Another alternative to fix the thread identification problem in
coroutines.
We plan to fix this problem by unifying memory effecting attributes. See
https://discourse.llvm.org/t/rfc-unify-memory-effect-attributes/65579.
But it may be a long-term project. And it is a pity that the coroutines
can't resume in different threads for years. So this one is temporary
fix. It may cause unnecessary performance regression for coroutines. But
correctness are more important. And this one is planned to be reverted
after we are able to unify the memory effecting attributes actually.
Reviewed By: jdoerfert, rjmccall
Differential Revision: https://reviews.llvm.org/D135550
This should fix these build bot errors:
Step 6 (build-check-mlir-build-only) failure: build (failure)
C:\buildbot\mlir-x64-windows-ninja\llvm-project\llvm\lib\Transforms\Scalar\EarlyCSE.cpp(124): error C2220: the following warning is treated as an error
C:\buildbot\mlir-x64-windows-ninja\llvm-project\llvm\lib\Transforms\Scalar\EarlyCSE.cpp(124): warning C4996: 'llvm::Optional<llvm::fp::ExceptionBehavior>::getValue': Use value instead.
C:\buildbot\mlir-x64-windows-ninja\llvm-project\llvm\lib\Transforms\Scalar\EarlyCSE.cpp(129): warning C4996: 'llvm::Optional<llvm::RoundingMode>::getValue': Use value instead.
C:\buildbot\mlir-x64-windows-ninja\llvm-project\llvm\lib\Transforms\Scalar\EarlyCSE.cpp(1386): warning C4996: 'llvm::Optional<llvm::fp::ExceptionBehavior>::getValue': Use value instead.
C:\buildbot\mlir-x64-windows-ninja\llvm-project\llvm\lib\Transforms\Scalar\EarlyCSE.cpp(1388): warning C4996: 'llvm::Optional<llvm::RoundingMode>::getValue': Use value instead.
Previously we would only CSE constrained FP intrinsics in the default
floating point environment. Exception behavior of "strict" is still not
allowed since we are not allowed to remove any traps in that case.
There are no restrictions on CSE across function calls inside a function.
Differential Revision: https://reviews.llvm.org/D112256
When EarlyCSE tries to common vector masked loads/stores, it first checks that
they have same base operand and then assumes that this is enough for mask types
to be equal. This is true for typed pointers but false for opaque ones -
two loads of different vector sizes from same base pointer '%b' are the same,
`ptr %b`. (For typed pointers, `%b` was cast to vector pointer type so bases
were different).
Change assert to return from lambda `isSubmask` so this transformation properly
works with opaque pointers.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D131251
Clang-format InstructionSimplify and convert all "FunctionName"s to
"functionName". This patch does touch a lot of files but gets done with
the cleanup of InstructionSimplify in one commit.
This is the alternative to the less invasive clang-format only patch: D126783
Reviewed By: spatel, rengolin
Differential Revision: https://reviews.llvm.org/D126889
EarlyCSE currently optimizes all MemoryUses upfront. However,
EarlyCSE only actually queries the clobbering memory access for
a subset of uses, namely those where a CSE candidate has already
been identified. Delaying use optimization to the clobber query
improves compile-time in practice.
This change is not NFC because EarlyCSE has a limit on the number
of clobber queries (EarlyCSEMssaOptCap), in which case it falls
back to the defining access. The defining access for uses will now
no longer coincide with the optimized access.
If there are performance regressions from this change, we should
be able to address them by raising this limit.
Differential Revision: https://reviews.llvm.org/D121987
This changes MemorySSA to be constructed in unoptimized form.
MemorySSA::ensureOptimizedUses() can be called to optimize all
uses (once). This should be done by passes where having optimized
uses is beneficial, either because we're going to query all uses
anyway, or because we're doing def-use walks.
This should help reduce the compile-time impact of MemorySSA for
some use cases (the reason why I started looking into this is
D117926), which can avoid optimizing all uses upfront, and instead
only optimize those that are actually queried.
Actually, we have an existing use-case for this, which is EarlyCSE.
Disabling eager use optimization there gives a significant
compile-time improvement, because EarlyCSE will generally only query
clobbers for a subset of all uses (this change is not included in
this patch).
