When these instructions are encoded in VEX (on AVX) there is no such requirement. This changes the folding
tables and removes the alignment restrictions from VEX-encoded instructions.
llvm-svn: 171024
The only way to read the eflags is using push and pop. If we don't
adjust the stack then we run over the first frame index. This is
not something that we want to do, so we have to make sure that
our machine function does not copy the flags. If it does then
we have to emit the prolog that adjusts the stack.
rdar://12896831
llvm-svn: 170961
Use the version that also takes an MF reference instead.
It would technically be possible to extract an MF reference from the MI
as MI->getParent()->getParent(), but that would not work for MIs that
are not inserted into any basic block.
Given the reasonably small number of places this constructor was used at
all, I preferred the compile time check to a run time assertion.
llvm-svn: 170588
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
when the destination register is wider than the memory load.
These load instructions load from m32 or m64 and set the upper bits to zero,
while the folded instructions may accept m128.
rdar://12721174
llvm-svn: 168710
We use the enums to query whether an Attributes object has that attribute. The
opaque layer is responsible for knowing where that specific attribute is stored.
llvm-svn: 165488
- Rewrite/merge pseudo-atomic instruction emitters to address the
following issue:
* Reduce one unnecessary load in spin-loop
previously the spin-loop looks like
thisMBB:
newMBB:
ld t1 = [bitinstr.addr]
op t2 = t1, [bitinstr.val]
not t3 = t2 (if Invert)
mov EAX = t1
lcs dest = [bitinstr.addr], t3 [EAX is implicit]
bz newMBB
fallthrough -->nextMBB
the 'ld' at the beginning of newMBB should be lift out of the loop
as lcs (or CMPXCHG on x86) will load the current memory value into
EAX. This loop is refined as:
thisMBB:
EAX = LOAD [MI.addr]
mainMBB:
t1 = OP [MI.val], EAX
LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
JNE mainMBB
sinkMBB:
* Remove immopc as, so far, all pseudo-atomic instructions has
all-register form only, there is no immedidate operand.
* Remove unnecessary attributes/modifiers in pseudo-atomic instruction
td
* Fix issues in PR13458
- Add comprehensive tests on atomic ops on various data types.
NOTE: Some of them are turned off due to missing functionality.
- Revise tests due to the new spin-loop generated.
llvm-svn: 164281
We perform the following:
1> Use SUB instead of CMP for i8,i16,i32 and i64 in ISel lowering.
2> Modify MachineCSE to correctly handle implicit defs.
3> Convert SUB back to CMP if possible at peephole.
Removed pattern matching of (a>b) ? (a-b):0 and like, since they are handled
by peephole now.
rdar://11873276
llvm-svn: 161462
We can't rematerialize a PIC base after register allocation anyway, and
scanning physreg use-def chains is very expensive in a function with
many calls.
<rdar://problem/12047515>
llvm-svn: 161461
Machine CSE and other optimizations can remove instructions so folding
is possible at peephole while not possible at ISel.
This patch is a rework of r160919 and was tested on clang self-host on my local
machine.
rdar://10554090 and rdar://11873276
llvm-svn: 161152
Machine CSE and other optimizations can remove instructions so folding
is possible at peephole while not possible at ISel.
rdar://10554090 and rdar://11873276
llvm-svn: 160919
It is possible that an instruction can use and update EFLAGS.
When checking the safety, we should check the usage of EFLAGS first before
declaring it is safe to optimize due to the update.
llvm-svn: 160912
Updated OptimizeCompare in peephole to remove redundant cmp against zero.
We only remove Compare if CF and OF are not used.
rdar://11855129
llvm-svn: 160454
undef virtual register. The problem is that ProcessImplicitDefs removes the
definition of the register and marks all uses as undef. If we lose the undef
marker then we get a register which has no def, is not marked as undef. The
live interval analysis does not collect information for these virtual
registers and we crash in later passes.
Together with Michael Kuperstein <michael.m.kuperstein@intel.com>
llvm-svn: 160260
Allow the folding of vbroadcastRR to vbroadcastRM, where the memory operand is a spill slot.
PR12782.
Together with Michael Kuperstein <michael.m.kuperstein@intel.com>
llvm-svn: 160230
getCondFromSETOpc, getCondFromCMovOpc, getSETFromCond, getCMovFromCond
No functional change intended.
If we want to update the condition code of CMOV|SET|Jcc, we first analyze the
opcode to get the condition code, then update the condition code, finally
synthesize the new opcode form the new condition code.
llvm-svn: 159955
It is safe if EFLAGS is killed or re-defined.
When we are done with the basic block, check whether EFLAGS is live-out.
Do not optimize away cmp if EFLAGS is live-out.
llvm-svn: 159888
For each Cmp, we check whether there is an earlier Sub which make Cmp
redundant. We handle the case where SUB operates on the same source operands as
Cmp, including the case where the two source operands are swapped.
llvm-svn: 159838
Implement the TII hooks needed by EarlyIfConversion to create cmov
instructions and estimate their latency.
Early if-conversion is still not enabled by default.
llvm-svn: 159695
The commit is intended to fix rdar://11540023.
It is implemented as part of peephole optimization. We can actually implement
this in the SelectionDAG lowering phase.
llvm-svn: 158122
There are some that I didn't remove this round because they looked like
obvious stubs. There are dead variables in gtest too, they should be
fixed upstream.
llvm-svn: 158090
This patch will optimize the following:
sub r1, r3
cmp r3, r1 or cmp r1, r3
bge L1
TO
sub r1, r3
bge L1 or ble L1
If the branch instruction can use flag from "sub", then we can eliminate
the "cmp" instruction.
llvm-svn: 157831
This implements codegen support for accesses to thread-local variables
using the local-dynamic model, and adds a clean-up pass so that the base
address for the TLS block can be re-used between local-dynamic access on
an execution path.
llvm-svn: 157818
This patch will optimize the following
movq %rdi, %rax
subq %rsi, %rax
cmovsq %rsi, %rdi
movq %rdi, %rax
to
cmpq %rsi, %rdi
cmovsq %rsi, %rdi
movq %rdi, %rax
Perform this optimization if the actual result of SUB is not used.
rdar: 11540023
llvm-svn: 157755
I disabled FMA3 autodetection, since the result may differ from expected for some benchmarks.
I added tests for GodeGen and intrinsics.
I did not change llvm.fma.f32/64 - it may be done later.
llvm-svn: 157737
The getPointerRegClass() hook can return register classes that depend on
the calling convention of the current function (ptr_rc_tailcall).
So far, we have been able to infer the calling convention from the
subtarget alone, but as we add support for multiple calling conventions
per target, that no longer works.
Patch by Yiannis Tsiouris!
llvm-svn: 156328
to finalize MI bundles (i.e. add BUNDLE instruction and computing register def
and use lists of the BUNDLE instruction) and a pass to unpack bundles.
- Teach more of MachineBasic and MachineInstr methods to be bundle aware.
- Switch Thumb2 IT block to MI bundles and delete the hazard recognizer hack to
prevent IT blocks from being broken apart.
llvm-svn: 146542