Summary:
Add an intrinsic that takes 2 unsigned integers with
the scale of them provided as the third argument and
performs fixed point multiplication on them. The
result is saturated and clamped between the largest and
smallest representable values of the first 2 operands.
This is a part of implementing fixed point arithmetic
in clang where some of the more complex operations
will be implemented as intrinsics.
Patch by: leonardchan, bjope
Reviewers: RKSimon, craig.topper, bevinh, leonardchan, lebedev.ri, spatel
Reviewed By: leonardchan
Subscribers: ychen, wuzish, nemanjai, MaskRay, jsji, jdoerfert, Ka-Ka, hiraditya, rjmccall, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57836
llvm-svn: 371308
Summary:
This is the first change to enable the TLI to be built per-function so
that -fno-builtin* handling can be migrated to use function attributes.
See discussion on D61634 for background. This is an enabler for fixing
handling of these options for LTO, for example.
This change should not affect behavior, as the provided function is not
yet used to build a specifically per-function TLI, but rather enables
that migration.
Most of the changes were very mechanical, e.g. passing a Function to the
legacy analysis pass's getTLI interface, or in Module level cases,
adding a callback. This is similar to the way the per-function TTI
analysis works.
There was one place where we were looking for builtins but not in the
context of a specific function. See FindCXAAtExit in
lib/Transforms/IPO/GlobalOpt.cpp. I'm somewhat concerned my workaround
could provide the wrong behavior in some corner cases. Suggestions
welcome.
Reviewers: chandlerc, hfinkel
Subscribers: arsenm, dschuff, jvesely, nhaehnle, mehdi_amini, javed.absar, sbc100, jgravelle-google, eraman, aheejin, steven_wu, george.burgess.iv, dexonsmith, jfb, asbirlea, gchatelet, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66428
llvm-svn: 371284
Summary:
Simplify the right shift of the intermediate result (given
in four parts) by using funnel shift.
There are some impact on lit tests, but that seems to be
related to register allocation differences due to how FSHR
is expanded on X86 (giving a slightly different operand order
for the OR operations compared to the old code).
Reviewers: leonardchan, RKSimon, spatel, lebedev.ri
Reviewed By: RKSimon
Subscribers: hiraditya, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, s.egerton, pzheng, bevinh, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67036
llvm-svn: 370813
The motivating bugs are:
https://bugs.llvm.org/show_bug.cgi?id=41340https://bugs.llvm.org/show_bug.cgi?id=42697
As discussed there, we could view this as a failure of IR canonicalization,
but then we would need to implement a backend fixup with target overrides
to get this right in all cases. Instead, we can just view this as a codegen
opportunity. It's not even clear for x86 exactly when we should favor
test+set; some CPUs have better theoretical throughput for the ALU ops than
bt/test.
This patch is made more complicated than I expected because there's an early
DAGCombine for 'and' that can change types of the intermediate ops via
trunc+anyext.
Differential Revision: https://reviews.llvm.org/D66687
llvm-svn: 370668
The motivating case for this is a long way from here:
https://bugs.llvm.org/show_bug.cgi?id=43146
...but I think this is where we have to start.
We need to canonicalize/optimize sequences of shift and logic to ease
pattern matching for things like bswap and improve perf in general.
But without the artificial limit of '!LegalTypes' (early combining),
there are a lot of test diffs, and not all are good.
In the minimal tests added for this proposal, x86 should have better
throughput in all cases. AArch64 is neutral for scalar tests because
it can fold shifts into bitwise logic ops.
There are 3 shift opcodes and 3 logic opcodes for a total of 9 possible patterns:
https://rise4fun.com/Alive/VlIhttps://rise4fun.com/Alive/n1mhttps://rise4fun.com/Alive/1Vn
Differential Revision: https://reviews.llvm.org/D67021
llvm-svn: 370617
Summary:
This fixes the bugzilla id 43183 which triggerd by the following commit:
[RISCV] Avoid generating AssertZext for LP64 ABI when lowering floating LibCall
llvm-svn: 370604
Narrowing stores when the target doesn't support the narrow version
forces the target to expand into a load-modify-store sequence, which
is highly suboptimal. The information narrowing throws away (legality
of the inverse transform) is hard to re-analyze. If the target doesn't
support a store of the narrow type, don't narrow even in pre-legalize
mode.
No test as this is DAGCombiner and depends on target bits.
llvm-svn: 370576
Restructured the code a little bit in preparation for adding
UMULFIXSAT. I think it will be easier to understand the code
if not interleaving the codegen for signed/unsigned/saturated
cases that much.
llvm-svn: 370569
Just disable NSW/NUW flags. This matches what we're already doing for the other situations for these nodes, it was just missed for the demanded constant case.
Noticed by inspection - confirmed in offline discussion with @spatel. I've checked we have test coverage in the x86 extract-bits.ll and extract-lowbits.ll tests
llvm-svn: 370497
This is hidden behind a (scalar-only) isOneConstant(N1) check at the moment, but once we get around to adding vector support we need to ensure we're dealing with the scalar bitwidth, not the total.
llvm-svn: 370468
Return a proper zero vector, just in case some elements are undef.
Noticed by inspection after dealing with a similar issue in PR43159.
llvm-svn: 370460
When the number of return values exceeds the number of registers available,
SelectionDAGBuilder::visitRet transforms a function's return to use a
pointer to a buffer to hold return values. When the returned value is an
operator such as extractvalue, the value may have a non-zero result number.
Add that number to the indexing when obtaining the values to store.
This fixes https://bugs.llvm.org/show_bug.cgi?id=43132.
Differential Revision: https://reviews.llvm.org/D66978
llvm-svn: 370430
Summary: This is beneficial when the shuffle is only used once and end up being generated in a few places when some node is combined into a shuffle.
Reviewers: craig.topper, efriedma, RKSimon, lebedev.ri
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66718
llvm-svn: 370326
Including a type legalizer fix to make bitcast operand promotion
work correctly when getSoftenedFloat returns f128 instead of i128.
Fixes PR43157
llvm-svn: 370293
The patch fixed the issue that RV64 didn't clear the upper bits
when return complex floating value with lp64 ABI.
float _Complex
complex_add(float _Complex a, float _Complex b)
{
return a + b;
}
RealResult = zero_extend(RealA + RealB)
ImageResult = ImageA + ImageB
Return (RealResult | (ImageResult << 32))
The patch introduces shouldExtendTypeInLibCall target hook to suppress
the AssertZext generation when lowering floating LibCall.
Thanks to Eli's comments from the Bugzilla
https://bugs.llvm.org/show_bug.cgi?id=42820
Differential Revision: https://reviews.llvm.org/D65497
llvm-svn: 370275
This implements constrained floating point intrinsics for FP to signed and
unsigned integers.
Quoting from D32319:
The purpose of the constrained intrinsics is to force the optimizer to
respect the restrictions that will be necessary to support things like the
STDC FENV_ACCESS ON pragma without interfering with optimizations when
these restrictions are not needed.
Reviewed by: Andrew Kaylor, Craig Topper, Hal Finkel, Cameron McInally, Roman Lebedev, Kit Barton
Approved by: Craig Topper
Differential Revision: http://reviews.llvm.org/D63782
llvm-svn: 370228
Summary: There are at least 2 ways to express the same shuffle. Various pieces of code explicit check for both option, but other places do not when they would benefit from doing it. This patches refactor the codebase to use buildLegalVectorShuffle in order to make that behavior more consistent.
Reviewers: craig.topper, efriedma, RKSimon, lebedev.ri
Subscribers: javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66804
llvm-svn: 370190
Copied directly from the IR version.
Most of the testcases I've added for this are somewhat problematic
because they really end up testing the yet to be implemented version
for MUL_I24/MUL_U24.
llvm-svn: 370099
(-X) * (-Y) + Z --> X * Y + Z
This is a missing optimization that shows up as a potential regression in D66050,
so we should solve it first. We appear to be partly missing this fold in IR as well.