Differential Revision: https://reviews.llvm.org/D121381
This will bail out on target specific intrinsics. If those are deemed
important enough for EarlyCSE to handle, we can augment MemIntrinsicInfo
with an access type for TargetTransformInfo::getTgtMemIntrinsic() to
handle.
Reviewed By: #opaque-pointers, nikic
Differential Revision: https://reviews.llvm.org/D120077
Poison-generating flags can be retained during CSE on the earlier
instruction , *if* the earlier instruction being poison causes UB. For
now, always take AND for floating point instructions.
https://alive2.llvm.org/ce/z/4K3D7P
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D115247
This patch continues unblocking optimizations that are blocked by pseudo probe instrumentation.
Not exactly like DbgIntrinsics, PseudoProbe intrinsic has other attributes (such as mayread, maywrite, mayhaveSideEffect) that can block optimizations. The issues fixed are:
- Flipped default param of getFirstNonPHIOrDbg API to skip pseudo probes
- Unblocked CSE by avoiding pseudo probe from clobbering memory SSA
- Unblocked induction variable simpliciation
- Allow empty loop deletion by treating probe intrinsic isDroppable
- Some refactoring.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D110847
Added '-print-pipeline-passes' printing of parameters for those passes
declared with *_WITH_PARAMS macro in PassRegistry.def.
Note that it only prints the parameters declared inside *_WITH_PARAMS as
in a few cases there appear to be additional parameters not parsable.
The following passes are now covered (i.e. all of those with *_WITH_PARAMS in
PassRegistry.def).
LoopExtractorPass - loop-extract
HWAddressSanitizerPass - hwsan
EarlyCSEPass - early-cse
EntryExitInstrumenterPass - ee-instrument
LowerMatrixIntrinsicsPass - lower-matrix-intrinsics
LoopUnrollPass - loop-unroll
AddressSanitizerPass - asan
MemorySanitizerPass - msan
SimplifyCFGPass - simplifycfg
LoopVectorizePass - loop-vectorize
MergedLoadStoreMotionPass - mldst-motion
GVN - gvn
StackLifetimePrinterPass - print<stack-lifetime>
SimpleLoopUnswitchPass - simple-loop-unswitch
Differential Revision: https://reviews.llvm.org/D109310
EarlyCSE cannot distinguish between floating point instructions and
constrained floating point intrinsics that are marked as running in the
default FP environment. Said intrinsics are supposed to behave exactly the
same as the regular FP instructions. Teach EarlyCSE to handle them in that
case.
Differential Revision: https://reviews.llvm.org/D99962
Currently all AA analyses marked as preserved are stateless, not taking
into account their dependent analyses. So there's no need to mark them
as preserved, they won't be invalidated unless their analyses are.
SCEVAAResults was the one exception to this, it was treated like a
typical analysis result. Make it like the others and don't invalidate
unless SCEV is invalidated.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D102032
Follow up to a6d2a8d6f5. These were found by simply grepping for "::assume", and are the subset of that result which looked cleaner to me using the isa/dyn_cast patterns.
The key change (4f5e92c) to switch gc.result and gc.relocate to being readnone landed nearly two weeks ago, and we haven't seen any fallout. Time to remove the code added to make reverting easy.
This was (partially) reverted in cfe8f8e0 because the conversion from readonly to readnone in Intrinsics.td exposed a couple of problems. This change has been reworked to not need that change (via some explicit checks in client code). This is being done to address the original optimization issue and simplify the testing of the readonly changes. I'm working on that piece under 49607.
Original commit message follows:
The last two operands to a gc.relocate represent indices into the associated gc.statepoint's gc bundle list. (Effectively, gc.relocates are projections from the gc.statepoints multiple return values.)
We can use this to recognize when two gc.relocates are equivalent (and can be CSEd), even when the indices are non-equal. This is particular useful when considering a chain of multiple statepoints as it lets us eliminate all duplicate gc.relocates in a single pass.
Differential Revision: https://reviews.llvm.org/D97974
As readnone function they become movable and LICM can hoist them
out of a loop. As a result in LCSSA form phi node of type token
is created. No one is ready that GCRelocate first operand is phi node
but expects to be token.
GVN test were also updated, it seems it does not do what is expected.
Test for LICM is also added.
This reverts commit f352463ade.
