Commit Graph

294 Commits

Author SHA1 Message Date
Arthur Eubanks a11bf9a7fb [AMDGPU][Inliner] Remove amdgpu-inline and add a new TTI inline hook
Having a custom inliner doesn't really fit in with the new PM's
pipeline. It's also extra technical debt.

amdgpu-inline only does a couple of custom things compared to the normal
inliner:
1) It disables inlining if the number of BBs in a function would exceed
   some limit
2) It increases the threshold if there are pointers to private arrays(?)

These can all be handled as TTI inliner hooks.
There already exists a hook for backends to multiply the inlining
threshold.

This way we can remove the custom amdgpu-inline pass.

This caused inline-hint.ll to fail, and after some investigation, it
looks like getInliningThresholdMultiplier() was previously getting
applied twice in amdgpu-inline (https://reviews.llvm.org/D62707 fixed it
not applying at all, so some later inliner change must have fixed
something), so I had to change the threshold in the test.

Reviewed By: rampitec

Differential Revision: https://reviews.llvm.org/D94153
2021-01-21 20:29:17 -08:00
David Green 39db5753f9 [LV][ARM] Inloop reduction cost modelling
This adds cost modelling for the inloop vectorization added in
745bf6cf44. Up until now they have been modelled as the original
underlying instruction, usually an add. This happens to works OK for MVE
with instructions that are reducing into the same type as they are
working on. But MVE's instructions can perform the equivalent of an
extended MLA as a single instruction:

  %sa = sext <16 x i8> A to <16 x i32>
  %sb = sext <16 x i8> B to <16 x i32>
  %m = mul <16 x i32> %sa, %sb
  %r = vecreduce.add(%m)
  ->
  R = VMLADAV A, B

There are other instructions for performing add reductions of
v4i32/v8i16/v16i8 into i32 (VADDV), for doing the same with v4i32->i64
(VADDLV) and for performing a v4i32/v8i16 MLA into an i64 (VMLALDAV).
The i64 are particularly interesting as there are no native i64 add/mul
instructions, leading to the i64 add and mul naturally getting very
high costs.

Also worth mentioning, under NEON there is the concept of a sdot/udot
instruction which performs a partial reduction from a v16i8 to a v4i32.
They extend and mul/sum the first four elements from the inputs into the
first element of the output, repeating for each of the four output
lanes. They could possibly be represented in the same way as above in
llvm, so long as a vecreduce.add could perform a partial reduction. The
vectorizer would then produce a combination of in and outer loop
reductions to efficiently use the sdot and udot instructions. Although
this patch does not do that yet, it does suggest that separating the
input reduction type from the produced result type is a useful concept
to model. It also shows that a MLA reduction as a single instruction is
fairly common.

This patch attempt to improve the costmodelling of in-loop reductions
by:
 - Adding some pattern matching in the loop vectorizer cost model to
   match extended reduction patterns that are optionally extended and/or
   MLA patterns. This marks the cost of the reduction instruction correctly
   and the sext/zext/mul leading up to it as free, which is otherwise
   difficult to tell and may get a very high cost. (In the long run this
   can hopefully be replaced by vplan producing a single node and costing
   it correctly, but that is not yet something that vplan can do).
 - getExtendedAddReductionCost is added to query the cost of these
   extended reduction patterns.
 - Expanded the ARM costs to account for these expanded sizes, which is a
   fairly simple change in itself.
 - Some minor alterations to allow inloop reduction larger than the highest
   vector width and i64 MVE reductions.
 - An extra InLoopReductionImmediateChains map was added to the vectorizer
   for it to efficiently detect which instructions are reductions in the
   cost model.
 - The tests have some updates to show what I believe is optimal
   vectorization and where we are now.

Put together this can greatly improve performance for reduction loop
under MVE.

Differential Revision: https://reviews.llvm.org/D93476
2021-01-21 21:03:41 +00:00
Caroline Concatto 060cfd9795 [AArch64][SVE]Add cost model for masked gather and scatter for scalable vector.
A new TTI interface has been added 'Optional <unsigned>getMaxVScale' that
    returns the maximum vscale for a given target.
    When known getMaxVScale is used to compute the cost of masked gather scatter
    for scalable vector.

