This change leverages the work done in D83743 to replay in the SampleProfile inliner to also be used in the CGSCC inliner. NOTE: currently restricted to non-ML advisors only.
The added switch `-cgscc-inline-replay=<remarks file>` will replay the inlining decisions in that file where the remarks file is generated via `-Rpass=inline`. The aim here is to make it easier to analyze changes that would modify inlining heuristics to be separated from this behavior. Doing so allows easier examination of assembly and runtime behavior compared to the baseline rather than trying to dig through the large churn caused by inlining.
In LTO compilation, since inlining is done twice you can separately specify replay by passing the flag to the FE (`-cgscc-inline-replay=`) and to the linker (`-Wl,cgscc-inline-replay=`) with the remarks generated from their respective places.
Testing on mysqld by comparing the inline decisions between base (generates remarks.txt) and diff (replay using identical input/tools with remarks.txt) and examining the inlining sites with `diff` shows 14,000 mismatches out of 247,341 for a ~94% replay accuracy. I believe this gap can be narrowed further though for the general case we may never achieve full accuracy. For my personal use, this is close enough to be representative: I set the baseline as the one generated by the replay on identical input/toolset and compare that to my modified input/toolset using the same replay.
Testing:
ninja check-llvm
newly added test correctly replays CGSCC inlining decisions
Reviewed By: mtrofin, wenlei
Differential Revision: https://reviews.llvm.org/D94334
This reverts commit d97f776be5.
The original problem was due to build failures in shared lib builds. D95079
moved ImportedFunctionsInliningStatistics under Analysis, unblocking
this.
This is related to D94982. We want to call these APIs from the Analysis
component, so we can't leave them under Transforms.
Differential Revision: https://reviews.llvm.org/D95079
When using 2 InlinePass instances in the same CGSCC - one for other
mandatory inlinings, the other for the heuristic-driven ones - the order
in which the ImportedFunctionStats would be output-ed would depend on
the destruction order of the inline passes, which is not deterministic.
This patch moves the ImportedFunctionStats responsibility to the
InlineAdvisor to address this problem.
Differential Revision: https://reviews.llvm.org/D94982
Expanding from D94808 - we ensure the same InlineAdvisor is used by both
InlinerPass instances. The notion of mandatory inlining is moved into
the core InlineAdvisor: advisors anyway have to handle that case, so
this change also factors out that a bit better.
Differential Revision: https://reviews.llvm.org/D94825
Enable performing mandatory inlinings upfront, by reusing the same logic
as the full inliner, instead of the AlwaysInliner. This has the
following benefits:
- reduce code duplication - one inliner codebase
- open the opportunity to help the full inliner by performing additional
function passes after the mandatory inlinings, but before th full
inliner. Performing the mandatory inlinings first simplifies the problem
the full inliner needs to solve: less call sites, more contextualization, and,
depending on the additional function optimization passes run between the
2 inliners, higher accuracy of cost models / decision policies.
Note that this patch does not yet enable much in terms of post-always
inline function optimization.
Differential Revision: https://reviews.llvm.org/D91567
Previously the inliner did a bit of a hack by adding ref edges for all
new edges introduced by performing an inline before calling
updateCGAndAnalysisManagerForPass(). This was because
updateCGAndAnalysisManagerForPass() didn't handle new non-trivial call
edges.
This adds handling of non-trivial call edges to
updateCGAndAnalysisManagerForPass(). The inliner called
updateCGAndAnalysisManagerForFunctionPass() since it was handling adding
newly introduced edges (so updateCGAndAnalysisManagerForPass() would
only have to handle promotion), but now it needs to call
updateCGAndAnalysisManagerForCGSCCPass() since
updateCGAndAnalysisManagerForPass() is now handling the new call edges
and function passes cannot add new edges.
We follow the previous path of adding trivial ref edges then letting promotion
handle changing the ref edges to call edges and the CGSCC updates. So
this still does not allow adding call edges that result in an addition
of a non-trivial ref edge.
This is in preparation for better detecting devirtualization. Previously
since the inliner itself would add ref edges,
updateCGAndAnalysisManagerForPass() would think that promotion and thus
devirtualization had happened after any sort of inlining.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D91046
An alwaysinline function may not get inlined in inliner-wrapper due to
the inlining order.
