.
llvm-svn: 171041
memory bound checks. Before the fix we were able to vectorize this loop from
the Livermore Loops benchmark:
for ( k=1 ; k<n ; k++ )
x[k] = x[k-1] + y[k];
llvm-svn: 170811
Before if-conversion we could check if a value is loop invariant
if it was declared inside the basic block. Now that loops have
multiple blocks this check is incorrect.
This fixes External/SPEC/CINT95/099_go/099_go
llvm-svn: 170756
Similarly inlining of the function is inhibited, if that would duplicate the call (in particular inlining is still allowed when there is only one callsite and the function has internal linkage).
llvm-svn: 170704
When the least bit of C is greater than V, (x&C) must be greater than V
if it is not zero, so the comparison can be simplified.
Although this was suggested in Target/X86/README.txt, it benefits any
architecture with a directly testable form of AND.
Patch by Kevin Schoedel
llvm-svn: 170576
This changes adds shadow and origin propagation for unknown intrinsics
by examining the arguments and ModRef behaviour. For now, only 3 classes
of intrinsics are handled:
- those that look like simple SIMD store
- those that look like simple SIMD load
- those that don't have memory effects and look like arithmetic/logic/whatever
operation on simple types.
llvm-svn: 170530
MapVector is a bit heavyweight, but I don't see a simpler way. Also the
InductionList is unlikely to be large. This should help 3-stage selfhost
compares (PR14647).
llvm-svn: 170528
This was a silly oversight, we weren't pruning allocas which were used
by variable-length memory intrinsics from the set that could be widened
and promoted as integers. Fix that.
llvm-svn: 170353
This also cleans up a bit of the memcpy call rewriting by sinking some
irrelevant code further down and making the call-emitting code a bit
more concrete.
Previously, memcpy of a subvector would actually miscompile (!!!) the
copy into a single vector element copy. I have no idea how this ever
worked. =/ This is the memcpy half of PR14478 which we probably weren't
noticing previously because it didn't actually assert.
The rewrite relies on the newly refactored insert- and extractVector
functions to do the heavy lifting, and those are the same as used for
loads and stores which makes the test coverage a bit more meaningful
here.
llvm-svn: 170338
Check whether a BB is known as reachable before adding it to the worklist.
This way BB's with multiple predecessors are added to the list no more than
once.
llvm-svn: 170335
The first half of fixing this bug was actually in r170328, but was
entirely coincidental. It did however get me to realize the nature of
the bug, and adapt the test case to test more interesting behavior. In
turn, that uncovered the rest of the bug which I've fixed here.
This should fix two new asserts that showed up in the vectorize nightly
tester.
llvm-svn: 170333
I noticed this while looking at r170328. We only ever do a vector
rewrite when the alloca *is* the vector type, so it's good to not paper
over bugs here by doing a convertValue that isn't needed.
llvm-svn: 170331
This will allow its use inside of memcpy rewriting as well. This routine
is more complex than extractVector, and some of its uses are not 100%
where I want them to be so there is still some work to do here.
While this can technically change the output in some cases, it shouldn't
be a change that matters -- IE, it can leave some dead code lying around
that prior versions did not, etc.
Yet another step in the refactorings leading up to the solution to the
last component of PR14478.
llvm-svn: 170328
The method helpers all implicitly act upon the alloca, and what we
really want is a fully generic helper. Doing memcpy rewrites is more
special than all other rewrites because we are at times rewriting
instructions which touch pointers *other* than the alloca. As
a consequence all of the helpers needed by memcpy rewriting of
sub-vector copies will need to be generalized fully.
Note that all of these helpers ({insert,extract}{Integer,Vector}) are
woefully uncommented. I'm going to go back through and document them
once I get the factoring correct.
No functionality changed.
llvm-svn: 170325
PR14478 highlights a serious problem in SROA that simply wasn't being
exercised due to a lack of vector input code mixed with C-library
function calls. Part of SROA was written carefully to handle subvector
accesses via memset and memcpy, but the rewriter never grew support for
this. Fixing it required refactoring the subvector access code in other
parts of SROA so it could be shared, and then fixing the splat formation
logic and using subvector insertion (this patch).
The PR isn't quite fixed yet, as memcpy is still broken in the same way.
I'm starting on that series of patches now.
Hopefully this will be enough to bring the bullet benchmark back to life
with the bb-vectorizer enabled, but that may require fixing memcpy as
well.
llvm-svn: 170301
No functionality changed. Refactoring leading up to the fix for PR14478
which requires some significant changes to the memset and memcpy
rewriting.
llvm-svn: 170299
This change moves the code for default shadow propagaition (handleShadowOr)
and origin tracking (setOriginForNaryOp) into a new builder-like class. Also
gets rid of handleShadowOrBinary.
llvm-svn: 170192
This assumes (1 << n) is always not zero. Consider n is greater than word size.