    Depends on D92094

    Differential Revision: https://reviews.llvm.org/D93030
2021-01-04 13:59:58 +00:00
Cullen Rhodes 7c8796f9db [TTI] Add supportsScalableVectors target hook
This is split off from D91718 and adds a new target hook
supportsScalableVectors that can be queried to check if scalable vectors
are supported by the backend. For AArch64 this returns true if SVE is
enabled.

Reviewed By: david-arm

Differential Revision: https://reviews.llvm.org/D93060
2020-12-18 10:37:01 +00:00
Stanislav Mekhanoshin 87d7757bbe [SLP] Control maximum vectorization factor from TTI
D82227 has added a proper check to limit PHI vectorization to the
maximum vector register size. That unfortunately resulted in at
least a couple of regressions on SystemZ and x86.

This change reverts PHI handling from D82227 and replaces it with
a more general check in SLPVectorizerPass::tryToVectorizeList().
Moved to tryToVectorizeList() it allows to restart vectorization
if initial chunk fails.

However, this function is more general and handles not only PHI
but everything which SLP handles. If vectorization factor would
be limited to maximum vector register size it would limit much
more vectorization than before leading to further regressions.
Therefore a new TTI callback getMaximumVF() is added with the
default 0 to preserve current behavior and limit nothing. Then
targets can decide what is better for them.

The callback gets ElementSize just like a similar getMinimumVF()
function and the main opcode of the chain. The latter is to avoid
regressions at least on the AMDGPU. We can have loads and stores
up to 128 bit wide, and <2 x 16> bit vector math on some
subtargets, where the rest shall not be vectorized. I.e. we need
to differentiate based on the element size and operation itself.

Differential Revision: https://reviews.llvm.org/D92059
2020-12-14 08:49:40 -08:00
Caroline Concatto 4b0ef2b075 [NFC][CostModel]Extend class IntrinsicCostAttributes to use ElementCount Type
This patch replaces the attribute  `unsigned VF`  in the class
IntrinsicCostAttributes by `ElementCount VF`.
This is a non-functional change to help upcoming patches to compute the cost
model for scalable vector inside this class.

Differential Revision: https://reviews.llvm.org/D91532
2020-12-01 11:12:51 +00:00
Janek van Oirschot 42eaf4fe0a [HardwareLoops] Change order of SCEV expression construction for InitLoopCount.
Putting the +1 before the zero-extend will allow scalar evolution to fold the expression in some cases such as the one shown in PowerPC's `shrink-wrap.ll` test.

Reviewed By: samparker

Differential Revision: https://reviews.llvm.org/D91724
2020-11-24 18:01:42 +00:00
Sander de Smalen f571fe6df5 Reland [LoopVectorizer] NFCI: Calculate register usage based on TLI.getTypeLegalizationCost.
This relands https://reviews.llvm.org/D91059 and reverts commit
30fded75b4.

GetRegUsage now returns 0 when Ty is not a valid vector element type.
2020-11-17 13:45:10 +00:00
Michael Liao f375885ab8 [InferAddrSpace] Teach to handle assumed address space.
- In certain cases, a generic pointer could be assumed as a pointer to
  the global memory space or other spaces. With a dedicated target hook
  to query that address space from a given value, infer-address-space
  pass could infer and propagate that to all its users.

Differential Revision: https://reviews.llvm.org/D91121
2020-11-16 17:06:33 -05:00
Sander de Smalen 30fded75b4 Revert "[LoopVectorizer] NFCI: Calculate register usage based on TLI.getTypeLegalizationCost."
This reverts commits:
* [LoopVectorizer] NFCI: Calculate register usage based on TLI.getTypeLegalizationCost.
  b873aba394.
* [LoopVectorizer] Silence warning in GetRegUsage.
  9ff701100a.
2020-11-11 14:41:55 +00:00
Sander de Smalen b873aba394 [LoopVectorizer] NFCI: Calculate register usage based on TLI.getTypeLegalizationCost.
This is more accurate than dividing the bitwidth based on the element count by the
maximum register size, as it can just reuse whatever has been calculated for
legalization of these types.

This change is also necessary when calculating register usage for scalable vectors, where
the legalization of these types cannot be done based on the widest register size, because
that does not take the 'vscale' component into account.

Reviewed By: SjoerdMeijer

Differential Revision: https://reviews.llvm.org/D91059
2020-11-11 10:18:50 +00:00
Florian Hahn b3b993a7ad Reland "[TTI] Add VecPred argument to getCmpSelInstrCost."
This reverts the revert commit 408c4408fa.