We do handle the simpler case already:
(-X) * (-Y) --> X * Y
And it might be beneficial to make the constraint less conservative (eg, if both
operands are cheap, but not necessarily cheaper), but that causes infinite looping
for the existing fmul transform.
Differential Revision: https://reviews.llvm.org/D66755
llvm-svn: 370071
ConstantDataVector is a specialized verison of ConstantVector
that stores data in a packed array of bits instead of as
individual pointers to other Constants. But we really shouldn't
expose that if we can void it. And we should handle regular
ConstantVector equally well.
This removes a dyn_cast to ConstantDataVector and just calls
getSplatValue directly on a Constant* if the type is a vector.
llvm-svn: 370018
This change causes instrumented builds of Clang to have a fatal error in the
backend. https://reviews.llvm.org/D66537 has the details.
llvm-svn: 370006
This improves the combine I included in D66504 to handle constants in the upper operands of the concat. If we can constant fold them away we can pull the concat after the bin op. This helps with chains of madd reductions on X86 from loop unrolling. The loop madd reduction pattern creates pmaddwd with half the width of the add that follows it using zeroes to fill the upper bits. If we have two of these added together we can pull the zeroes through the accumulating add and then shrink it.
Differential Revision: https://reviews.llvm.org/D66680
llvm-svn: 369937
Summary:
This comes as a first step toward processing the DAG nodes in topological orders. Doing so ensure that arguments of a node are combined before the node itself is combined, which exposes ore opportunities for optimization and/or reduce the amount of patterns a node has to match for.
DAGCombiner adding nodes to the worklist is various places causes the nodes to be in a different order from what is expected. In addition, this is reduant because these nodes end up being added to the worklist anyways due to the machinery at line 1621.
Reviewers: craig.topper, efriedma, RKSimon, lebedev.ri
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66537
llvm-svn: 369927
Summary:
Concat_vectors is more canonical during early DAG combine. For example, its what's used by SelectionDAGBuilder when converting IR shuffles into SelectionDAG shuffles when element counts between inputs and mask don't match. We also have combines in DAGCombiner than can pull concat_vectors through a shuffle. See partitionShuffleOfConcats. So it seems like concat_vectors is a better operation to use here. I had to teach DAGCombiner's SimplifyVBinOp to also handle concat_vectors with undef. I haven't checked yet if we can remove the INSERT_SUBVECTOR version in there or not.
I didn't want to mess with the other caller of getShuffleHalfVectors that's used during shuffle lowering where insert_subvector probably is what we want to produce so I've enabled this via a boolean passed to the function.
Reviewers: spatel, RKSimon
Reviewed By: RKSimon
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66504
llvm-svn: 369872
These can turn up during multiplication legalization. In principle
these should also apply to smul_lohi, but I wasn't able to figure
out how to produce those with the necessary operands.
Differential Revision: https://reviews.llvm.org/D66380
llvm-svn: 369864
Patch showing the effect of enabling bool vector oversimplification.
Non-VLX builds can simplify a kshift shuffle, but VLX builds simplify:
insert_subvector v8i zeroinitializer, v2i --> insert_subvector v8i undef, v2i
Preventing the removal of the AND to clear the upper bits of result
Differential Revision: https://reviews.llvm.org/D53022
llvm-svn: 369780
If the accumulator and either of the multiply operands are negatable then we can we negate the entire expression.
Differential Revision: https://reviews.llvm.org/D63141
llvm-svn: 369746
Summary: These nodes end up being processed regardless due to DAGCombiner ensuring arguments are processed. This changes the order in which nodes are processed, which fixes an issue on PowerPC.
Reviewers: craig.topper, efriedma, RKSimon, lebedev.ri, mcberg2017, stefanp, hfinkel
Subscribers: nemanjai, MaskRay, jsji, steven.zhang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66548
llvm-svn: 369662
The patch introduces MakeLibCallOptions struct as suggested by @efriedma on D65497.
The struct contain argument flags which will pass to makeLibCall function.
The patch should not has any functionality changes.
Differential Revision: https://reviews.llvm.org/D65795
llvm-svn: 369622
Summary:
These calls change the order in which some nodes are processed and so have an effect on codegen.
The change in fixup-bw-copy.ll is due to (and (load anyext)) gets transformed into (load zext) while previously the and was removed by SimplifyDemandedBits, so the (load anyext) remained.
Reviewers: craig.topper, efriedma, RKSimon, lebedev.ri
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66543
llvm-svn: 369561
I also had to add a new combine to X86's combineExtractSubvector to prevent a regression.
This helps our vXi1 code see the full concat operation and allow it optimize undef to a zero if there is already a zero in the concat. This helped us use a movzx instead of an AND in some of the tests. In those tests, one concat comes from SelectionDAGBuilder and the second comes from type legalization of v4i1->i4 bitcasts which uses an additional concat. Though these changes weren't my original motivation.
I'm looking at making X86ISelLowering's narrowShuffle emit a concat_vectors instead of an insert_subvector since concat_vectors is more canonical during early DAG combine. This patch helps prevent a regression from my experiments with that.
Differential Revision: https://reviews.llvm.org/D66456
llvm-svn: 369459
Summary:
The general fold is only valid for positive divisors.
Which effectively means, it is invalid for `INT_MIN` divisors,
and we currently bailout if we see them.
But that is too strict, we can just fix-up the results.
For that, let's do a second computation 'in parallel':
```
Name: srem -> and
Pre: isPowerOf2(C)
%o = srem i8 %X, C
%r = icmp eq %o, 0
=>
%n = and i8 %X, C-1
%r = icmp eq %n, 0
```
https://rise4fun.com/Alive/Sup
And then just blend results: if the divisor was `INT_MIN`,
pick the value we got via bit-test,
else pick the value from general fold.
There's interesting observation - `ISD::ROTR` is set to
`LegalizeAction::Expand` before AVX512, so we should not
treat `INT_MIN` divisor as even; and as it can be seen
while `@test_srem_odd_even_one` improves on all run-lines,
`@test_srem_odd_even_INT_MIN` only improves for AVX512.
Reviewers: RKSimon, craig.topper, spatel
Reviewed By: RKSimon
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66300
llvm-svn: 369268
Summary:
This clang-tidy check is looking for unsigned integer variables whose initializer
starts with an implicit cast from llvm::Register and changes the type of the
variable to llvm::Register (dropping the llvm:: where possible).
Partial reverts in:
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned&
MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register
PPCFastISel.cpp - No Register::operator-=()
PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned&
MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor
Manual fixups in:
ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned&
HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register
HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register.
PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned&
Depends on D65919
Reviewers: arsenm, bogner, craig.topper, RKSimon
Reviewed By: arsenm
Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65962
llvm-svn: 369041
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
llvm-svn: 369013
Set the StartIdx type to size_t so that it matches the StoreNodes SmallVector size() and index types.
Silences the MSVC analyzer warning that unsigned increment might overflow before exceeding size_t on 64-bit targets - this isn't likely to happen but it means we use consistent types and reduces the warning "noise" a little.
llvm-svn: 368998
If the last step in an FP add reduction allows reassociation and doesn't care
about -0.0, then we are free to recognize that computation as a reduction
that may reorder the intermediate steps.
This is requested directly by PR42705:
https://bugs.llvm.org/show_bug.cgi?id=42705
and solves PR42947 (if horizontal math instructions are actually faster than
the alternative):
https://bugs.llvm.org/show_bug.cgi?id=42947
Differential Revision: https://reviews.llvm.org/D66236
llvm-svn: 368995
This patch adds a ptrmask intrinsic which allows masking out bits of a
pointer that must be zero when accessing it, because of ABI alignment
requirements or a restriction of the meaningful bits of a pointer
through the data layout.
This avoids doing a ptrtoint/inttoptr round trip in some cases (e.g. tagged
pointers) and allows us to not lose information about the underlying
object.
