The switch must set the predicate correctly; anything else
should lead to unreachable/assert.
I'm trying to fix FMF propagation here and the callers,
so this is a preliminary cleanup.
This patch adds additional checks to avoid partial unswitching
in cases where it won't be profitable, e.g. because the path directly
exits the loop anyways.
Loop peeling removes conditions from loop bodies that become invariant
after a small number of iterations. When triggered, this leads to fewer
compares and possibly PHIs in loop bodies, enabling further
optimizations. The current cost-model of loop peeling should be quite
conservative/safe, i.e. only peel if a condition in the loop becomes
known after peeling.
For example, see PR47671, where loop peeling enables vectorization by
removing a PHI the vectorizer does not understand. Granted, the
loop-vectorizer could also be taught about constant PHIs, but loop
peeling is likely to enable other optimizations as well.
This has an impact on quite a few benchmarks from
MultiSource/SPEC2000/SPEC2006 on X86 with -O3 -flto, for example
Same hash: 186 (filtered out)
Remaining: 51
Metric: loop-vectorize.LoopsVectorized
Program base patch diff
test-suite...ve-susan/automotive-susan.test 8.00 9.00 12.5%
test-suite...nal/skidmarks10/skidmarks.test 35.00 31.00 -11.4%
test-suite...lications/sqlite3/sqlite3.test 41.00 43.00 4.9%
test-suite...s/ASC_Sequoia/AMGmk/AMGmk.test 25.00 26.00 4.0%
test-suite...006/450.soplex/450.soplex.test 88.00 89.00 1.1%
test-suite...TimberWolfMC/timberwolfmc.test 120.00 119.00 -0.8%
test-suite.../CINT2006/403.gcc/403.gcc.test 215.00 216.00 0.5%
test-suite...006/447.dealII/447.dealII.test 957.00 958.00 0.1%
test-suite...ternal/HMMER/hmmcalibrate.test 75.00 75.00 0.0%
Same hash: 186 (filtered out)
Remaining: 51
Metric: loop-vectorize.LoopsAnalyzed
Program base patch diff
test-suite...ks/Prolangs-C/agrep/agrep.test 440.00 434.00 -1.4%
test-suite...nal/skidmarks10/skidmarks.test 312.00 308.00 -1.3%
test-suite...marks/7zip/7zip-benchmark.test 6399.00 6323.00 -1.2%
test-suite...lications/minisat/minisat.test 134.00 135.00 0.7%
test-suite...rks/FreeBench/pifft/pifft.test 295.00 297.00 0.7%
test-suite...TimberWolfMC/timberwolfmc.test 1879.00 1869.00 -0.5%
test-suite...pplications/treecc/treecc.test 689.00 691.00 0.3%
test-suite...T2000/300.twolf/300.twolf.test 1593.00 1597.00 0.3%
test-suite.../Benchmarks/Bullet/bullet.test 1394.00 1392.00 -0.1%
test-suite...ications/JM/ldecod/ldecod.test 1431.00 1429.00 -0.1%
test-suite...6/464.h264ref/464.h264ref.test 2229.00 2230.00 0.0%
test-suite...lications/sqlite3/sqlite3.test 2590.00 2589.00 -0.0%
test-suite...ications/JM/lencod/lencod.test 2732.00 2733.00 0.0%
test-suite...006/453.povray/453.povray.test 3395.00 3394.00 -0.0%
Note the -11% regression in number of loops vectorized for skidmarks. I
suspect this corresponds to the fact that those loops are gone now (see
the reduction in number of loops analyzed by LV).
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D88471
This patch fixes llvm-link crash when materializing global variable
with appending linkage and initializer that depends on another
global with appending linkage.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D95329
This change leverages the work done in D83743 to replay in the SampleProfile inliner to also be used in the CGSCC inliner. NOTE: currently restricted to non-ML advisors only.
The added switch `-cgscc-inline-replay=<remarks file>` will replay the inlining decisions in that file where the remarks file is generated via `-Rpass=inline`. The aim here is to make it easier to analyze changes that would modify inlining heuristics to be separated from this behavior. Doing so allows easier examination of assembly and runtime behavior compared to the baseline rather than trying to dig through the large churn caused by inlining.
In LTO compilation, since inlining is done twice you can separately specify replay by passing the flag to the FE (`-cgscc-inline-replay=`) and to the linker (`-Wl,cgscc-inline-replay=`) with the remarks generated from their respective places.