This version of the patch includes a fix for a crash caused by
treating ICmp/FCmp constant expressions as instructions.

Original message:

On some targets, like AArch64, vector selects can be efficiently lowered
if the vector condition is a compare with a supported predicate.

This patch adds a new argument to getCmpSelInstrCost, to indicate the
predicate of the feeding select condition. Note that it is not
sufficient to use the context instruction when querying the cost of a
vector select starting from a scalar one, because the condition of the
vector select could be composed of compares with different predicates.

This change greatly improves modeling the costs of certain
compare/select patterns on AArch64.

I am also planning on putting up patches to make use of the new argument in
SLPVectorizer & LV.
2020-11-02 15:39:29 +00:00
Florian Hahn 408c4408fa Revert "[TTI] Add VecPred argument to getCmpSelInstrCost."
This reverts commit 73f01e3df5.

This appears to break
http://lab.llvm.org:8011/#/builders/85/builds/383.
2020-10-30 21:26:14 +00:00
Florian Hahn 73f01e3df5 [TTI] Add VecPred argument to getCmpSelInstrCost.
On some targets, like AArch64, vector selects can be efficiently lowered
if the vector condition is a compare with a supported predicate.

This patch adds a new argument to getCmpSelInstrCost, to indicate the
predicate of the feeding select condition. Note that it is not
sufficient to use the context instruction when querying the cost of a
vector select starting from a scalar one, because the condition of the
vector select could be composed of compares with different predicates.

This change greatly improves modeling the costs of certain
compare/select patterns on AArch64.

I am also planning on putting up patches to make use of the new argument in
SLPVectorizer & LV.

Reviewed By: dmgreen, RKSimon

Differential Revision: https://reviews.llvm.org/D90070
2020-10-30 13:49:08 +00:00
Chen Zheng 00e573cadb [LSR] fix typo in comments and rename for a new added hook. 2020-10-26 22:29:22 -04:00
Chen Zheng 1e0b6c1df0 [LSR] ignore profitable chain when reg num is not major cost.
Reviewed By: samparker

Differential Revision: https://reviews.llvm.org/D89665
2020-10-23 09:35:48 -04:00
Sanjay Patel 33125cffda [CostModel] fill in arguments as part of intrinsic attribute constructor
This appears to be an error of code duplication - instead of
one constructor variant calling another, we have N similar
but not identical versions.

I think this is 'NFC' based on the current callers, but it's
hard to tell or guess the intent in all cases.
2020-09-28 15:27:45 -04:00
Sanjay Patel 6189a8d9f5 [TTI] add wrapper for matching vector reduction to reduce code duplication; NFC
I'm not sure what this means, but the order in which we try
the matches makes a difference on at least 1 regression test...
2020-09-23 13:48:57 -04:00
Meera Nakrani a3d0dce260 [ARM][TTI] Prevents constants in a min(max) or max(min) pattern from being hoisted when in a loop
Changes TTI function getIntImmCostInst to take an additional Instruction parameter,
which enables us to be able to check it is part of a min(max())/max(min()) pattern that will match SSAT.
We can then mark the constant used as free to prevent it being hoisted so SSAT can still be generated.
Required minor changes in some non-ARM backends to allow for the optional parameter to be included.

Differential Revision: https://reviews.llvm.org/D87457
2020-09-22 11:54:10 +00:00
David Green 74760bb00f [LV][ARM] Add preferInloopReduction target hook.
This allows the backend to tell the vectorizer to produce inloop
reductions through a TTI hook.

For the moment on ARM under MVE this means allowing integer add
reductions of the correct size. In the future this can include integer
min/max too, under -Os.

Differential Revision: https://reviews.llvm.org/D75512
2020-09-12 17:47:04 +01:00
David Green 2b69efded0 [ARM][LV] Add a preferPredicatedReductionSelect target hook
As part of D84741, this adds a target hook for the
preferPredicatedReductionSelect option and makes use
of it under MVE, allowing us to tail predicate most
reduction loops.

Differential Revision: https://reviews.llvm.org/D85980
2020-08-21 08:48:12 +01:00
David Green 60280e9818 [Analysis] TTI: Add CastContextHint for getCastInstrCost
Currently, getCastInstrCost has limited information about the cast it's
rating, often just the opcode and types.  Sometimes there is a context
instruction as well, but it isn't trustworthy: for instance, when the
vectorizer is rating a plan, it calls getCastInstrCost with the old
instructions when, in fact, it's trying to evaluate the cost of the
instruction post-vectorization.  Thus, the current system can get the
cost of certain casts incorrect as the correct cost can vary greatly
based on the context in which it's used.