Reviewers: nlopes, efriedma, hfinkel, sanjoy, jdoerfert, aqjune
Reviewed by: sanjoy, jdoerfert
Differential Revision: https://reviews.llvm.org/D59065
llvm-svn: 368986
Summary:
This implements an optimization described in Hacker's Delight 10-17:
when `C` is constant, the result of `X % C == 0` can be computed
more cheaply without actually calculating the remainder.
The motivation is discussed here: https://bugs.llvm.org/show_bug.cgi?id=35479.
One huge caveat: this signed case is only valid for positive divisors.
While we can freely negate negative divisors, we can't negate `INT_MIN`,
so for now if `INT_MIN` is encountered, we bailout.
As a follow-up, it should be possible to handle that more gracefully
via extra `and`+`setcc`+`select`.
This passes llvm's test-suite, and from cursory(!) cross-examination
the folds (the assembly) match those of GCC, and manual checking via alive
did not reveal any issues (other than the `INT_MIN` case)
Reviewers: RKSimon, spatel, hermord, craig.topper, xbolva00
Reviewed By: RKSimon, xbolva00
Subscribers: xbolva00, thakis, javed.absar, hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65366
llvm-svn: 368702
The comment initially matched the code, but the code was incorrect
and was fixed after the initial revert back back when it was introduced,
but the comment was never updated.
llvm-svn: 368701
This introduced a false positive MemorySanitizer warning about use of
uninitialized memory in a vectorized crc function in Chromium. That suggests
maybe something is not right with this transformation. See
https://crbug.com/992853#c7 for a reproducer.
This also reverts the follow-up commits r368307 and r368308 which
depended on this.
> This patch attempts to peek through vectors based on the demanded bits/elt of a particular ISD::EXTRACT_VECTOR_ELT node, allowing us to avoid dependencies on ops that have no impact on the extract.
>
> In particular this helps remove some unnecessary scalar->vector->scalar patterns.
>
> The wasm shift patterns are annoying - @tlively has indicated that the wasm vector shift codegen are to be refactored in the near-term and isn't considered a major issue.
>
> Differential Revision: https://reviews.llvm.org/D65887
llvm-svn: 368660
Summary:
After the commits that changed x86 backend to widen vectors
instead of using promotion some of our downstream tests
started to fail. It was noticed that WidenVectorResult has
been missing support for SMULFIX/UMULFIX/SMULFIXSAT. This
patch adds the missing functionality.
Reviewers: craig.topper, RKSimon
Reviewed By: craig.topper
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66051
llvm-svn: 368540
This is the codegen part of fixing:
https://bugs.llvm.org/show_bug.cgi?id=32939
Even with the optimal/canonical IR that is ideally created by D65954,
we would reverse that transform in DAGCombiner and end up with the same
asm on AArch64 or x86.
I see 2 options for trying to correct this:
1. Limit isNegatibleForFree() by special-casing the fmul pattern (this patch).
2. Avoid creating (fmul X, 2.0) in the 1st place by adding a special-case
transform to SelectionDAG::getNode() and/or SelectionDAGBuilder::visitFMul()
that matches the transform done by DAGCombiner.
This seems like the less intrusive patch, but if there's some other reason to
prefer 1 option over the other, we can change to the other option.
Differential Revision: https://reviews.llvm.org/D66016
llvm-svn: 368490
We may be able to look to how VSELECT is handled to further
improve this, but this appears to be neutral or an improvement
on the test cases we have.
llvm-svn: 368344
This patch attempts to peek through vectors based on the demanded bits/elt of a particular ISD::EXTRACT_VECTOR_ELT node, allowing us to avoid dependencies on ops that have no impact on the extract.
In particular this helps remove some unnecessary scalar->vector->scalar patterns.
The wasm shift patterns are annoying - @tlively has indicated that the wasm vector shift codegen are to be refactored in the near-term and isn't considered a major issue.
Differential Revision: https://reviews.llvm.org/D65887
llvm-svn: 368276
In particular this helps the SSE vector shift cvttps2dq+add+shl pattern by avoiding the need for zeros in shuffle style extensions to vXi32 types as we'll be shifting out those bits anyway
llvm-svn: 368155
https://reviews.llvm.org/D65698
This adds a KnownBits analysis pass for GISel. This was done as a
pass (compared to static functions) so that we can add other features
such as caching queries(within a pass and across passes) in the future.
This patch only adds the basic pass boiler plate, and implements a lazy
non caching knownbits implementation (ported from SelectionDAG). I've
also hooked up the AArch64PreLegalizerCombiner pass to use this - there
should be no compile time regression as the analysis is lazy.
llvm-svn: 368065
This patch changes the DAG legalizer to respect the operation actions
set by the target for strict floating-point operations. (Currently, the
legalizer will usually fall back to mutate to the non-strict action
(which is assumed to be legal), and only skip mutation if the strict
operation is marked legal.)
With this patch, if whenever a strict operation is marked as Legal or
Custom, it is passed to the target as usual. Only if it is marked as
Expand will the legalizer attempt to mutate to the non-strict operation.
Note that this will now fail if the non-strict operation is itself
marked as Custom -- the target will have to provide a Custom definition
for the strict operation then as well.
Reviewed By: hfinkel
Differential Revision: https://reviews.llvm.org/D65226
llvm-svn: 368012
Summary:
Before this patch MGATHER/MSCATTER is capable of representing all
common addressing modes, but only when illegal types are used.
This patch adds an IndexType property so more representations
are available when using legal types only.
Original modes:
vector of bases
base + vector of signed scaled offsets
New modes:
base + vector of signed unscaled offsets
base + vector of unsigned scaled offsets
base + vector of unsigned unscaled offsets
The current behaviour of addressing modes for gather/scatter remains
unchanged.
Patch by Paul Walker.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D65636
llvm-svn: 368008
The test case is based on the example from the post-commit thread for:
https://reviews.llvm.org/rGc9171bd0a955
This replaces the x86-specific simple-type check from:
rL367766
with a check in the DAGCombiner. Adding the check isn't
strictly necessary after the fix from:
rL367768
...but it seems likely that we're heading for trouble if
we are creating weird types in this transform.
I combined the earlier legality check into the initial
clause to simplify the code.
So we should only try the trunc/sext transform at the
earliest combine stage, but we limit the transform to
simple types anyway because the TLI hook is probably
too lax about what it considers a free truncate.
llvm-svn: 367834
Summary:
This is patch is part of a serie to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet, jfb, jakehehrlich
Reviewed By: jfb
Subscribers: wuzish, jholewinski, arsenm, dschuff, nemanjai, jvesely, nhaehnle, javed.absar, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65514
llvm-svn: 367828
Summary:
The SimplifyDemandedVectorElts function can replace with undef
when no elements are demanded, but due to how it interacts with
TargetLoweringOpts, it can only do this when the node has
no other users.
Remove a now unneeded DAG combine from the X86 backend.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65713
llvm-svn: 367788
This is further fix for PR42880.
Sanjay already disabled the X86 TLI hook for non-simple types,
but we should really call isTypeLegal here if we're after type
legalization.
llvm-svn: 367768
This really should have been part of 366765. For some reason, I forgot to handle the corresponding load side, and the readable test cases (using deopt vs statepoints) turned out to be overly reduced. Oops.
As seen in the test change, the problem was that we were using a load with alignment expectations rather than the unaligned variant when the stack alignment was less than that prefered type alignment.
llvm-svn: 367718
This reverses a questionable IR canonicalization when a truncate
is free:
sra (add (shl X, N1C), AddC), N1C -->
sext (add (trunc X to (width - N1C)), AddC')
https://rise4fun.com/Alive/slRC
More details in PR42644:
https://bugs.llvm.org/show_bug.cgi?id=42644
I limited this to pre-legalization for code simplicity because that
should be enough to reverse the IR patterns. I don't have any
evidence (no regression test diffs) that we need to try this later.