Testing on mysqld by comparing the inline decisions between base (generates remarks.txt) and diff (replay using identical input/tools with remarks.txt) and examining the inlining sites with `diff` shows 14,000 mismatches out of 247,341 for a ~94% replay accuracy. I believe this gap can be narrowed further though for the general case we may never achieve full accuracy. For my personal use, this is close enough to be representative: I set the baseline as the one generated by the replay on identical input/toolset and compare that to my modified input/toolset using the same replay.
Testing:
ninja check-llvm
newly added test correctly replays CGSCC inlining decisions
Reviewed By: mtrofin, wenlei
Differential Revision: https://reviews.llvm.org/D94334
When LSR converts a branch on the pre-inc IV into a branch on the
post-inc IV, the nowrap flags on the addition may no longer be valid.
Previously, a poison result of the addition might have been ignored,
in which case the program was well defined. After branching on the
post-inc IV, we might be branching on poison, which is undefined behavior.
Fix this by discarding nowrap flags which are not present on the SCEV
expression. Nowrap flags on the SCEV expression are proven by SCEV
to always hold, independently of how the expression will be used.
This is essentially the same fix we applied to IndVars LFTR, which
also performs this kind of pre-inc to post-inc conversion.
I believe a similar problem can also exist for getelementptr inbounds,
but I was not able to come up with a problematic test case. The
inbounds case would have to be addressed in a differently anyway
(as SCEV does not track this property).
Fixes https://bugs.llvm.org/show_bug.cgi?id=46943.
Differential Revision: https://reviews.llvm.org/D95286
or claimRV calls in the IR
Background:
This patch makes changes to the front-end and middle-end that are
needed to fix a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end annotates calls with attribute "clang.arc.rv"="retain"
or "clang.arc.rv"="claim", which indicates the call is implicitly
followed by a marker instruction and a retainRV/claimRV call that
consumes the call result. This is currently done only when the target
is arm64 and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the
annotated calls in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the annotated
calls. It doesn't remove the attribute on the call since the backend
needs it to emit the marker instruction. The retainRV/claimRV calls
are emitted late in the pipeline to prevent optimization passes from
transforming the IR in a way that makes it harder for the ARC
middle-end passes to figure out the def-use relationship between the
call and the retainRV/claimRV calls (which is the cause of PR31925).
- The function inliner removes the autoreleaseRV call in the callee that
returns the result if nothing in the callee prevents it from being
paired up with the calls annotated with "clang.arc.rv"="retain/claim"
in the caller. If the call is annotated with "claim", a release call
is inserted since autoreleaseRV+claimRV is equivalent to a release. If
it cannot find an autoreleaseRV call, it tries to transfer the
attributes to a function call in the callee. This is important since
ARC optimizer can remove the autoreleaseRV call returning the callee
result, which makes it impossible to pair it up with the retainRV or
claimRV call in the caller. If that fails, it simply emits a retain
call in the IR if the call is annotated with "retain" and does nothing
if it's annotated with "claim".
- This patch teaches dead argument elimination pass not to change the
return type of a function if any of the calls to the function are
annotated with attribute "clang.arc.rv". This is necessary since the
pass can incorrectly determine nothing in the IR uses the function
return, which can happen since the front-end no longer explicitly
emits retainRV/claimRV calls in the IR, and change its return type to
'void'.
Future work:
- Use the attribute on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls annotated with the attributes.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
Now that VPRecipeBase inherits from VPDef, we can always use the new
VPValue for replacement, if the recipe defines one. Given the recipes
that are supported at the moment, all new recipes must have either 0 or
1 defined values.
Fixes an infinite loop encountered in GVN.
GVN will delay PRE if it encounters critical edges, attempt to split
them later via calls to SplitCriticalEdge(), then restart.
The caller of GVN::splitCriticalEdges() assumed a return value of true
meant that critical edges were split, that the IR had changed, and that
PRE should be re-attempted, upon which we loop infinitely.
This was exposed after D88438, by compiling the Linux kernel for s390,
but the test case is reproducible on x86.
Fixes: https://github.com/ClangBuiltLinux/linux/issues/1261
Reviewed By: void
Differential Revision: https://reviews.llvm.org/D94996
turning off SampleFDO silently.
Currently sample loader pass turns off SampleFDO optimization silently when
it sees error in reading the profile. This behavior will defeat the tests
which could have caught those bad/incompatible profile problems. This patch
change the behavior to report error.