Previously for the following, the inliner would first inline @a() into @b(),
```
define void @a() {
entry:
call void @b()
ret void
}
define void @b() alwaysinline {
entry:
br label %for.cond
for.cond:
call void @a()
br label %for.cond
}
```
making @b() recursive and unable to be inlined into @a(), ending at
```
define void @a() {
entry:
call void @b()
ret void
}
define void @b() alwaysinline {
entry:
br label %for.cond
for.cond:
call void @b()
br label %for.cond
}
```
Running always-inliner first makes sure that we respect alwaysinline in more cases.
Fixes https://bugs.llvm.org/show_bug.cgi?id=46945.
Reviewed By: davidxl, rnk
Differential Revision: https://reviews.llvm.org/D86988
Previously the NPM inliner would skip all potential inlines in an
optnone function, but alwaysinline callees should be inlined regardless
of optnone.
Fixes inline-optnone.ll under NPM.
Reviewed By: kazu
Differential Revision: https://reviews.llvm.org/D83021
Summary:
This simplifies the interface by storing the function analysis manager
with the InlineAdvisor, and, thus, not requiring it be passed each time
we inquire for an advice.
Reviewers: davidxl, asbirlea
Subscribers: eraman, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80405
Along the lines of D77454 and D79968. Unlike loads and stores, the
default alignment is getPrefTypeAlign, to match the existing handling in
various places, including SelectionDAG and InstCombine.
Differential Revision: https://reviews.llvm.org/D80044
This reverts commit 454de99a6f.
The problem was that one of the ctor arguments of CallAnalyzer was left
to be const std::function<>&. A function_ref was passed for it, and then
the ctor stored the value in a function_ref field. So a std::function<>
would be created as a temporary, and not survive past the ctor
invocation, while the field would.
Tested locally by following https://github.com/google/sanitizers/wiki/SanitizerBotReproduceBuild
Original Differential Revision: https://reviews.llvm.org/D79917
Summary:
Replacing uses of std::function pointers or refs, or Optional, to
function_ref, since the usage pattern allows that. If the function is
optional, using a default parameter value (nullptr). This led to a few
parameter reshufles, to push all optionals to the end of the parameter
list.
Reviewers: davidxl, dblaikie
Subscribers: arsenm, jvesely, nhaehnle, eraman, hiraditya, haicheng, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79917
Summary:
This change introduces InliningAdvisor (and related APIs), the interface
that abstracts decision making away from the inlining pass. We will use
this interface to delegate decision making to a trained ML model,
subsequently (see referenced RFC).
RFC: http://lists.llvm.org/pipermail/llvm-dev/2020-April/140763.html
Reviewers: davidxl, eraman, dblaikie
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79042
Summary:
Analyses that are statefull should not be retrieved through a proxy from
an outer IR unit, as these analyses are only invalidated at the end of
the inner IR unit manager.
This patch disallows getting the outer manager and provides an API to
get a cached analysis through the proxy. If the analysis is not
stateless, the call to getCachedResult will assert.
Reviewers: chandlerc
Subscribers: mehdi_amini, eraman, hiraditya, zzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72893
Summary:
This patch teaches shouldBeDeferred to take into account the total
cost of inlining.
Suppose we have a call hierarchy {A1,A2,A3,...}->B->C. (Each of A1,
A2, A3, ... calls B, which in turn calls C.)
Without this patch, shouldBeDeferred essentially returns true if
TotalSecondaryCost < IC.getCost()
where TotalSecondaryCost is the total cost of inlining B into As.
This means that if B is a small wraper function, for example, it would
get inlined into all of As. In turn, C gets inlined into all of As.
In other words, shouldBeDeferred ignores the cost of inlining C into
each of As.
This patch adds an option, inline-deferral-scale, to replace the
expression above with:
TotalCost < Allowance
where
- TotalCost is TotalSecondaryCost + IC.getCost() * # of As, and
- Allowance is IC.getCost() * Scale
For now, the new option defaults to -1, disabling the new scheme.
Reviewers: davidxl
Subscribers: eraman, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79138
Summary:
This factors cost and reporting out of the inlining workflow, thus
making it easier to reuse when driving inlining from the upcoming
InliningAdvisor.
Depends on: D79215
Reviewers: davidxl, echristo
Subscribers: eraman, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79275
Summary:
shouldInline makes a decision based on the InlineCost of a call site, as
well as an evaluation on whether the site should be deferred. This means
it's possible for the decision to be not to inline, even for an
InlineCost that would otherwise allow it.