Differential Revision: https://reviews.llvm.org/D65607
llvm-svn: 367710
If a type is larger than a legal type and needs to be split, we would previously allow the multiply to be decomposed even if the split multiply is legal. Since the shift + add/sub code would also need to be split, its not any better to decompose it.
This patch figures out what type the mul will eventually be legalized to and then uses that type for the query. I tried just returning false illegal types and letting them get handled after type legalization, but then we can't recognize and i64 constant splat on 32-bit targets since will be destroyed by type legalization. We could special case vectors of i64 to avoid that...
Differential Revision: https://reviews.llvm.org/D65533
llvm-svn: 367601
Summary: Honoring no signed zeroes is also available as a user control through clang separately regardless of fastmath or UnsafeFPMath context, DAG guards should reflect this context.
Reviewers: spatel, arsenm, hfinkel, wristow, craig.topper
Reviewed By: spatel
Subscribers: rampitec, foad, nhaehnle, wuzish, nemanjai, jvesely, wdng, javed.absar, MaskRay, jsji
Differential Revision: https://reviews.llvm.org/D65170
llvm-svn: 367486
This makes the field wider than MachineOperand::SubReg_TargetFlags so that
we don't end up silently truncating any higher bits. We should still catch
any bits truncated from the MachineOperand field as a consequence of the
assertion in MachineOperand::setTargetFlags().
Differential Revision: https://reviews.llvm.org/D65465
llvm-svn: 367474
to bail out in store merging dependence check.
We run into a case where dependence check in store merging bail out many times
for the same store and root nodes in a huge basicblock. That increases compile
time by almost 100x. The patch add a map to track how many times the bailing
out happen for the same store and root, and if it is over a limit, stop
considering the store with the same root as a merging candidate.
Differential Revision: https://reviews.llvm.org/D65174
llvm-svn: 367472
Add an option to control whether or not to enable store merging in dag combiner
so we can workaround some bugs more easily.
Differential Revision: https://reviews.llvm.org/D65482
llvm-svn: 367365
This allows us to peek through BITCASTs, attempt to simplify the source operand, and then bitcast back.
This reapplies rL367091 which was reverted at rL367118 - we were inconsistently peeking through the bitcasts to the source value.
Fixes PR42777
llvm-svn: 367174
If anything called the recursive isKnownNeverNaN/computeKnownBits/ComputeNumSignBits/SimplifyDemandedBits/SimplifyMultipleUseDemandedBits with an incorrect depth then we could continue to recurse if we'd already exceeded the depth limit.
This replaces the limit check (Depth == 6) with a (Depth >= 6) to make sure that we don't circumvent it.
This causes a couple of regressions as a mixture of calls (SimplifyMultipleUseDemandedBits + combineX86ShufflesRecursively) were calling with depths that were already over the limit. I've fixed SimplifyMultipleUseDemandedBits to not do this. combineX86ShufflesRecursively is trickier as we get a lot of regressions if we reduce its own limit from 8 to 6 (it also starts at Depth == 1 instead of Depth == 0 like the others....) - I'll see what I can do in future patches.
llvm-svn: 367171
We're getting reports of massive compile time increases because SimplifyMultipleUseDemandedBits was losing track of the depth and not earlying-out. No repro yet, but consider this a pre-emptive commit.
llvm-svn: 367169
Eventually all of these will be moved over, but we create nodes in GetDemandedBits recursion at the moment which causes regressions when we try to remove them all.
llvm-svn: 367092
Summary:
This was originally reported in D62818.
https://rise4fun.com/Alive/oPH
InstCombine does the opposite fold, in hope that `C l>>/<< Y` expression
will be hoisted out of a loop if `Y` is invariant and `X` is not.
But as it is seen from the diffs here, if it didn't get hoisted,
the produced assembly is almost universally worse.
Much like with my recent "hoist add/sub by/from const" patches,
we should get almost universal win if we hoist constant,
there is almost always an "and/test by imm" instruction,
but "shift of imm" not so much, so we may avoid having to
materialize the immediate, and thus need one less register.
And since we now shift not by constant, but by something else,
the live-range of that something else may reduce.
Special care needs to be applied not to disturb x86 `BT` / hexagon `tstbit`
instruction pattern. And to not get into endless combine loop.
Reviewers: RKSimon, efriedma, t.p.northover, craig.topper, spatel, arsenm
Reviewed By: spatel
Subscribers: hiraditya, MaskRay, wuzish, xbolva00, nikic, nemanjai, jvesely, wdng, nhaehnle, javed.absar, tpr, kristof.beyls, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62871
llvm-svn: 366955
This patch adds support for recognizing cases where a larger vector type is being used to reduce just the elements in the lower subvector:
e.g. <8 x i32> reduction pattern in a <16 x i32> vector:
<4,5,6,7,u,u,u,u,u,u,u,u,u,u,u,u>
<2,3,u,u,u,u,u,u,u,u,u,u,u,u,u,u>
<1,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u>
matchBinOpReduction returns the lower extracted subvector in such cases, assuming isExtractSubvectorCheap accepts the extraction.
I've only enabled it for X86 reduction sums so far. I intend to enable it for the bitop/minmax cases in future patches, and eventually I think its worth turning it on all the time. This is mainly just a case of ensuring calls to matchBinOpReduction don't make assumptions on the vector width based on the original vector extraction.
Fixes the x86 partial reduction sum cases in PR33758 and PR42023.
Differential Revision: https://reviews.llvm.org/D65047
llvm-svn: 366933
If we are already using the same chain for the old/new memory ops then just return.
Fixes PR42727 which had getLoad() reusing an existing node.
llvm-svn: 366922
If all the demanded elts are from one operand and are inline, then we can use the operand directly.
The changes are mainly from SSE41 targets which has blendvpd but not cmpgtq, allowing the v2i64 comparison to be simplified as we only need the signbit from alternate v4i32 elements.
llvm-svn: 366817
This patch introduces the DAG version of SimplifyMultipleUseDemandedBits, which attempts to peek through ops (mainly and/or/xor so far) that don't contribute to the demandedbits/elts of a node - which means we can do this even in cases where we have multiple uses of an op, which normally requires us to demanded all bits/elts. The intention is to remove a similar instruction - SelectionDAG::GetDemandedBits - once SimplifyMultipleUseDemandedBits has matured.
The InstCombine version of SimplifyMultipleUseDemandedBits can constant fold which I haven't added here yet, and so far I've only wired this up to some basic binops (and/or/xor/add/sub/mul) to demonstrate its use.
We do see a couple of regressions that need to be addressed:
AMDGPU unsigned dot product codegen retains an AND mask (for ZERO_EXTEND) that it previously removed (but otherwise the dotproduct codegen is a lot better).
X86/AVX2 has poor handling of vector ANY_EXTEND/ANY_EXTEND_VECTOR_INREG - it prematurely gets converted to ZERO_EXTEND_VECTOR_INREG.
The code owners have confirmed its ok for these cases to fixed up in future patches.
Differential Revision: https://reviews.llvm.org/D63281
llvm-svn: 366799
The function was calling getNode() on an SDValue to return and the
caller turned the result back into a SDValue. So just return the
original SDValue to avoid this.
llvm-svn: 366779
We were silently using the ABI alignment for all of the stores generated for deopt and gc values. We'd gotten the alignment of the stack slot itself properly reduced (via MachineFrameInfo's clamping), but having the MMO on the store incorrect was enough for us to generate an aligned store to a unaligned location.
The simplest fix would have been to just pass the alignment to the helper function, but once we do that, the helper function doesn't really help. So, inline it and directly call the MMO version of DAG.getStore with a properly constructed MMO.
Note that there's a separate performance possibility here. Even if we *can* realign stacks, we probably don't *want to* if all of the stores are in slowpaths. But that's a later patch, if at all. :)
llvm-svn: 366765
ARM has code to recognise uses of the "returned" function parameter
attribute which guarantee that the value passed to the function in r0
will be returned in r0 unmodified. IPRA replaces the regmask on call
instructions, so needs to be told about this to avoid reverting the
optimisation.