For example, if the vectorizer queries getCastInstrCost to evaluate the
cost of a sext(load) with tail predication enabled, getCastInstrCost
will think it's free most of the time, but it's not always free. On ARM
MVE, a VLD2 group cannot be extended like a normal VLDR can. Similar
situations can come up with how masked loads can be extended when being
split.

To fix that, this path adds a new parameter to getCastInstrCost to give
it a hint about the context of the cast. It adds a CastContextHint enum
which contains the type of the load/store being created by the
vectorizer - one for each of the types it can produce.

Original patch by Pierre van Houtryve

Differential Revision: https://reviews.llvm.org/D79162
2020-07-29 13:32:53 +01:00
Christopher Tetreault 23c5e59d9f [SVE] Remove calls to VectorType::getNumElements from Analysis
Reviewers: efriedma, fpetrogalli, c-rhodes, asbirlea, RKSimon

Reviewed By: RKSimon

Subscribers: tschuett, hiraditya, rkruppe, psnobl, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D81504
2020-07-22 15:19:05 -07:00
Sebastian Neubauer 2a6c871596 [InstCombine] Move target-specific inst combining
For a long time, the InstCombine pass handled target specific
intrinsics. Having target specific code in general passes was noted as
an area for improvement for a long time.

D81728 moves most target specific code out of the InstCombine pass.
Applying the target specific combinations in an extra pass would
probably result in inferior optimizations compared to the current
fixed-point iteration, therefore the InstCombine pass resorts to newly
introduced functions in the TargetTransformInfo when it encounters
unknown intrinsics.
The patch should not have any effect on generated code (under the
assumption that code never uses intrinsics from a foreign target).

This introduces three new functions:
TargetTransformInfo::instCombineIntrinsic
TargetTransformInfo::simplifyDemandedUseBitsIntrinsic
TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic

A few target specific parts are left in the InstCombine folder, where
it makes sense to share code. The largest left-over part in
InstCombineCalls.cpp is the code shared between arm and aarch64.

This allows to move about 3000 lines out from InstCombine to the targets.

Differential Revision: https://reviews.llvm.org/D81728
2020-07-22 15:59:49 +02:00
Sidharth Baveja e541e1b757 [NFC] Separate Peeling Properties into its own struct (re-land after minor fix)
Summary:
This patch separates the peeling specific parameters from the UnrollingPreferences,
and creates a new struct called PeelingPreferences. Functions which used the
UnrollingPreferences struct for peeling have been updated to use the PeelingPreferences struct.

Author: sidbav (Sidharth Baveja)

Reviewers: Whitney (Whitney Tsang), Meinersbur (Michael Kruse), skatkov (Serguei Katkov), ashlykov (Arkady Shlykov), bogner (Justin Bogner), hfinkel (Hal Finkel), anhtuyen (Anh Tuyen Tran), nikic (Nikita Popov)

Reviewed By: Meinersbur (Michael Kruse)

Subscribers: fhahn (Florian Hahn), hiraditya (Aditya Kumar), llvm-commits, LLVM

Tag: LLVM

Differential Revision: https://reviews.llvm.org/D80580
2020-07-10 18:39:30 +00:00
Nikita Popov 0b39d2d752 Revert "[NFC] Separate Peeling Properties into its own struct"
This reverts commit 0369dc98f9.

Many failing tests.
2020-07-08 21:43:32 +02:00
Sidharth Baveja 0369dc98f9 [NFC] Separate Peeling Properties into its own struct
Summary:
This patch makes the peeling properties of the loop accessible by other loop transformations.

Author: sidbav (Sidharth Baveja)

Reviewers: Whitney (Whitney Tsang), Meinersbur (Michael Kruse), skatkov (Serguei Katkov), ashlykov (Arkady Shlykov), bogner (Justin Bogner), hfinkel (Hal Finkel)

Reviewed By: Meinersbur (Michael Kruse)

Subscribers: fhahn (Florian Hahn), hiraditya (Aditya Kumar), llvm-commits, LLVM

Tag: LLVM

Differential Revision: https://reviews.llvm.org/D80580
2020-07-08 18:59:59 +00:00
Anh Tuyen Tran 6965af43e6 Revert "[NFC] Separate Peeling Properties into its own struct"
This reverts commit fead250b43.
2020-07-08 18:58:05 +00:00
Anh Tuyen Tran fead250b43 [NFC] Separate Peeling Properties into its own struct
Summary:
This patch makes the peeling properties of the loop accessible by other loop transformations.