Both uses of shouldInline performed the exact same logic after calling
it. In addition, the decision on whether to inline or not was
communicated through two values of the Option<InlineCost> return value:
None, or an InlineCost evaluating to false.
Simplified by:
- encapsulating the decision in the return object. The bool it evaluates
to communicates unambiguously the decision. The InlineCost is also
available.
- encapsulated the common post-shouldInline code into shouldInline.
Reviewers: davidxl, echristo, eraman
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79215
Summary:
Renamed 'CS' to 'CB', and, in one case, to a more specific name to avoid
naming collision with outer scope (a maintainability/readability reason,
not correctness)
Also updated comments.
Reviewers: davidxl, dblaikie, jdoerfert
Subscribers: eraman, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79101
Summary:
Updated CallPromotionUtils and impacted sites. Parameters that are
expected to be non-null, and return values that are guranteed non-null,
were replaced with CallBase references rather than pointers.
Left FIXME in places where more changes are facilitated by CallBase, but
aren't CallSites: Instruction* parameters or return values, for example,
where the contract that they are actually CallBase values.
Reviewers: davidxl, dblaikie, wmi
Reviewed By: dblaikie
Subscribers: arsenm, jvesely, nhaehnle, eraman, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77930
Summary:
The inline history is associated with a call site. There are two locations
we fetch inline history. In one, we fetch it together with the call
site. In the other, we initialize it under certain conditions, use it
later under same conditions (different if check), and otherwise is
uninitialized. Although currently there is no uninitialized use, the
code is more challenging to maintain correctly, than if the value were
always initialized.
Changed to the upfront initialization pattern already present in this
file.
Reviewers: davidxl, dblaikie
Subscribers: eraman, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77877
Summary:
Function names: camel case, lower case first letter.
Variable names: start with upper letter. For iterators that were 'i',
renamed with a descriptive name, as 'I' is 'Instruction&'.
Lambda captures simplification.
Opportunistic boolean return simplification.
Reviewers: davidxl, dblaikie
Subscribers: eraman, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77837
Summary:
*Almost* all uses are replaced. Left FIXMEs for the two sites that
require refactoring outside of Inliner, to scope this patch.
Subscribers: eraman, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77817
Summary:
A recent change in the instruction simplifier enables a call to a function that just returns one of its parameter to be simplified as simply loading the parameter. This exposes a bug in the inliner where double inlining may be involved which in turn may cause compiler ICE when an already-inlined callsite is reused for further inlining.
To put it simply, in the following-like C program, when the function call second(t) is inlined, its code t = third(t) will be reduced to just loading the return value of the callsite first(). This causes the inliner internal data structure to register the first() callsite for the call edge representing the third() call, therefore incurs a double inlining when both call edges are considered an inline candidate. I'm making a fix to break the inliner from reusing a callsite for new call edges.
```
void top()
{
int t = first();
second(t);
}
void second(int t)
{
t = third(t);
fourth(t);
}
void third(int t)
{
return t;
}
```
The actual failing case is much trickier than the example here and is only reproducible with the legacy inliner. The way the legacy inliner works is to process each SCC in a bottom-up order. That means in reality function first may be already inlined into top, or function third is either inlined to second or is folded into nothing. To repro the failure seen from building a large application, we need to figure out a way to confuse the inliner so that the bottom-up inlining is not fulfilled. I'm doing this by making the second call indirect so that the alias analyzer fails to figure out the right call graph edge from top to second and top can be processed before second during the bottom-up. We also need to tweak the test code so that when the inlining of top happens, the function body of second is not that optimized, by delaying the pass of function attribute deducer (i.e, which tells function third has no side effect and just returns its parameter). Since the CGSCC pass is iterative, additional calls are added to top to postpone the inlining of second to the second round right after the first function attribute deducing pass is done. I haven't been able to repro the failure with the new pass manager since the processing order of ininlined callsites is a bit different, but in theory the issue could happen there too.
Note that this fix could introduce a side effect that blocks the simplification of inlined code, specifically for a call site that can be folded to another call site. I hope this can probably be complemented by subsequent inlining or folding, as shown in the attached unit test. The ideal fix should be to separate the use of VMap. However, in reality this failing pattern shouldn't happen often. And even if it happens, there should be a good chance that the non-folded call site will be refolded by iterative inlining or subsequent simplification.