Differential revision: https://reviews.llvm.org/D64986
llvm-svn: 366669
Summary:
Four things here:
1. Generalize the fold to handle non-splat divisors. Reasonably trivial.
2. Unban power-of-two divisors. I don't see any reason why they should
be illegal.
* There is no ban in Hacker's Delight
* I think the ban came from the same bug that caused the miscompile
in the base patch - in `floor((2^W - 1) / D)` we were dividing by
`D0` instead of `D`, and we **were** ensuring that `D0` is not `1`,
which made sense.
3. Unban `1` divisors. I no longer believe Hacker's Delight actually says
that the fold is invalid for `D = 0`. Further considerations:
* We know that
* `(X u% 1) == 0` can be constant-folded to `1`,
* `(X u% 1) != 0` can be constant-folded to `0`,
* Also, we know that
* `X u<= -1` can be constant-folded to `1`,
* `X u> -1` can be constant-folded to `0`,
* https://godbolt.org/z/7jnZJXhttps://rise4fun.com/Alive/oF6p
* We know will end up with the following:
`(setule/setugt (rotr (mul N, P), K), Q)`
* Therefore, for given new DAG nodes and comparison predicates
(`ule`/`ugt`), we will still produce the correct answer if:
`Q` is a all-ones constant; and both `P` and `K` are *anything*
other than `undef`.
* The fold will indeed produce `Q = all-ones`.
4. Try to re-splat the `P` and `K` vectors - we don't care about
their values for the lanes where divisor was `1`.
Reviewers: RKSimon, hermord, craig.topper, spatel, xbolva00
Reviewed By: RKSimon
Subscribers: hiraditya, javed.absar, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63963
llvm-svn: 366637
This was handled previously for arguments split due to not fitting in
an MVT. This was dropping the register for argument registers split
due to TLI::getRegisterTypeForCallingConv.
llvm-svn: 366574
Implement IR intrinsics for stack tagging. Generated code is very
unoptimized for now.
Two special intrinsics, llvm.aarch64.irg.sp and llvm.aarch64.tagp are
used to implement a tagged stack frame pointer in a virtual register.
Differential Revision: https://reviews.llvm.org/D64172
llvm-svn: 366360
Summary:
As per title. DAGCombiner only mathes the special case where b = 0, this patches extends the pattern to match any value of b.
Depends on D57302
Reviewers: hfinkel, RKSimon, craig.topper
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59208
llvm-svn: 366214
We already split extract_subvector(binop(insert_subvector(v,x),insert_subvector(w,y))) -> binop(x,y).
This patch adds support for extract_subvector(binop(concat_vectors(),concat_vectors())) cases as well.
In particular this means we don't have to wait for X86 lowering to convert concat_vectors to insert_subvector chains, which helps avoid some cases where demandedelts/combine calls occur too late to split large vector ops.
The fast-isel-store.ll load folding regression is annoying but I don't think is that critical.
Differential Revision: https://reviews.llvm.org/D63653
llvm-svn: 365785
If we have:
R = sub X, Y
P = cmp Y, X
...then flipping the operands in the compare instruction can allow using a subtract that sets compare flags.
Motivated by diffs in D58875 - not sure if this changes anything there,
but this seems like a good thing independent of that.
There's a more involved version of this transform already in IR (in instcombine
although that seems misplaced to me) - see "swapMayExposeCSEOpportunities()".
Differential Revision: https://reviews.llvm.org/D63958
llvm-svn: 365711
Summary: Unsafe does not map well alone for each of these three cases as it is missing NoNan context when accessed directly with clang. I have migrated the fold guards to reflect the expectations of handing nan and zero contexts directly (NoNan, NSZ) and some tests with it. Unsafe does include NSZ, however there is already precedent for using the target option directly to reflect that context.
Reviewers: spatel, wristow, hfinkel, craig.topper, arsenm
Reviewed By: arsenm
Subscribers: michele.scandale, wdng, javed.absar
Differential Revision: https://reviews.llvm.org/D64450
llvm-svn: 365679
Basically the problem is that X86 doesn't set the Fast flag from
allowsMemoryAccess on certain CPUs due to slow unaligned memory
subtarget features. This prevents bitcasts from being folded into
loads and stores. But all vector loads and stores of the same width
are the same cost on X86.
This patch merges the allowsMemoryAccess call into isLoadBitCastBeneficial to allow X86 to skip it.
Differential Revision: https://reviews.llvm.org/D64295
llvm-svn: 365549
This makes the functions in Loads.h require a type to be specified
independently of the pointer Value so that when pointers have no structure
other than address-space, it can still do its job.
Most callers had an obvious memory operation handy to provide this type, but a
SROA and ArgumentPromotion were doing more complicated analysis. They get
updated to merge the properties of the various instructions they were
considering.
llvm-svn: 365468
DAGTypeLegalizer and SelectionDAGLegalize has helper
functions wrapping the call to TLI.getSetCCResultType(...).
Use those helpers in more places.
llvm-svn: 365456
Summary:
Make sure we use SETGE instead of SETGT when checking
if the sign bit is zero at SMULFIXSAT expansion.
The faulty expansion occured when doing "expand" of
SMULFIXSAT and the scale was exactly matching the
size of the smaller type. For example doing
i64 Z = SMULFIXSAT X, Y, 32
and expanding X/Y/Z into using two i32 values.
The problem was that we sometimes did not saturate
to min when overflowing.
Here is an example using Q3.4 numbers:
Consider that we are multiplying X and Y.
X = 0x80 (-8.0 as Q3.4)
Y = 0x20 (2.0 as Q3.4)
To avoid loss of precision we do a widening
multiplication, getting a 16 bit result
Z = 0xF000 (-16.0 as Q7.8)
To detect negative overflow we should check if
the five most significant bits in Z are less than -1.
Assume that we name the 4 most significant bits
as HH and the next 4 bits as HL. Then we can do the
check by examining if
(HH < -1) or (HH == -1 && "sign bit in HL is zero").
The fault was that we have been doing the check as
(HH < -1) or (HH == -1 && HL > 0)
instead of
(HH < -1) or (HH == -1 && HL >= 0).
In our example HH is -1 and HL is 0, so the old
code did not trigger saturation and simply truncated
the result to 0x00 (0.0). With the bugfix we instead
detect that we should saturate to min, and the result
will be set to 0x80 (-8.0).
Reviewers: leonardchan, bevinh
Reviewed By: leonardchan
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64331
llvm-svn: 365455
Summary:
This makes it so that IR files using triples without an environment work
out of the box, without normalizing them.
Typically, the MSVC behavior is more desirable. For example, it tends to
enable things like constant merging, use of associative comdats, etc.
Addresses PR42491
Reviewers: compnerd
Subscribers: hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64109
llvm-svn: 365387
Don't do this locally, computeKnownBits does this better (and can handle non-constant cases as well).
A next step would be to actually simplify non-constant elements - building on what we already do in SimplifyDemandedVectorElts.
llvm-svn: 365309
Summary:
The uaddo won't be removed and the addcarry will still be
dependent on the uaddo. So we'll just increase the use count
of X and Y and potentially require a COPY.
Reviewers: spatel, RKSimon, deadalnix
Reviewed By: RKSimon
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64190
llvm-svn: 365149
We previously marked all the tests with branch funnels as
`-verify-machineinstrs=0`.
This is an attempt to fix it.
1) `ICALL_BRANCH_FUNNEL` has no defs. Mark it as `let OutOperandList =
(outs)`
2) After that we hit an assert: ``` Assertion failed: (Op.getValueType()
!= MVT::Other && Op.getValueType() != MVT::Glue && "Chain and glue
operands should occur at end of operand list!"), function AddOperand,
file
/Users/francisvm/llvm/llvm/lib/CodeGen/SelectionDAG/InstrEmitter.cpp,
line 461. ```
The chain operand was added at the beginning of the operand list. Move
that to the end.