Although I know it is undefined, this transforms undefined behavior hidden.
This led clang unexpected behavior with some failures. I will investigate to fix undefined shl in clang.
llvm-svn: 170128
In a previous thread it was pointed out that isPowerOfTwo is not a very precise
name since it can return false for powers of two if it is unable to show that
they are powers of two.
llvm-svn: 170093
Provides m_Argument that allows matching against a CallSite's specified argument. Provides m_Intrinsic pattern that can be templatized over the intrinsic id and bind/match arguments similarly to other pattern matchers. Implementations provided for 0 to 4 arguments, though it's very simple to extend for more. Also provides example template specialization for bswap (m_BSwap) and example of code cleanup for its use.
llvm-svn: 170091
Better controls the inlining of functions when the caller function has MinSize attribute.
Basically, when the caller function has this attribute, we do not "force" the inlining
of callee functions carrying the InlineHint attribute (i.e., functions defined with
inline keyword)
llvm-svn: 170065
been used in the first place. It simply was passed to the function and to the
recursive invocations. Simply drop the parameter and update the callers for the
new signature.
Patch by Saleem Abdulrasool!
llvm-svn: 169988
When ASan replaces <alloca instruction> with
<offset into a common large alloca>, it should also patch
llvm.dbg.declare calls and replace debug info descriptors to mark
that we've replaced alloca with a value that stores an address
of the user variable, not the user variable itself.
See PR11818 for more context.
llvm-svn: 169984
Use explicitely aligned store and load instructions to deal with argument and
retval shadow. This matters when an argument's alignment is higher than
__msan_param_tls alignment (which is the case with __m128i).
llvm-svn: 169859
The `-mno-red-zone' flag wasn't being propagated to the functions that code
coverage generates. This allowed some of them to use the red zone when that
wasn't allowed.
<rdar://problem/12843084>
llvm-svn: 169754
This visitor provides infrastructure for recursively traversing the
use-graph of a pointer-producing instruction like an alloca or a malloc.
It maintains a worklist of uses to visit, so it can handle very deep
recursions. It automatically looks through instructions which simply
translate one pointer to another (bitcasts and GEPs). It tracks the
offset relative to the original pointer as long as that offset remains
constant and exposes it during the visit as an APInt offset. Finally, it
performs conservative escape analysis.
However, currently it has some limitations that should be addressed
going forward:
1) It doesn't handle vectors of pointers.
2) It doesn't provide a cheaper visitor when the constant offset
tracking isn't needed.
3) It doesn't support non-instruction pointer values.
The current functionality is exactly what is required to implement the
SROA pointer-use visitors in terms of this one, rather than in terms of
their own ad-hoc base visitor, which was always very poorly specified.
SROA has been converted to use this, and the code there deleted which
this utility now provides.
Technically speaking, using this new visitor allows SROA to handle a few
more cases than it previously did. It is now more aggressive in ignoring
chains of instructions which look like they would defeat SROA, but in
fact do not because they never result in a read or write of memory.
While this is "neat", it shouldn't be interesting for real programs as
any such chains should have been removed by others passes long before we
get to SROA. As a consequence, I've not added any tests for these
features -- it shouldn't be part of SROA's contract to perform such
heroics.
The goal is to extend the functionality of this visitor going forward,
and re-use it from passes like ASan that can benefit from doing
a detailed walk of the uses of a pointer.
Thanks to Ben Kramer for the code review rounds and lots of help
reviewing and debugging this patch.
llvm-svn: 169728
When SROA was evaluating a mixture of i1 and i8 loads and stores, in
just a particular case, it would tickle a latent bug where we compared
bits to bytes rather than bits to bits. As a consequence of the latent
bug, we would allow integers through which were not byte-size multiples,
a situation the later rewriting code was never intended to handle.
In release builds this could trigger all manner of oddities, but the
reported issue in PR14548 was forming invalid bitcast instructions.
The only downside of this fix is that it makes it more clear that SROA
in its current form is not capable of handling mixed i1 and i8 loads and
stores. Sometimes with the previous code this would work by luck, but
usually it would crash, so I'm not terribly worried. I'll watch the LNT
numbers just to be sure.
llvm-svn: 169719
- added function to VectorTargetTransformInfo to query cost of intrinsics
- vectorize trivially vectorizable intrinsic calls such as sin, cos, log, etc.