Differential Revision: https://reviews.llvm.org/D95269
We can sink extends after min/max if they match and would
not change the sign-interpreted compare. The only combo
that doesn't work is zext+smin/smax because the zexts
could change a negative number into positive:
https://alive2.llvm.org/ce/z/D6sz6J
Sext+umax/umin works:
define i32 @src(i8 %x, i8 %y) {
%0:
%sx = sext i8 %x to i32
%sy = sext i8 %y to i32
%m = umax i32 %sx, %sy
ret i32 %m
}
=>
define i32 @tgt(i8 %x, i8 %y) {
%0:
%m = umax i8 %x, %y
%r = sext i8 %m to i32
ret i32 %r
}
Transformation seems to be correct!
In the cloning infrastructure, only track an MDNode mapping,
without explicitly storing the Metadata mapping, same as is done
during inlining. This makes things slightly simpler.
a6f0221276 enabled intersection of FMF on reduction instructions,
so it is safe to ease the check here.
There is still some room to improve here - it looks like we
have nearly duplicate flags propagation logic inside of the
LoopUtils helper but it is limited targets that do not form
reduction intrinsics (they form the shuffle expansion).
A @llvm.experimental.noalias.scope.decl is only useful if there is !alias.scope and !noalias metadata that uses the declared scope.
When that is not the case for at least one of the two, the intrinsic call can as well be removed.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D95141
Similar to D92887, LoopRotation also needs duplicate the noalias scopes when rotating a `@llvm.experimental.noalias.scope.decl` across a block boundary.
This is based on the version from the Full Restrict paches (D68511).
The problem it fixes also showed up in Transforms/Coroutines/ex5.ll after D93040 (when enabling strict checking with -verify-noalias-scope-decl-dom).
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D94306
This is a fix for https://bugs.llvm.org/show_bug.cgi?id=39282. Compared to D90104, this version is based on part of the full restrict patched (D68484) and uses the `@llvm.experimental.noalias.scope.decl` intrinsic to track the location where !noalias and !alias.scope scopes have been introduced. This allows us to only duplicate the scopes that are really needed.
Notes:
- it also includes changes and tests from D90104
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D92887
Add an intrinsic type class to represent the
llvm.experimental.noalias.scope.decl intrinsic, to make code
working with it a bit nicer by hiding the metadata extraction
from view.
Some utilities used by InstCombine, like SimplifyLibCalls, may add new
instructions and replace the uses of a call, but return nullptr because
the inserted call produces multiple results.
Previously, the replaced library calls would get removed by
InstCombine's deleter, but after
292077072e this may not happen, if the
willreturn attribute is missing.
As a work-around, update replaceInstUsesWith to set MadeIRChange, if it
replaces any uses. This catches the cases where it is used as replacer
by utilities used by InstCombine and seems useful in general; updating
uses will modify the IR.
This fixes an expensive-check failure when replacing
@__sinpif/@__cospifi with @__sincospif_sret.
As shown in the test diffs, we could miscompile by
propagating flags that did not exist in the original
code.
The flags required for fmin/fmax reductions will be
fixed in a follow-up patch.
With the addition of the `willreturn` attribute, functions that may
not return (e.g. due to an infinite loop) are well defined, if they are
not marked as `willreturn`.
This patch updates `wouldInstructionBeTriviallyDead` to not consider
calls that may not return as dead.
This patch still provides an escape hatch for intrinsics, which are
still assumed as willreturn unconditionally. It will be removed once
all intrinsics definitions have been reviewed and updated.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D94106
If i change it to AssertingVH instead, a number of existing tests fail,
which means we don't consistently remove from the set when deleting blocks,
which means newly-created blocks may happen to appear in that set
if they happen to occupy the same memory chunk as did some block
that was in the set originally.
There are many places where we delete blocks,
and while we could probably consistently delete from LoopHeaders
when deleting a block in transforms located in SimplifyCFG.cpp itself,
transforms located elsewhere (Local.cpp/BasicBlockUtils.cpp) also may
delete blocks, and it doesn't seem good to teach them to deal with it.
Since we at most only ever delete from LoopHeaders,
let's just delegate to WeakVH to do that automatically.
But to be honest, personally, i'm not sure that the idea
behind LoopHeaders is sound.
Insert a llvm.experimental.noalias.scope.decl intrinsic that identifies where a noalias argument was inlined.