For some reason, we had been marking gc.relocates as reading memory. There's no known reason for this, and I suspect it to be a legacy of very early implementation conservatism. gc.relocate and gc.result are simply projections of the return values from the associated statepoint. Note that the LangRef has always declared them readnone.
The EarlyCSE change is simply moving the special casing from readonly to readnone handling.
As noted by the test diffs, this does allow some additional CSE when relocates are separated by stores, but since we generate gc.relocates in batches, this is unlikely to help anything in practice.
This was reviewed as part of https://reviews.llvm.org/D97974, but split at reviewer request before landing. The motivation is to enable the GVN changes in that patch.
Just like llvm.assume, there are a lot of cases where we can just ignore llvm.experimental.noalias.scope.decl.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D93042
EarlyCSE's handleBranchCondition says:
```
// If the condition is AND operation, we can propagate its operands into the
// true branch. If it is OR operation, we can propagate them into the false
// branch.
```
This holds for the corresponding select patterns as well.
This is a part of an ongoing work for disabling buggy select->and/or transformations.
See llvm.org/pr48353 and D93065 for more context
Proof:
and: https://alive2.llvm.org/ce/z/MQWodU
or: https://alive2.llvm.org/ce/z/9GLbB_
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D93842
delete abs/nabs handling in earlycse pass to avoid bugs related to
hashing values. After abs/nabs is canonicalized to intrinsics in D87188,
we should get CSE ability for abs/nabs back.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D90734
D87691 reordered some checks, which turned out to be unsafe. More
specifically, when examining a store instruction, the check against
getOrCreateResult should be done before attempting to call
isSameMemGeneration. Otherwise a crash in MSSA walker can occur.
This patch restores the order of these calls to what it was originally.
Extend the handling of memory intrinsics to also include non-
target-specific intrinsics, in particular masked loads and stores.
Invent "isHandledNonTargetIntrinsic" to distinguish between intrin-
sics that should be handled natively from intrinsics that can be
passed to TTI.
Add code that handles masked loads and stores and update the
testcase to reflect the results.
Differential Revision: https://reviews.llvm.org/D87340
1. Store intrinsic ID in ParseMemoryInst instead of a boolean flag
"IsTargetMemInst". This will make it easier to add support for
target-independent intrinsics.
2. Extract the complex multiline conditions from EarlyCSE::processNode
into a new function "getMatchingValue".
Differential Revision: https://reviews.llvm.org/D87691
In addition to calculate hash consistently by swapping SELECT's
operands, we also need to inverse the select pattern favor to match the
original logic.
[EarlyCSE] Equivalent SELECTs should hash equally
DenseMap<SimpleValue> assumes that, if its isEqual method returns true
for two elements, then its getHashValue method must return the same value
for them. This invariant is broken when one SELECT node is a min/max
operation, and the other can be transformed into an equivalent min/max by
inverting its predicate and swapping its operands. This patch fixes an
assertion failure that would occur intermittently while compiling the
following IR:
define i32 @t(i32 %i) {
%cmp = icmp sle i32 0, %i
%twin1 = select i1 %cmp, i32 %i, i32 0
%cmpinv = icmp sgt i32 0, %i
%twin2 = select i1 %cmpinv, i32 0, i32 %i
%sink = add i32 %twin1, %twin2
ret i32 %sink
}
Differential Revision: https://reviews.llvm.org/D86843
DenseMap<SimpleValue> assumes that, if its isEqual method returns true
for two elements, then its getHashValue method must return the same value
for them. This invariant is broken when one SELECT node is a min/max
operation, and the other can be transformed into an equivalent min/max by
inverting its predicate and swapping its operands. This patch fixes an
assertion failure that would occur intermittently while compiling the
following IR:
define i32 @t(i32 %i) {
%cmp = icmp sle i32 0, %i
%twin1 = select i1 %cmp, i32 %i, i32 0
%cmpinv = icmp sgt i32 0, %i
%twin2 = select i1 %cmpinv, i32 0, i32 %i
%sink = add i32 %twin1, %twin2
ret i32 %sink
}
Differential Revision: https://reviews.llvm.org/D86843
The MemorySSAWrapperPass depends on AAResultsWrapperPass and if
MemorySSA is preserved but AAResultsWrapperPass is not, this could lead
to a crash when updating the last user of the MemorySSAWrapperPass.