Reviewers: wenlei, davidxl, tejohnson
Reviewed By: wenlei, davidxl
Subscribers: eraman, nikic, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76248
This aims to fix a missed inlining case.
If there's a virtual call in the callee on an alloca (stack allocated object) in
the caller, and the callee is inlined into the caller, the post-inline cleanup
would devirtualize the virtual call, but if the next iteration of
DevirtSCCRepeatedPass doesn't happen (under the new pass manager), which is
based on a heuristic to determine whether to reiterate, we may miss inlining the
devirtualized call.
This enables inlining in clang/test/CodeGenCXX/member-function-pointer-calls.cpp.
This is a second commit after a revert
https://reviews.llvm.org/rG4569b3a86f8a4b1b8ad28fe2321f936f9d7ffd43 and a fix
https://reviews.llvm.org/rG41e06ae7ba91.
Differential Revision: https://reviews.llvm.org/D69591
Summary:
Final patch in series to fix inlining between functions with different
nobuiltin attributes/options, which was specifically an issue in LTO.
See discussion on D61634 for background.
The prior patch in this series (D67923) enabled per-Function TLI
construction that identified the nobuiltin attributes.
Here I have allowed inlining to proceed if the callee's nobuiltins are a
subset of the caller's nobuiltins, but not in the reverse case, which
should be conservatively correct. This is controlled by a new option,
-inline-caller-superset-nobuiltin, which is enabled by default.
Reviewers: hfinkel, gchatelet, chandlerc, davidxl
Subscribers: arsenm, jvesely, nhaehnle, mehdi_amini, eraman, hiraditya, haicheng, dexonsmith, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74162
DevirtSCCRepeatedPass iteration. Needs ReviewPublic
This aims to fix a missed inlining case.
If there's a virtual call in the callee on an alloca (stack allocated object) in
the caller, and the callee is inlined into the caller, the post-inline cleanup
would devirtualize the virtual call, but if the next iteration of
DevirtSCCRepeatedPass doesn't happen (under the new pass manager), which is
based on a heuristic to determine whether to reiterate, we may miss inlining the
devirtualized call.
This enables inlining in clang/test/CodeGenCXX/member-function-pointer-calls.cpp.
Summary:
InlineResult is used both in APIs assessing whether a call site is
inlinable (e.g. llvm::isInlineViable) as well as in the function
inlining utility (llvm::InlineFunction). It means slightly different
things (can/should inlining happen, vs did it happen), and the
implicit casting may introduce ambiguity (casting from 'false' in
InlineFunction will default a message about hight costs,
which is incorrect here).
The change renames the type to a more generic name, and disables
implicit constructors.
Reviewers: eraman, davidxl
Reviewed By: davidxl
Subscribers: kerbowa, arsenm, jvesely, nhaehnle, eraman, hiraditya, haicheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72744
Summary:
This is the first change to enable the TLI to be built per-function so
that -fno-builtin* handling can be migrated to use function attributes.
See discussion on D61634 for background. This is an enabler for fixing
handling of these options for LTO, for example.
This change should not affect behavior, as the provided function is not
yet used to build a specifically per-function TLI, but rather enables
that migration.
Most of the changes were very mechanical, e.g. passing a Function to the
legacy analysis pass's getTLI interface, or in Module level cases,
adding a callback. This is similar to the way the per-function TTI
analysis works.
There was one place where we were looking for builtins but not in the
context of a specific function. See FindCXAAtExit in
lib/Transforms/IPO/GlobalOpt.cpp. I'm somewhat concerned my workaround
could provide the wrong behavior in some corner cases. Suggestions
welcome.
Reviewers: chandlerc, hfinkel
Subscribers: arsenm, dschuff, jvesely, nhaehnle, mehdi_amini, javed.absar, sbc100, jgravelle-google, eraman, aheejin, steven_wu, george.burgess.iv, dexonsmith, jfb, asbirlea, gchatelet, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66428
llvm-svn: 371284
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
llvm-svn: 369013
Converting InlineCost interface and its internals into CallBase usage.
Inliners themselves are still not converted.
Reviewed By: reames
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60636
llvm-svn: 358982
code to `CallBase`.
This patch focuses on the legacy PM, call graph, and some of inliner and legacy
passes interacting with those APIs from `CallSite` to the new `CallBase` class.
No interesting changes.
Differential Revision: https://reviews.llvm.org/D60412
llvm-svn: 358739