3) After that we hit another verifier issue in the pseudo expansion
where the registers used in the cmps and jmps are not added to the
livein lists. Add the `EFLAGS` to all the new MBBs that we create.
PR39436
Differential Review: https://reviews.llvm.org/D54155
llvm-svn: 365058
Summary:
This diff improve the capability of DAGCOmbine to generate linear carries propagation in presence of a diamond pattern. It is now able to match a large variety of different patterns rather than some hardcoded one.
Arguably, the codegen in test cases is not better, but this is to be expected. The goal of this transformation is more about canonicalisation than actual optimisation.
Reviewers: hfinkel, RKSimon, craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D57302
llvm-svn: 365051
When a target intrinsic has been determined to touch memory, we construct a MachineMemOperand during SDAG construction. In this case, we should propagate AAMDNodes metadata to the MachineMemOperand where available.
Differential revision: https://reviews.llvm.org/D64131
llvm-svn: 365043
Summary:
This is the backend part of [[ https://bugs.llvm.org/show_bug.cgi?id=42457 | PR42457 ]].
In middle-end, we'd want to prefer the form with two adds - D63992,
but as this diff shows, not every target will prefer that pattern.
Out of 4 targets for which i added tests all seem to be ok with inc-of-add for scalars,
but only X86 prefer that same pattern for vectors.
Here i'm adding a new TLI hook, always defaulting to the inc-of-add,
but adding AArch64,ARM,PowerPC overrides to prefer inc-of-add only for scalars.
Reviewers: spatel, RKSimon, efriedma, t.p.northover, hfinkel
Reviewed By: efriedma
Subscribers: nemanjai, javed.absar, kristof.beyls, kbarton, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64090
llvm-svn: 365010
For a given floating point load / store pair, if the load value isn't used by any other operations,
then consider transforming the pair to integer load / store operations if the target deems the transformation profitable.
And we can exploiting much more when there are other operation nodes with chain operand between the load/store pair
so long as we keep the chain ordering original. We only replace the register used to load/store from float to integer.
I only add testcase in ARM because the TLI.isDesirableToTransformToIntegerOp hook is only enabled in ARM target.
Differential Revision: https://reviews.llvm.org/D60601
llvm-svn: 364883
The SDAGBuilder behavior stems from the days when we didn't have fast
math flags available in SDAG. We do now and doing the transformation in
the legalizer has the advantage that it also works for vector types.
llvm-svn: 364743
Summary:
I'm submitting a new revision since i don't understand how to reclaim/reopen/take over the existing one, D50222.
There is no such action in "Add Action" menu...
This implements an optimization described in Hacker's Delight 10-17: when `C` is constant,
the result of `X % C == 0` can be computed more cheaply without actually calculating the remainder.
The motivation is discussed here: https://bugs.llvm.org/show_bug.cgi?id=35479.
This is a recommit, the original commit rL364563 was reverted in rL364568
because test-suite detected miscompile - the new comparison constant 'Q'
was being computed incorrectly (we divided by `D0` instead of `D`).
Original patch D50222 by @hermord (Dmytro Shynkevych)
Notes:
- In principle, it's possible to also handle the `X % C1 == C2` case, as discussed on bugzilla.
This seems to require an extra branch on overflow, so I refrained from implementing this for now.
- An explicit check for when the `REM` can be reduced to just its LHS is included:
the `X % C` == 0 optimization breaks `test1` in `test/CodeGen/X86/jump_sign.ll` otherwise.
I hadn't managed to find a better way to not generate worse output in this case.
- The `test/CodeGen/X86/jump_sign.ll` regresses, and is being fixed by a followup patch D63390.
Reviewers: RKSimon, craig.topper, spatel, hermord, xbolva00
Reviewed By: RKSimon, xbolva00
Subscribers: dexonsmith, kristina, xbolva00, javed.absar, llvm-commits, hermord
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63391
llvm-svn: 364600
Summary:
I'm submitting a new revision since i don't understand how to reclaim/reopen/take over the existing one, D50222.
There is no such action in "Add Action" menu...
Original patch D50222 by @hermord (Dmytro Shynkevych)
This implements an optimization described in Hacker's Delight 10-17: when `C` is constant,
the result of `X % C == 0` can be computed more cheaply without actually calculating the remainder.
The motivation is discussed here: https://bugs.llvm.org/show_bug.cgi?id=35479.
Original patch author: @hermord (Dmytro Shynkevych)!
Notes:
- In principle, it's possible to also handle the `X % C1 == C2` case, as discussed on bugzilla.
This seems to require an extra branch on overflow, so I refrained from implementing this for now.
- An explicit check for when the `REM` can be reduced to just its LHS is included:
the `X % C` == 0 optimization breaks `test1` in `test/CodeGen/X86/jump_sign.ll` otherwise.
I hadn't managed to find a better way to not generate worse output in this case.
- The `test/CodeGen/X86/jump_sign.ll` regresses, and is being fixed by a followup patch D63390.
Reviewers: RKSimon, craig.topper, spatel, hermord, xbolva00
Reviewed By: RKSimon, xbolva00
Subscribers: xbolva00, javed.absar, llvm-commits, hermord
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63391
llvm-svn: 364563
While lowering calls, collect info about registers that forward arguments
into following function frame. We store such info into the MachineFunction
of the call. This is used very late when dumping DWARF info about
call site parameters.
([9/13] Introduce the debug entry values.)
Co-authored-by: Ananth Sowda <asowda@cisco.com>
Co-authored-by: Nikola Prica <nikola.prica@rt-rk.com>
Co-authored-by: Ivan Baev <ibaev@cisco.com>
Differential Revision: https://reviews.llvm.org/D60715
llvm-svn: 364516
Summary:
(Not so) boringly identical to pattern a (D62786)
Not yet sure how do deal with the last pattern c.
Reviewers: RKSimon, craig.topper, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62793
llvm-svn: 364418
We support 'big to little' (e.g. extract_subvector(v16i8 bitcast(v2i64))) but not 'little to big' cases (e.g. extract_subvector(v2i64 bitcast(v16i8)))
llvm-svn: 364405
Change the generic ctpop expansion to more efficiently handle a
check for not-a-power-of-two value:
(ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
This is the inverted predicate sibling pattern that was added with:
D63004
This should have been done before I changed IR canonicalization to
favor this form with:
rL364246
...so if this requires revert/changing, the earlier commit may also
need to modified.
llvm-svn: 364319
Simplify ZERO_EXTEND_VECTOR_INREG if the extended bits are not required.
Matches what we already do for ZERO_EXTEND.
Reapplies rL363850 but now with legality checks added at rL364290
llvm-svn: 364303
This should not cause any visible change in output, but it's
more efficient because we were producing non-canonical 'sub x, 1'
and 'setcc ugt x, 0'. As mentioned in the TODO, we should also
be handling the inverse predicate.
llvm-svn: 364302
Simplify SIGN_EXTEND_VECTOR_INREG if the extended bits are not required/known zero.
Matches what we already do for SIGN_EXTEND.
Reapplies rL363802 but now with legality checks added at rL364290
llvm-svn: 364299
The *_EXTEND_VECTOR_INREG opcodes were relaxed back around rL346784 to support source vector widths that are smaller than the output - it looks like the legalizers were never updated to account for this.
This patch inserts the smaller source vector into an undef vector of the same width of the result before performing the shuffle+bitcast to correctly handle this.
Part of the yak shaving to solve the crashes from rL364264 and rL364272
llvm-svn: 364295
As part of the fix for rL364264 + rL364272 - limit the *_EXTEND conversion to !TLO.LegalOperations || isOperationLegal cases.