Reviewed by: Nadav
llvm-svn: 169711
This will more closely match the behavior of the new PtrUseVisitor that
I am adding. Hopefully this will not change the actual behavior in any
way, but by making the processing order more similar help in debugging.
llvm-svn: 169697
There are still bugs in this pass, as well as other issues that are
being worked on, but the bugs are crashers that occur pretty easily in
the wild. Test cases have been sent to the original commit's review
thread.
This reverts the commits:
r169671: Fix a logic error.
r169604: Move the popcnt tests to an X86 subdirectory.
r168931: Initial commit adding the pass.
llvm-svn: 169683
MSan uses a TLS slot to pass shadow for function arguments and return values.
This makes all instrumented functions not readonly, and at the same time
requires that all callees of an instrumented function that may be
MSan-instrumented do not have readonly attribute (otherwise some of the
instrumentation may be optimized out).
llvm-svn: 169591
Instead of unconditionally storing origin with every application store,
only do this when the shadow of the stored value is != 0.
This change also delays instrumentation of stores until after the walk over
function's instructions, because adding new basic blocks confuses InstVisitor.
We only keep 1 origin value per 4 bytes of application memory. This change
fixes the bug when a store of a single clean byte wiped the origin for the
whole 4-byte area.
Since stores of uninitialized values are relatively uncommon, this change
improves performance of track-origins mode by 5% median and by up to 47% on
specs.
llvm-svn: 169490
This change attempts to simplify (X^Y) -> X or Y in the user's context if we know that
only bits from X or Y are demanded.
A minimized case is provided bellow. This change will simplify "t>>16" into "var1 >>16".
=============================================================
unsigned foo (unsigned val1, unsigned val2) {
unsigned t = val1 ^ 1234;
return (t >> 16) | t; // NOTE: t is used more than once.
}
=============================================================
Note that if the "t" were used only once, the expression would be finally optimized as well.
However, with with this change, the optimization will take place earlier.
Reviewed by Nadav, Thanks a lot!
llvm-svn: 169317
missed in the first pass because the script didn't yet handle include
guards.
Note that the script is now able to handle all of these headers without
manual edits. =]
llvm-svn: 169224
Added the code that actually performs the if-conversion during vectorization.
We can now vectorize this code:
for (int i=0; i<n; ++i) {
unsigned k = 0;
if (a[i] > b[i]) <------ IF inside the loop.
k = k * 5 + 3;
a[i] = k; <---- K is a phi node that becomes vector-select.
}
llvm-svn: 169217
This change tries to simmplify E1 = " X >> C1 << C2" into :
- E2 = "X << (C2 - C1)" if C2 > C1, or
- E2 = "X >> (C1 - C2)" if C1 > C2, or
- E2 = X if C1 == C2.
Reviewed by Nadav. Thanks!
llvm-svn: 169182
which is the legality of the if-conversion transformation. The next step is to
implement the cost-model for the if-converted code as well as the
vectorization itself.
llvm-svn: 169152
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
The partitioning logic attempted to handle uses of an alloca with an
offset starting before the alloca so long as the use had some overlap
with the alloca itself. However, there was a bug where we tested
'(uint64_t)Offset >= AllocSize' without first checking whether 'Offset'
was positive. As a consequence, essentially every negative offset (that
is, starting *before* the alloca does) would be thrown out, even if it
was overlapping. The subsequent code to throw out negative offsets which
were actually non-overlapping was essentially dead. The code to *handle*
overlapping negative offsets was actually dead!
I've just removed all of this, and taught SROA to discard any uses which
start prior to the alloca from the beginning. It has the lovely property
of simplifying the code. =] All the tests still pass, and in fact no new
tests are needed as this is already covered by our testsuite. Fixing the
code so that negative offsets work the way the comments indicate they
were supposed to work causes regressions. That's how I found this.
Anyways, this is all progress in the correct direction -- tightening up
SROA to be maximally aggressive. Some day, I really hope to turn
out-of-bounds accesses to an alloca into 'unreachable'.
llvm-svn: 169120
Also check in a case to repeat the issue, on which 'opt -globalopt' consumes 1.6GB memory.
The big memory footprint cause is that current GlobalOpt one by one hoists and stores the leaf element constant into the global array, in each iteration, it recreates the global array initializer constant and leave the old initializer alone. This may result in many obsolete constants left.
For example: we have global array @rom = global [16 x i32] zeroinitializer
After the first element value is hoisted and installed: @rom = global [16 x i32] [ 1, 0, 0, ... ]
After the second element value is installed: @rom = global [16 x 32] [ 1, 2, 0, 0, ... ] // here the previous initializer is obsolete
...