Author: sidbav (Sidharth Baveja)

Reviewers: Whitney (Whitney Tsang), Meinersbur (Michael Kruse), skatkov (Serguei Katkov), ashlykov (Arkady Shlykov), bogner (Justin Bogner), hfinkel (Hal Finkel)

Reviewed By: Meinersbur (Michael Kruse)

Subscribers: fhahn (Florian Hahn), hiraditya (Aditya Kumar), llvm-commits, LLVM

Tag: LLVM

Differential Revision: https://reviews.llvm.org/D80580
2020-07-08 18:56:03 +00:00
Sam Parker 0724153bbe [CostModel] Fix cast crash
Don't presume instruction operands while matching reductions.

Bugzilla: https://bugs.llvm.org/show_bug.cgi?id=46430

Differential Revision: https://reviews.llvm.org/D82453
2020-07-03 07:53:45 +01:00
Guillaume Chatelet 1507fc1506 [Alignment][NFC] Migrate TTI::isLegalToVectorize{Load,Store}Chain to Align
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Differential Revision: https://reviews.llvm.org/D82653
2020-06-26 14:14:27 +00:00
Guillaume Chatelet b66e33a689 [Alignment][NFC] Migrate TTI::getGatherScatterOpCost to Align
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Differential Revision: https://reviews.llvm.org/D82577
2020-06-26 11:08:27 +00:00
Guillaume Chatelet fdc7c7fb87 [Alignment][NFC] Migrate TTI::getInterleavedMemoryOpCost to Align
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Differential Revision: https://reviews.llvm.org/D82573
2020-06-26 11:00:53 +00:00
Guillaume Chatelet 7e1f79c3de [Alignment][NFC] Migrate TTI::getMaskedMemoryOpCost to Align
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Differential Revision: https://reviews.llvm.org/D82569
2020-06-26 10:14:16 +00:00
dfukalov 7ddee0922f [NFCI][CostModel] Add const to Value*.
Summary:
Get back `const` partially lost in one of recent changes.
Additionally specify explicit qualifiers in few places.

Reviewers: samparker

Reviewed By: samparker

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D82383
2020-06-24 23:16:08 +03:00
Michael Liao 2defe55722 [TTI] Expose isNoopAddrSpaceCast in TTI.
Reviewers: arsenm

Subscribers: wdng, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D82025
2020-06-18 14:40:47 -04:00
Sjoerd Meijer 20835cff27 [TTI] Refactor emitGetActiveLaneMask
Refactor TTI hook emitGetActiveLaneMask and remove the unused arguments
as suggested in D79100.
2020-06-17 09:53:58 +01:00
Sam Parker 7158f285a8 [CostModel] Unify getCFInstrCost
Have TTI::getInstructionThroughput call getUserCost for Br, Ret and
PHI. This now means that eveything in getInstructionThroughput is
handled by getUserCost.

Differential Revision: https://reviews.llvm.org/D79849
2020-06-16 08:40:54 +01:00
Sam Parker 321ebfd175 [NFCI][CostModel] Unify FNeg cost
Enable TTIImpl::getUserCost to handle FNeg so that
getInstructionThroughput can call that instead. This means we can
remove the code in the AMDGPU backend too.

Differential Revision: https://reviews.llvm.org/D81635
2020-06-15 08:33:04 +01:00
Sam Parker 51541c068a [CostModel] Unify ExtractElement cost.
Move the cost modelling, with the reduction pattern matching, from
getInstructionThroughput into generic TTIImpl::getUserCost. The
modelling in the AMDGPU backend can now be removed.

Differential Revision: https://reviews.llvm.org/D81643
2020-06-15 08:27:14 +01:00
Sam Parker 09d30cb977 [CostModel] Unify Shuffle and InsertElement Costs
Extract the existing code from getInstructionThroughput into
TTImpl::getUserCost. The duplicated code in the AMDGPU backend has
also been removed.