We'll improve X86 legality in future commits.
llvm-svn: 364290
Summary:
This addresses the regression that is being exposed by D50222 in `test/CodeGen/X86/jump_sign.ll`
The missing fold, at least partially, looks trivial:
https://rise4fun.com/Alive/Zsln
i.e. if we are comparing with zero, and comparing the `urem`-by-non-power-of-two,
and the `urem` is of something that may at most have a single bit set (or no bits set at all),
the `urem` is not needed.
Reviewers: RKSimon, craig.topper, xbolva00, spatel
Reviewed By: xbolva00, spatel
Subscribers: xbolva00, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63390
llvm-svn: 364286
This reverts the following patches.
"[TargetLowering] SimplifyDemandedBits SIGN_EXTEND_VECTOR_INREG -> ANY/ZERO_EXTEND_VECTOR_INREG"
"[TargetLowering] SimplifyDemandedBits ZERO_EXTEND_VECTOR_INREG -> ANY_EXTEND_VECTOR_INREG"
"[TargetLowering] SimplifyDemandedBits - add ANY_EXTEND_VECTOR_INREG support"
We can end up with an any_extend_vector_inreg with a 256 bit result type
and a 128 bit result type. This is allowed by the ISD opcode, but the
generic operation legalizer is only able to expand cases where the
total vector width is the same.
The X86 backend creates these mismatched cases for zext_vec_inreg/sext_vec_inreg.
The SimplifyDemandedBits changes are allowing those nodes to become
aext_vec_inreg. For the zext/sext cases, the X86 backend has Custom
handling and never lets them get to the generic legalizer. We need to do the same
for aext_vec_inreg.
llvm-svn: 364264
Widen vector result type for ctlz_zero_undef and cttz_zero_undef the same as
ctlz and cttz.
Differential Revision: https://reviews.llvm.org/D63463
llvm-svn: 364221
Avoids using a plain unsigned for registers throughoug codegen.
Doesn't attempt to change every register use, just something a little
more than the set needed to build after changing the return type of
MachineOperand::getReg().
llvm-svn: 364191
This can occur under certain circumstances when undefs are created later on in the constant multipliers (e.g. in this case due to SimplifyDemandedVectorElts). Its better to let the shift by zero to occur and perform any cleanup afterward.
Fixes OSS Fuzz #15429
llvm-svn: 364179
The code divides the alignment by 2 if the original alignment is
equal to the original VT size. But this wouldn't be correct
if the alignment was larger than the VT size.
The memory operand object already takes care of calling MinAlign
on the base alignment and the memory pointer offset. So we don't
need any special code at all.
llvm-svn: 364151
We tend to only test for scalar/scalar consts when really we could support non-uniform vectors using ISD::matchUnaryPredicate/matchBinaryPredicate etc.
llvm-svn: 363924
Use getAPIntValue() in a few more places. Most of the time getZExtValue() is fine, but occasionally there's fuzzed code or someone decides to create i65536 or something.....
llvm-svn: 363887
Use matchBinaryPredicate instead of isConstOrConstSplat to let us handle non-uniform shift cases.
This requires us to tweak matchBinaryPredicate to allow it to (optionally) handle constants with different type widths.
llvm-svn: 363792
This allows targets to make more decisions about reserved registers
after isel. For example, now it should be certain there are calls or
stack objects in the frame or not, which could have been introduced by
legalization.
Patch by Matthias Braun
llvm-svn: 363757
Other than adding consistent demanded elts handling which was a trivial addition, the other differences in functionality will be added in later patches.
llvm-svn: 363713
Other than adding consistent demanded elts handling which was a trivial addition, the other differences in functionality will be added in later patches.
llvm-svn: 363710
This adds vector splitting for vaarg instructions during type legalization
Committed on behalf of @luke (Luke Lau)
Differential Revision: https://reviews.llvm.org/D60762
llvm-svn: 363671
Some GEPs were not being split, presumably because that split would just be
undone by the DAGCombiner. Not performing those splits can prevent important
optimizations, such as preventing the element indices / member offsets from
being (partially) folded into load/store instruction immediates. This patch:
- Makes the splits also occur in the cases where the base address and the GEP
are in the same BB.
- Ensures that the DAGCombiner doesn't reassociate them back again.
Differential Revision: https://reviews.llvm.org/D60294
llvm-svn: 363544
This is already done in DAGCombiner::visitINSERT_SUBVECTOR, but this helps a number of shuffles across different vector widths recognise when they come from the same source.
llvm-svn: 363542
This reverts rL363474. -debug-only=isel was added to some tests that
don't specify `REQUIRES: asserts`. This causes failures on
-DLLVM_ENABLE_ASSERTIONS=off builds.
I chose to revert instead of fixing the tests because I'm not sure
whether we should add `REQUIRES: asserts` to more tests.
llvm-svn: 363482
As discussed on D62910, we need to check whether particular types of memory access are allowed, not just their alignment/address-space.
This NFC patch adds a MachineMemOperand::Flags argument to allowsMemoryAccess and allowsMisalignedMemoryAccesses, and wires up calls to pass the relevant flags to them.
If people are happy with this approach I can then update X86TargetLowering::allowsMisalignedMemoryAccesses to handle misaligned NT load/stores.
Differential Revision: https://reviews.llvm.org/D63075
llvm-svn: 363179
As suggested by @arsenm on D63075 - this adds a TargetLowering::allowsMemoryAccess wrapper that takes a Load/Store node's MachineMemOperand to handle the AddressSpace/Alignment arguments and will also implicitly handle the MachineMemOperand::Flags change in D63075.
llvm-svn: 363048
This patch changes how LLVM handles the accumulator/start value
in the reduction, by never ignoring it regardless of the presence of
fast-math flags on callsites. This change introduces the following
new intrinsics to replace the existing ones:
llvm.experimental.vector.reduce.fadd -> llvm.experimental.vector.reduce.v2.fadd
llvm.experimental.vector.reduce.fmul -> llvm.experimental.vector.reduce.v2.fmul
and adds functionality to auto-upgrade existing LLVM IR and bitcode.
Reviewers: RKSimon, greened, dmgreen, nikic, simoll, aemerson
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D60261
llvm-svn: 363035
This behavior was added in r130928 for both FastISel and SD, and then
disabled in r131156 for FastISel.
This re-enables it for FastISel with the corresponding fix.
This is triggered only when FastISel can't lower the arguments and falls
back to SelectionDAG for it.
FastISel contains a map of "register fixups" where at the end of the
selection phase it replaces all uses of a register with another
register that FastISel sometimes pre-assigned. Code at the end of
SelectionDAGISel::runOnMachineFunction is doing the replacement at the
very end of the function, while other pieces that come in before that
look through the MachineFunction and assume everything is done. In this
case, the real issue is that the code emitting COPY instructions for the
liveins (physreg to vreg) (EmitLiveInCopies) is checking if the vreg
assigned to the physreg is used, and if it's not, it will skip the COPY.
If a register wasn't replaced with its assigned fixup yet, the copy will
be skipped and we'll end up with uses of undefined registers.
This fix moves the replacement of registers before the emission of
copies for the live-ins.
The initial motivation for this fix is to enable tail calls for
swiftself functions, which were blocked because we couldn't prove that
the swiftself argument (which is callee-save) comes from a function
argument (live-in), because there was an extra copy (vreg to vreg).
A few tests are affected by this:
* llvm/test/CodeGen/AArch64/swifterror.ll: we used to spill x21
(callee-save) but never reload it because it's attached to the return.
We now don't even spill it anymore.
* llvm/test/CodeGen/*/swiftself.ll: we tail-call now.
* llvm/test/CodeGen/AMDGPU/mubuf-legalize-operands.ll: I believe this
test was not really testing the right thing, but it worked because the
same registers were re-used.