When the transform is done, we have 15 obsolete initializers left useless.
llvm-svn: 169079
The original patch removed a bunch of code that the SjLjEHPrepare pass placed
into the entry block if all of the landing pads were removed during the
CodeGenPrepare class. The more natural way of doing things is to run the CGP
*before* we run the SjLjEHPrepare pass.
Make it so!
llvm-svn: 169044
We're iterating over a non-deterministically ordered container looking
for two saturating flags. To do this correctly, we have to saturate
both, and only stop looping if both saturate to their final value.
Otherwise, which flag we see first changes the result.
This is also a micro-optimization of the previous version as now we
don't go into the (possibly expensive) test logic once the first
violation of either constraint is detected.
llvm-svn: 168989
functionality changed.
Evan's commit r168970 moved the code that the primary comment in this
function referred to to the other end of the function without moving the
comment, and there has been a steady creep of "boolean" logic in it that
is simpler if handled via early exit. That way each special case can
have its own comments. I've also made the variable name a bit more
explanatory than "AllFit". This is in preparation to fix the
non-deterministic output of this function.
llvm-svn: 168988
The simplify-libcalls pass maintained a statistic to count the number
of library calls that have been simplified. Now that library call
simplification is being carried out in instcombine the statistic should
be moved to there.
llvm-svn: 168975
depends on the IR infrastructure, there is no sense in it being off in
Support land.
This is in preparation to start working to expand InstVisitor into more
special-purpose visitors that are still generic and can be re-used
across different passes. The expansion will go into the Analylis tree
though as nothing in VMCore needs it.
llvm-svn: 168972
This revision attempts to recognize following population-count pattern:
while(a) { c++; ... ; a &= a - 1; ... },
where <c> and <a>could be used multiple times in the loop body.
TODO: On X8664 and ARM, __buildin_ctpop() are not expanded to a efficent
instruction sequence, which need to be improved in the following commits.
Reviewed by Nadav, really appreciate!
llvm-svn: 168931
the last invoke instruction in the function. This also removes the last landing
pad in an function. This is fine, but with SjLj EH code, we've already placed a
bunch of code in the 'entry' block, which expects the landing pad to stick
around.
When we get to the situation where CGP has removed the last landing pad, go
ahead and nuke the SjLj instructions from the 'entry' block.
<rdar://problem/12721258>
llvm-svn: 168930
This patch migrates the puts optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
All the simplifiers from simplify-libcalls have now been migrated to
instcombine. Yay! Just a few other bits to migrate (prototype attribute
inference and a few statistics) and simplify-libcalls can finally be put
to rest.
llvm-svn: 168925
The old version failed on a 3-arg instruction with (-1, 0, 0) shadows (it would
pick the 3rd operand origin irrespective of its shadow).
The new version always picks the origin of the rightmost poisoned operand.
llvm-svn: 168887
Rewrite getOriginPtr in a way that lets subsequent optimizations factor out
the common part of Shadow and Origin address calculation. Improves perf by
up to 5%.
llvm-svn: 168879
This was already done for memmove, where it is required for correctness.
This change improves performance by avoiding copyingthe same memory twice.
Also, the library functions are given __msan_ prefix to prevent instcombine
pass from converting them back to intrinsics.
llvm-svn: 168876
Also a couple not-user-visible changes; using empty() instead of size(), and
make inSection() not insert NULL Regex*'s into StringMap when doing a lookup.
llvm-svn: 168833
My commit to migrate the printf simplifiers from the simplify-libcalls
in r168604 introduced a regression reported by Duncan [1]. The problem
is that in some cases the library call simplifier can return a new value
that has no uses and the new value's type is different than the old value's
type (which is fine because there are no uses). The specific case that
triggered the bug looked something like:
declare void @printf(i8*, ...)
...
call void (i8*, ...)* @printf(i8* %fmt)
Which we want to optimized into:
call i32 @putchar(i32 104)
However, the code was attempting to replace all uses of the printf with
the putchar and the types differ, hence a crash. This is fixed by *just*
deleting the original instruction when there are no uses. The old
simplify-libcalls pass is already doing something similar.
[1] http://lists.cs.uiuc.edu/pipermail/llvmdev/2012-November/056338.html
llvm-svn: 168716
InstCombineLoadStoreAlloca.cpp, which had many issues.
(At least two bugs were noted on llvm-commits, and it was overly conservative.)
Instead, use getOrEnforceKnownAlignment.
llvm-svn: 168629
Enhancement to InstCombine. Try to catch this opportunity:
---------------------------------------------------------------
((X^C1) >> C2) ^ C3 => (X>>C2) ^ ((C1>>C2)^C3)
where the subexpression "X ^ C1" has more than one uses, and
"(X^C1) >> C2" has single use.