Differential Revision: https://reviews.llvm.org/D81448
2020-06-10 09:13:34 +01:00
Sam Parker fa8bff0cd1 [CostModel] Unify getArithmeticInstrCost
Add the remaining arithmetic opcodes into the generic implementation
of getUserCost and then call this from getInstructionThroughput. Most
of the backends have been modified to return the base implementation
for cost kinds other RecipThroughput. The outlier here is AMDGPU
which already uses getArithmeticInstrCost for all the cost kinds.
This change means that most of the opcodes can be removed from that
backends implementation of getUserCost.

Differential Revision: https://reviews.llvm.org/D80992
2020-06-10 09:08:45 +01:00
Sam Parker 37289615c0 [NFCI][CostModel] Unify getCmpSelInstrCost
Add cases for icmp, fcmp and select into the switch statement of the
generic getUserCost implementation with getInstructionThroughput then
calling into it. The BasicTTI and backend implementations have be set
to return a default value (1) when a cost other than throughput is
being queried.

Differential Revision: https://reviews.llvm.org/D80550
2020-06-09 07:41:22 +01:00
Simon Pilgrim 5006e551d3 LoopAnalysisManager.h - reduce includes to forward declarations. NFC.
Move implicit include dependencies down to header/source files.
2020-06-06 14:06:46 +01:00
Sam Parker 9303546b42 [CostModel] Unify getMemoryOpCost
Use getMemoryOpCost from the generic implementation of getUserCost
and have getInstructionThroughput return the result of that for loads
and stores.

This also means that the X86 implementation of getUserCost can be
removed with the functionality folded into its getMemoryOpCost.

Differential Revision: https://reviews.llvm.org/D80984
2020-06-05 10:13:38 +01:00
Sjoerd Meijer 7480ccbfc9 [TTI] New target hook emitGetActiveLaneMask
This is split off from D79100 and adds a new target hook emitGetActiveLaneMask
that can be queried to check if the intrinsic @llvm.get.active.lane.mask() is
supported by the backend and if it should be emitted for a given loop.

See also commit rG7fb8a40e5220 and its commit message for more details/context
on this new intrinsic.

Differential Revision: https://reviews.llvm.org/D80597
2020-05-29 09:10:58 +01:00
Matt Arsenault d6671ee90c InferAddressSpaces: Handle ptrmask intrinsic
This one is slightly odd since it counts as an address expression,
which previously could never fail. Allow the existing TTI hook to
return the value to use, and re-use it for handling how to handle
ptrmask.

Handles the no-op addrspacecasts for AMDGPU. We could probably do
something better based on analysis of the mask value based on the
address space, but leave that for now.
2020-05-28 10:04:02 -04:00
Sam Parker bd9dce8f9a [CostModel] getUserCost for intrinsic throughput
Last part of recommitting 'Unify Intrinsic Costs'
259eb619ff. This patch now uses
getUserCost from getInstructionThroughput.

Differential Revision: https://reviews.llvm.org/D80012
2020-05-26 12:23:37 +01:00
Sam Parker 8aaabadece [CostModel] Unify getCastInstrCost
Add the remaining cast instruction opcodes to the base implementation
of getUserCost and directly return the result. This allows
getInstructionThroughput to return getUserCost for the casts. This
has required changes to PPC and SystemZ because they implement
getUserCost and/or getCastInstrCost with adjustments for vector
operations. Adjusts have also been made in the remaining backends
that implement the method so that they still produce a cost of zero
or one for cost kinds other than throughput.

Differential Revision: https://reviews.llvm.org/D79848
2020-05-26 11:29:57 +01:00
Sam Parker 871556a494 [CostModel] Unify Intrinsic Costs.
Recommitting most of the remaining changes from
259eb619ff, but excluding the call to
getUserCost from getInstructionThroughput. Though there's still no
test changes, I doubt that this is an NFC...

With the two getIntrinsicInstrCosts folded into one, now fold in the
scalar/code-size orientated getIntrinsicCost. The remaining scalar
intrinsics were memcpy, cttz and ctlz which now have special handling
in the BasicTTI implementation.

This had required a change in the AMDGPU backend for fabs as it
should always be 'free'. I've also changed the X86 backend to return
the BaseT implementation when the CostKind isn't RecipThroughput.

Differential Revision: https://reviews.llvm.org/D80012
2020-05-26 09:48:26 +01:00