Alternatively AAResultsWrapperPass could be marked preserved by GVN, but
I am not sure if that would be safe. I am not sure what is required in
order to preserve AAResultsWrapperPass. At the moment, it seems like a
couple of passes that do similar transforms to GVN are preserving it.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D87137
Handling the new min/max intrinsics is the motivation, but it
turns out that we have a bunch of other intrinsics with this
missing bit of analysis too.
The FP min/max tests show that we are intersecting FMF,
so that part should be safe too.
As noted in https://llvm.org/PR46897 , there is a commutative
property specifier for intrinsics, but no corresponding function
attribute, and so apparently no uses of that bit. We may want to
remove that next.
Follow-up patches should wire up the Instruction::isCommutative()
to this IntrinsicInst specialization. That requires updating
callers to be aware of the more general commutative property
(not just binops).
Differential Revision: https://reviews.llvm.org/D86798
Summary:
Almost all uses of these iterators, including implicit ones, really
only need the const variant (as it should be). The only exception is
in NewGVN, which changes the order of dominator tree child nodes.
Change-Id: I4b5bd71e32d71b0c67b03d4927d93fe9413726d4
Reviewers: arsenm, RKSimon, mehdi_amini, courbet, rriddle, aartbik
Subscribers: wdng, Prazek, hiraditya, kuhar, rogfer01, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, stephenneuendorffer, Joonsoo, grosul1, vkmr, Kayjukh, jurahul, msifontes, cfe-commits, llvm-commits
Tags: #clang, #mlir, #llvm
Differential Revision: https://reviews.llvm.org/D83087
- Now all SalvageDebugInfo() calls will mark undef if the salvage
attempt fails.
Reviewed by: vsk, Orlando
Differential Revision: https://reviews.llvm.org/D78369
gc.relocate intrinsic is special in that its second and third operands
are not real values, but indices into relocate's parent statepoint list
of GC pointers.
To be CSE'd, they need special handling in `isEqual()` and `getHashCode()`.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D80445
Summary: change assumption cache to store an assume along with an index to the operand bundle containing the knowledge.
Reviewers: jdoerfert, hfinkel
Reviewed By: jdoerfert
Subscribers: hiraditya, mgrang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77402
Summary:
Splitting Knowledge retention into Queries in Analysis and Builder into Transform/Utils
allows Queries and Transform/Utils to use Analysis.
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77171
Summary: this patch preserve information from various places in EarlyCSE into assume bundles.
Reviewers: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76769
Summary:
This patch makes EarlyCSE fold equivalent freeze instructions.
Another optimization that I think will be useful is to remove freeze if its operand is used as a branch condition or at llvm.assume:
```
%c = ...
br i1 %c, label %A, ..
A:
%d = freeze %c ; %d can be optimized to %c because %c cannot be poison or undef (or 'br %c' would be UB otherwise)
```
If it make sense for EarlyCSE to support this as well, I will make a patch for this.
Reviewers: spatel, reames, lebedev.ri
Reviewed By: lebedev.ri
Subscribers: lebedev.ri, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75334
As discussed in PR41083:
https://bugs.llvm.org/show_bug.cgi?id=41083
...we can assert/crash in EarlyCSE using the current hashing scheme and
instructions with flags.
ValueTracking's matchSelectPattern() may rely on overflow (nsw, etc) or
other flags when detecting patterns such as min/max/abs composed of
compare+select. But the value numbering / hashing mechanism used by
EarlyCSE intersects those flags to allow more CSE.
Several alternatives to solve this are discussed in the bug report.
This patch avoids the issue by doing simple matching of min/max/abs
patterns that never requires instruction flags. We give up some CSE
power because of that, but that is not expected to result in much
actual performance difference because InstCombine will canonicalize
these patterns when possible. It even has this comment for abs/nabs:
/// Canonicalize all these variants to 1 pattern.
/// This makes CSE more likely.
(And this patch adds PhaseOrdering tests to verify that the expected
transforms are still happening in the standard optimization pipelines.
I left this code to use ValueTracking's "flavor" enum values, so we
don't have to change the callers' code. If we decide to go back to
using the ValueTracking call (by changing the hashing algorithm
instead), it should be obvious how to replace this chunk.
Differential Revision: https://reviews.llvm.org/D74285