----------------------------------------------------------------
Reviewed by Nadav (with minor change per his request).
llvm-svn: 168615
Now if we can transform an alloca into a single vector value, but it has
subvector, non-element accesses, we form the appropriate shufflevectors
to allow SROA to proceed. This fixes PR14055 which pointed out a very
common pattern that SROA couldn't handle -- mixed vec3 and vec4
operations on a single alloca.
llvm-svn: 168418
The issue is that we may end up with newly OOB loads when speculating
a load into the predecessors of a PHI node, and this confuses the new
integer splitting logic in some cases, triggering an assertion failure.
In fact, the branch in question must be dead code as it loads from
a too-narrow alloca. Add code to handle this gracefully and leave the
requisite FIXMEs for both optimizing more aggressively and doing more to
aid sanitizing invalid code which triggers these patterns.
llvm-svn: 168361
When code deletes the context, the AttributeImpls that the AttrListPtr points to
are now invalid. Therefore, instead of keeping a separate managed static for the
AttrListPtrs that's reference counted, move it into the LLVMContext and delete
it when deleting the AttributeImpls.
llvm-svn: 168354
to properly handle the combinations of these with split integer loads
and stores. This essentially replaces Evan's r168227 by refactoring the
code in a different way, and trynig to mirror that refactoring in both
the load and store sides of the rewriting.
Generally speaking there was some really problematic duplicated code
here that led to poorly founded assumptions and then subtle bugs. Now
much of the code actually flows through and follows a more consistent
style and logical path. There is still a tiny bit of duplication on the
store side of things, but it is much less bad.
This also changes the logic to never re-use a load or store instruction
as that was simply too error prone in practice.
I've added a few tests (one a reduction of the one in Evan's original
patch, which happened to be the same as the report in PR14349). I'm
going to look at adding a few more tests for things I found and fixed in
passing (such as the volatile tests in the vectorizable predicate).
This patch has survived bootstrap, and modulo one bugfix survived
Duncan's test suite, but let me know if anything else explodes.
llvm-svn: 168346
This patch moves the isInlineViable function from the InlineAlways pass into
the InlineCostAnalyzer and then changes the InlineCost computation to use that
simple check for always-inline functions. All the special-case checks for
AlwaysInline in the CallAnalyzer can then go away.
llvm-svn: 168300
operands of the expression being written was wrongly thought to be reusable as
an inner node of the expression resulting in it turning up as both an inner node
*and* a leaf, creating a cycle in the def-use graph. This would have caused the
verifier to blow up if things had gotten that far, however it managed to provoke
an infinite loop first.
llvm-svn: 168291
replaced by this patch is equivalent to the new logic, but you'd be wrong, and
that's exactly where the bug was. There's a similar bug in instsimplify which
manifests itself as instsimplify failing to simplify this, rather than doing it
wrong, see next commit.
llvm-svn: 168181
For global variables that get the same value stored into them
everywhere, GlobalOpt will replace them with a constant. The problem is
that a thread-local GlobalVariable looks like one value (the address of
the TLS var), but is different between threads.
This patch introduces Constant::isThreadDependent() which returns true
for thread-local variables and constants which depend on them (e.g. a GEP
into a thread-local array), and teaches GlobalOpt not to track such
values.
llvm-svn: 168037
the utility for extracting a chain of operations from the IR, thought that it
might as well combine any constants it came across (rather than just returning
them along with everything else). On the other hand, the factorization code
would like to see the individual constants (this is quite reasonable: it is
much easier to pull a factor of 3 out of 2*3 than it is to pull it out of 6;
you may think 6/3 isn't so hard, but due to overflow it's not as easy to undo
multiplications of constants as it may at first appear). This patch therefore
makes LinearizeExprTree stupider: it now leaves optimizing to the optimization
part of reassociate, and sticks to just analysing the IR.
llvm-svn: 168035
For now, this uses 8 on-stack elements. I'll need to do some profiling
to see if this is the best number.
Pointed out by Jakob in post-commit review.
llvm-svn: 167966
Iterating over the children of each node in the potential vectorization
plan must happen in a deterministic order (because it affects which children
are erased when two children conflict). There was no need for this data
structure to be a map in the first place, so replacing it with a vector
is a small change.
I believe that this was the last remaining instance if iterating over the
elements of a Dense* container where the iteration order could matter.