This patch includes some refactorings from D90104.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D93040
This builds on the restricted after initial revert form of D93906, and adds back support for breaking backedges of inner loops. It turns out the original invalidation logic wasn't quite right, specifically around the handling of LCSSA.
When breaking the backedge of an inner loop, we can cause blocks which were in the outer loop only because they were also included in a sub-loop to be removed from both loops. This results in the exit block set for our original parent loop changing, and thus a need for new LCSSA phi nodes.
This case happens when the inner loop has an exit block which is also an exit block of the parent, and there's a block in the child which reaches an exit to said block without also reaching an exit to the parent loop.
(I'm describing this in terms of the immediate parent, but the problem is general for any transitive parent in the nest.)
The approach implemented here involves a potentially expensive LCSSA rebuild. Perf testing during review didn't show anything concerning, but we may end up needing to revert this if anyone encounters a practical compile time issue.
Differential Revision: https://reviews.llvm.org/D94378
Similar to binary operators like fadd/fmul/fsub, propagate shape info
through unary operators (fneg is the only one?).
Differential Revision: https://reviews.llvm.org/D95252
I have previously tried doing that in
b33fbbaa34 / d38205144f,
but eventually it was pointed out that the approach taken there
was just broken wrt how the uses of bonus instructions are updated
to account for the fact that they should now use either bonus instruction
or the cloned bonus instruction. In particluar, all that manual handling
of PHI nodes in successors was just wrong.
But, the fix is actually much much simpler than my initial approach:
just tell SSAUpdate about both instances of bonus instruction,
and let it deal with all the PHI handling.
Alive2 confirms that the reproducers from the original bugs (@pr48450*)
are now handled correctly.
This effectively reverts commit 59560e8589,
effectively relanding b33fbbaa34.
NewBonusInst just took name from BonusInst, so BonusInst has no name,
so BonusInst.getName() makes no sense.
So we need to ask NewBonusInst for the name.
This is to support the memory routines vec_malloc, vec_calloc, vec_realloc, and vec_free. These routines manage memory that is 16-byte aligned. And they are only available on AIX.
Differential Revision: https://reviews.llvm.org/D94710
If the call result is unused, we should let it get DCEd rather
than replacing it. Also, don't try to replace an existing sincos
with another one (unless it's as part of combining sin and cos).
This avoids an infinite combine loop if the calls are not DCEd
as expected, which can happen with D94106 and lack of willreturn
annotation in hand-crafted IR.
In the motivating cases from https://llvm.org/PR48816 ,
we have a trailing trunc. But that is not required to
reduce the abs width:
https://alive2.llvm.org/ce/z/ECaz-p
...as long as we clear the int-min-is-poison bit (nsw).
We have some existing tests that are affected, and I'm
not sure what the overall implications are, but in general
we favor narrowing operations over preserving nsw/nuw.
If that causes problems, we could restrict this transform
based on type (shouldChangeType() and/or vector vs. scalar).
Differential Revision: https://reviews.llvm.org/D95235
The existing code did not deal with atomic loads correctly. Such loads
are represented as MemoryDefs. Bail out on any MemoryAccess that is not
a MemoryUse.
Because we were not looking for the llvm.coro.id.async intrinsic in the
early coro pass which triggers follow-up passes we relied on the
llvm.coro.end intrinsic being present. This might not be the case in
functions that end in unreachable code.
Differential Revision: https://reviews.llvm.org/D95144
Iff we know we can get rid of the inversions in the new pattern,
we can thus get rid of the inversion in the old pattern,
this decreasing instruction count.
Note that we could position this transformation as just hoisting
of the `not` (still, iff y is freely negatible), but the test changes
show a number of regressions, so let's not do that.
Iff we know we can get rid of the inversions in the new pattern,
we can thus get rid of the inversion in the old pattern,
this decreasing instruction count.
I'm intentionally structuring it this way, so that the actual fold only
does the fold, and no legality/correctness checks, all of which must be
done by the caller. This allows for the fold code to be more compact
and more easily grokable.
Hoist the successor updating out of the code that deals with branch
weight updating, and hoist the 'has weights' check from the latter,
making code more consistent and easier to follow.
While we already ignore uncond branches, we could still potentially
end up with a conditional branches with identical destinations
due to the visitation order, or because we were called as an utility.
But if we have such a disguised uncond branch,
we still probably shouldn't deal with it here.