There are some remaining iterations over std::*map containers where the order
might matter, but so long as the Value* for instructions in a block increase
with the order of the instructions in the block (or decrease) monotonically,
then this will appear to be deterministic.
llvm-svn: 167942
This patch migrates the math library call simplifications from the
simplify-libcalls pass into the instcombine library call simplifier.
I have typically migrated just one simplifier at a time, but the math
simplifiers are interdependent because:
1. CosOpt, PowOpt, and Exp2Opt all depend on UnaryDoubleFPOpt.
2. CosOpt, PowOpt, Exp2Opt, and UnaryDoubleFPOpt all depend on
the option -enable-double-float-shrink.
These two factors made migrating each of these simplifiers individually
more of a pain than it would be worth. So, I migrated them all together.
llvm-svn: 167815
Don't choose a vectorization plan containing only shuffles and
vector inserts/extracts. Due to inperfections in the cost model,
these can lead to infinite recusion.
llvm-svn: 167811
This fixes another infinite recursion case when using target costs.
We can only replace insert element input chains that are pure (end
with inserting into an undef).
llvm-svn: 167784
The old checking code, which assumed that input shuffles and insert-elements
could always be folded (and thus were free) is too simple.
This can only happen in special circumstances.
Using the simple check caused infinite recursion.
llvm-svn: 167750
The pass would previously assert when trying to compute the cost of
compare instructions with illegal vector types (like struct pointers).
llvm-svn: 167743
The assertion is trigged when the Reassociater tries to transform expression
... + 2 * n * 3 + 2 * m + ...
into:
... + 2 * (n*3 + m).
In the process of the transformation, a helper routine folds the constant 2*3 into 6,
confusing optimizer which is trying the to eliminate the common factor 2, and cannot
find 2 any more.
Review is pending. But I'd like commit first in order to help those who are waiting
for this fix.
llvm-svn: 167740
This fixes a bug where shuffles were being fused such that the
resulting input types were not legal on the target. This would
occur only when both inputs and dependencies were also foldable
operations (such as other shuffles) and there were other connected
pairs in the same block.
llvm-svn: 167731
The library call simplifier folds memcmp calls with all constant arguments
to a constant. For example:
memcmp("foo", "foo", 3) -> 0
memcmp("hel", "foo", 3) -> 1
memcmp("foo", "hel", 3) -> -1
The folding is implemented in terms of the system memcmp that LLVM gets
linked with. It currently just blindly uses the value returned from
the system memcmp as the folded constant.
This patch normalizes the values returned from the system memcmp to
(-1, 0, 1) so that we get consistent results across multiple platforms.
The test cases were adjusted accordingly.
llvm-svn: 167726
In some cases the library call simplifier may need to replace instructions
other than the library call being simplified. In those cases it may be
necessary for clients of the simplifier to override how the replacements
are actually done. As such, a new overrideable method for replacing
instructions was added to LibCallSimplifier.
A new subclass of LibCallSimplifier is also defined which overrides
the instruction replacement method. This is because the instruction
combiner defines its own replacement method which updates the worklist
when instructions are replaced.
llvm-svn: 167681
Several of the simplifiers migrated from the simplify-libcalls pass to
the instcombine pass were not correctly checking the target library
information to gate the simplifications. This patch ensures that the
check is made.
llvm-svn: 167660
The new analysis is not yet ready for prime time. It has a *critical*
flawed assumption, and some troubling shortages of testing. Until it's
been hammered into better shape, let's stick with the working code. This
should be easy to revert itself when the analysis is ready.
Fixes PR14241, a miscompile of any memcpy-able loop which uses a pointer
as the induction mechanism. If you have been seeing miscompiles in this
revision range, you really want to test with this backed out. The
results of this miscompile are a bit subtle as they can lead to
downstream passes concluding things are impossible which are in fact
possible.
Thanks to David Blaikie for the majority of the reduction of this
miscompile. I'll be checking in the test case in a non-revert commit.
Revesions reverted here:
r167045: LoopIdiom: Fix a serious missed optimization: we only turned
top-level loops into memmove.
r166877: LoopIdiom: Add checks to avoid turning memmove into an infinite
loop.
r166875: LoopIdiom: Recognize memmove loops.
r166874: LoopIdiom: Replace custom dependence analysis with
DependenceAnalysis.
llvm-svn: 167286
When target cost information is available, compute explicit costs of inserting and
extracting values from vectors. At this point, all costs are estimated using the
target information, and the chain-depth heuristic is not needed. As a result, it is now, by
default, disabled when using target costs.
llvm-svn: 167256
r165941: Resubmit the changes to llvm core to update the functions to
support different pointer sizes on a per address space basis.
Despite this commit log, this change primarily changed stuff outside of
VMCore, and those changes do not carry any tests for correctness (or
even plausibility), and we have consistently found questionable or flat
out incorrect cases in these changes. Most of them are probably correct,
but we need to devise a system that makes it more clear when we have
handled the address space concerns correctly, and ideally each pass that
gets updated would receive an accompanying test case that exercises that
pass specificaly w.r.t. alternate address spaces.
However, from this commit, I have retained the new C API entry points.
Those were an orthogonal change that probably should have been split
apart, but they seem entirely good.
In several places the changes were very obvious cleanups with no actual
multiple address space code added; these I have not reverted when
I spotted them.
In a few other places there were merge conflicts due to a cleaner
solution being implemented later, often not using address spaces at all.
In those cases, I've preserved the new code which isn't address space
dependent.
This is part of my ongoing effort to clean out the partial address space
code which carries high risk and low test coverage, and not likely to be
finished before the 3.2 release looms closer. Duncan and I would both
like to see the above issues addressed before we return to these
changes.
llvm-svn: 167222
getIntPtrType support for multiple address spaces via a pointer type,
and also introduced a crasher bug in the constant folder reported in
PR14233.
These commits also contained several problems that should really be
addressed before they are re-committed. I have avoided reverting various
cleanups to the DataLayout APIs that are reasonable to have moving
forward in order to reduce the amount of churn, and minimize the number
of commits that were reverted. I've also manually updated merge
conflicts and manually arranged for the getIntPtrType function to stay
in DataLayout and to be defined in a plausible way after this revert.
Thanks to Duncan for working through this exact strategy with me, and
Nick Lewycky for tracking down the really annoying crasher this
triggered. (Test case to follow in its own commit.)
After discussing with Duncan extensively, and based on a note from
Micah, I'm going to continue to back out some more of the more
problematic patches in this series in order to ensure we go into the
LLVM 3.2 branch with a reasonable story here. I'll send a note to
llvmdev explaining what's going on and why.
Summary of reverted revisions:
r166634: Fix a compiler warning with an unused variable.
r166607: Add some cleanup to the DataLayout changes requested by
Chandler.
r166596: Revert "Back out r166591, not sure why this made it through
since I cancelled the command. Bleh, sorry about this!
r166591: Delete a directory that wasn't supposed to be checked in yet.
r166578: Add in support for getIntPtrType to get the pointer type based
on the address space.
llvm-svn: 167221
When target costs are available, use them to account for the costs of
shuffles on internal edges of the DAG of candidate pairs.
Because the shuffle costs here are currently for only the internal edges,
the current target cost model is trivial, and the chain depth requirement
is still in place, I don't yet have an easy test
case. Nevertheless, by looking at the debug output, it does seem to do the right
think to the effective "size" of each DAG of candidate pairs.
llvm-svn: 167217
- Use value handle tricks to communicate use replacements instead of forgetLoop, this is a lot faster.
- Move the "big hammer" out of the main loop so it's not called for every instruction.
This should recover most (if not all) compile time regressions introduced by this code.
llvm-svn: 167136
BBVectorize would, except for loads and stores, always fuse instructions
so that the first instruction (in the current source order) would always
represent the low part of the input vectors and the second instruction
would always represent the high part. This lead to too many shuffles
being produced because sometimes the opposite order produces fewer of them.
With this change, BBVectorize tracks the kind of pair connections that form
the DAG of candidate pairs, and uses that information to reorder the pairs to
avoid excess shuffles. Using this information, a future commit will be able
to add VTTI-based shuffle costs to the pair selection procedure. Importantly,
the number of remaining shuffles can now be estimated during pair selection.
There are some trivial instruction reorderings in the test cases, and one
simple additional test where we certainly want to do a reordering to
avoid an unnecessary shuffle.
llvm-svn: 167122
By propagating the value for the switch condition, LLVM can now build
lookup tables for code such as:
switch (x) {
case 1: return 5;
case 2: return 42;
case 3: case 4: case 5:
return x - 123;
default:
return 123;
}
Given that x is known for each case, "x - 123" becomes a constant for
cases 3, 4, and 5.
llvm-svn: 167115
This patch migrates the stpcpy optimizations from the simplify-libcalls
pass into the instcombine library call simplifier. Note that the
__stpcpy_chk simplifications were migrated in a previous commit.
llvm-svn: 167083
r166198 migrated the strcpy optimization to instcombine. The strcpy
simplifier that was migrated from Transforms/Scalar/SimplifyLibCalls.cpp
was also doing some __strcpy_chk simplifications. Those fortified
simplifications were migrated as well, but introduced a bug in the
__stpcpy_chk simplifier in the process. This happened because the
__strcpy_chk and __stpcpy_chk simplifiers were both mapped to StrCpyChkOpt
which was updated with simplifications that worked for __strcpy_chk, but
not __stpcpy_chk.
This patch fixes the problem by adding proper test coverage and creating a
new simplifier for __stpcpy_chk (instead of sharing one with __strcpy_chk).
llvm-svn: 167082
integers in that the code to handle split alloca-wide integer loads or
stores doesn't come first. It should, for the same reasons as with
integers, and the PR attests to that. Also had to fix a busted assert in
that this test case also covers.
llvm-svn: 167051
Instead of recomputing relative pointer information just prior to fusing,
cache this information (which also needs to be computed during the
candidate-pair selection process). This cuts down on the total number of
SE queries made, and also is a necessary intermediate step on the road toward
including shuffle costs in the pair selection procedure.
No functionality change is intended.
llvm-svn: 167049
Stop propagating the FlipMemInputs variable into the routines that
create the replacement instructions. Instead, just flip the arguments
of those routines. This allows for some associated cleanup (not all
of which is done here). No functionality change is intended.
llvm-svn: 167042
SE was being called during the instruction-fusion process (when the result
is unreliable, and thus ignored). No functionality change is intended.
llvm-svn: 167037
When the switch-to-lookup tables transform landed in SimplifyCFG, it
was pointed out that this could be inappropriate for some targets.
Since there was no way at the time for the pass to know anything about
the target, an awkward reverse-transform was added in CodeGenPrepare
that turned lookup tables back into switches for some targets.
This patch uses the new TargetTransformInfo to determine if a
switch should be transformed, and removes
CodeGenPrepare::ConvertLoadToSwitch.
llvm-svn: 167011
checks to avoid performing compile-time arithmetic on PPCDoubleDouble.
Now that APFloat supports arithmetic on PPCDoubleDouble, those checks
are no longer needed, and we can treat the type like any other.
llvm-svn: 166958
wrapper returns a vector of integers when passed a vector of pointers) by having
getIntPtrType itself return a vector of integers in this case. Outside of this
wrapper, I didn't find anywhere in the codebase that was relying on the old
behaviour for vectors of pointers, so give this a whirl through the buildbots.
llvm-svn: 166939
output of both
llvm-extract foo.ll -func=bar
and
llvm-extract foo.ll -func=bar -delete
so the two new files could not be linked together anymore. With this change
alias are handled almost like functions and global variables. Almost because
with alias we cannot just clear the initializer/body, we have to create a new
declaration and replace the alias with it.
The net result is that now the output of the above commands can be linked
even if foo.ll has aliases.
llvm-svn: 166907
This turns loops like
for (unsigned i = 0; i != n; ++i)
p[i] = p[i+1];
into memmove, which has a highly optimized implementation in most libcs.
This was really easy with the new DependenceAnalysis :)
llvm-svn: 166875
Requires a lot less code and complexity on loop-idiom's side and the more
precise analysis can catch more cases, like the one I included as a test case.
This also fixes the edge-case miscompilation from PR9481.
Compile time performance seems to be slightly worse, but this is mostly due
to an extra LCSSA run scheduled by the PassManager and should be fixed there.
llvm-svn: 166874
The monolithic interface for instruction costs has been split into
several functions. This is the corresponding change. No functionality
change is intended.
llvm-svn: 166865
Add getCostXXX calls for different families of opcodes, such as casts, arithmetic, cmp, etc.
Port the LoopVectorizer to the new API.
The LoopVectorizer now finds instructions which will remain uniform after vectorization. It uses this information when calculating the cost of these instructions.
llvm-svn: 166836
This is currently true, but may change when DA grows more aggressive caching.
Without this setting it's impossible to use DA from a LoopPass because DA is a
function pass and cannot be properly scheduled in between LoopPasses. The
LoopManager reacts to this with an infinite loop which made this really annoying
to debug.
llvm-svn: 166788
The LoopSimplify bug is pretty harmless because the loop goes from unanalyzable
to analyzable but the LCSSA bug is very nasty. It only comes into play with a
specific order of the LoopPassManager worklist and can cause actual
miscompilations, when a SCEV refers to a value that has been replaced with PHI
node. SCEVExpander may then insert code into the wrong place, either violating
domination or randomly miscompiling stuff.
Comes with an extensive test case reduced from the test-suite with
bugpoint+SCEVValidator.
llvm-svn: 166787
This is needed so that perl's SHA can be compiled (otherwise
BBVectorize takes far too long to find its fixed point).
I'll try to come up with a reduced test case.
llvm-svn: 166738