* llvm/test/CodeGen/ARM/cmpxchg-O0.ll: regalloc changes
* llvm/test/CodeGen/ARM/swifterror.ll: get rid of a copy
* llvm/test/CodeGen/Mips/*: get rid of spills and copies
* llvm/test/CodeGen/SystemZ/swift-return.ll: smaller stack
* llvm/test/CodeGen/X86/atomic-unordered.ll: smaller stack
* llvm/test/CodeGen/X86/swifterror.ll: same as AArch64
* llvm/test/DebugInfo/X86/dbg-declare-arg.ll: stack size changed
Differential Revision: https://reviews.llvm.org/D62361
llvm-svn: 362963
This opportunity is found from spec 2017 557.xz_r. And it is used by the sha encrypt/decrypt. See sha-2/sha512.c
static void store64(u64 x, unsigned char* y)
{
for(int i = 0; i != 8; ++i)
y[i] = (x >> ((7-i) * 8)) & 255;
}
static u64 load64(const unsigned char* y)
{
u64 res = 0;
for(int i = 0; i != 8; ++i)
res |= (u64)(y[i]) << ((7-i) * 8);
return res;
}
The load64 has been implemented by https://reviews.llvm.org/D26149
This patch is trying to implement the store pattern.
Match a pattern where a wide type scalar value is stored by several narrow
stores. Fold it into a single store or a BSWAP and a store if the targets
supports it.
Assuming little endian target:
i8 *p = ...
i32 val = ...
p[0] = (val >> 0) & 0xFF;
p[1] = (val >> 8) & 0xFF;
p[2] = (val >> 16) & 0xFF;
p[3] = (val >> 24) & 0xFF;
>
*((i32)p) = val;
i8 *p = ...
i32 val = ...
p[0] = (val >> 24) & 0xFF;
p[1] = (val >> 16) & 0xFF;
p[2] = (val >> 8) & 0xFF;
p[3] = (val >> 0) & 0xFF;
>
*((i32)p) = BSWAP(val);
Differential Revision: https://reviews.llvm.org/D62897
llvm-svn: 362921
In order for GlobalISel to re-use the significant amount of analysis and
optimization code in SDAG's switch lowering, we first have to extract it and
create an interface to be used by both frameworks.
No test changes as it's NFC.
Differential Revision: https://reviews.llvm.org/D62745
llvm-svn: 362857
Summary:
(1) Function descriptor on AIX
On AIX, a called routine may have 2 distinct symbols associated with it:
* A function descriptor (Name)
* A function entry point (.Name)
The descriptor structure on AIX is the same as those in the ELF V1 ABI:
* The address of the entry point of the function.
* The TOC base address for the function.
* The environment pointer.
The descriptor symbol uses the same name as the source level function in C.
The function entry point is analogous to the symbol we would generate for a
function in a non-descriptor-based ABI, except that it is renamed by
prepending a ".".
Which symbol gets referenced depends on the context:
* Taking the address of the function references the descriptor symbol.
* Calling the function references the entry point symbol.
(2) Speaking of implementation on AIX, for direct function call target, we
create proper MCSymbol SDNode(e.g . ".foo") while constructing SDAG to
replace original TargetGlobalAddress SDNode. Then down the path, we can
take advantage of this MCSymbol.
Patch by: Xiangling_L
Reviewed by: sfertile, hubert.reinterpretcast, jasonliu, syzaara
Differential Revision: https://reviews.llvm.org/D62532
llvm-svn: 362735
This patch is the first step towards ensuring MergeConsecutiveStores correctly handles non-temporal loads\stores:
1 - When merging load\stores we must ensure that they all have the same non-temporal flag. This is unlikely to occur, but can in strange cases where we're storing at the end of one page and the beginning of another.
2 - The merged load\store node must retain the non-temporal flag.
Differential Revision: https://reviews.llvm.org/D62910
llvm-svn: 362723
The ISD::STRICT_ nodes used to implement the constrained floating-point
intrinsics are currently never passed to the target back-end, which makes
it impossible to handle them correctly (e.g. mark instructions are depending
on a floating-point status and control register, or mark instructions as
possibly trapping).
This patch allows the target to use setOperationAction to switch the action
on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code
will stop converting the STRICT nodes to regular floating-point nodes, but
instead pass the STRICT nodes to the target using normal SelectionDAG
matching rules.
To avoid having the back-end duplicate all the floating-point instruction
patterns to handle both strict and non-strict variants, we make the MI
codegen explicitly aware of the floating-point exceptions by introducing
two new concepts:
- A new MCID flag "mayRaiseFPException" that the target should set on any
instruction that possibly can raise FP exception according to the
architecture definition.
- A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI
instruction resulting from expansion of any constrained FP intrinsic.
Any MI instruction that is *both* marked as mayRaiseFPException *and*
FPExcept then needs to be considered as raising exceptions by MI-level
codegen (e.g. scheduling).
Setting those two new flags is straightforward. The mayRaiseFPException
flag is simply set via TableGen by marking all relevant instruction
patterns in the .td files.
The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes
in the SelectionDAG, and gets inherited in the MachineSDNode nodes created
from it during instruction selection. The flag is then transfered to an
MIFlag when creating the MI from the MachineSDNode. This is handled just
like fast-math flags like no-nans are handled today.
This patch includes both common code changes required to implement the
new features, and the SystemZ implementation.
Reviewed By: andrew.w.kaylor
Differential Revision: https://reviews.llvm.org/D55506
llvm-svn: 362663
Most parts of LLVM don't care whether the byval type is derived from an
explicit Attribute or from the parameter's pointee type, so it makes
sense for the main access function to just return the right value.
The very few users who do care (only BitcodeReader so far) can find out
how it's specified by accessing the Attribute directly.
llvm-svn: 362642
Summary:
An argument that is return by a function but bit-casted before can still
be annotated as "returned". Make sure we do not crash for this case.
Reviewers: sunfish, stephenwlin, niravd, arsenm
Subscribers: wdng, hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59917
llvm-svn: 362546
This is a special case of a more general transform (not (sub Y, X)) -> (add X, ~Y). InstCombine knows the general form. I've restricted to the special case to fix the motivating case PR42118. I tried handling any case where Y was constant, but got some changes on some Mips tests that I couldn't quickly prove where beneficial.
Fixes PR42118
Differential Revision: https://reviews.llvm.org/D62828
llvm-svn: 362533
The proposal in D62498 showed that x86 would benefit from vector
store splitting, but that may conflict with the generic DAG
combiner's store merging transforms.
Add memory type to the existing TLI hook that enables the merging
transforms, so we can limit those changes to scalars only for x86.
llvm-svn: 362507
Summary:
This *might* be the last fold for `sink-addsub-of-const.ll`, but i'm not sure yet.
As far as i can tell, there are no regressions here (ignoring x86-32),
all changes are either good or neutral.
This, almost surprisingly to me, fixes the motivational tests (in `shift-amount-mod.ll`)
`@reg32_lshr_by_sub_from_negated` from [[ https://bugs.llvm.org/show_bug.cgi?id=41952 | PR41952 ]].
https://rise4fun.com/Alive/vMd3
Reviewers: RKSimon, t.p.northover, craig.topper, spatel, efriedma
Reviewed By: RKSimon
Subscribers: sdardis, javed.absar, arichardson, kristof.beyls, jrtc27, atanasyan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62774
llvm-svn: 362488
As I mentioned on D61887 we don't get many hits on ComputeNumSignBits as we did on computeKnownBits.
The case we do get is interesting though - it allows us to use the 'ConditionalNegate' combine in combineLogicBlendIntoPBLENDV to remove a select.
It comes too late for SSE41 (BLENDV) cases, but SSE2 tests can hit it now. We should probably try to make use of this for SSE41+ targets as well - avoiding variable blends is usually a good idea. I'll investigate as a followup.
Differential Revision: https://reviews.llvm.org/D62777
llvm-svn: 362486
This opportunity is found from spec 2017 557.xz_r. And it is used by the sha encrypt/decrypt. See sha-2/sha512.c
static void store64(u64 x, unsigned char* y)
{
for(int i = 0; i != 8; ++i)
y[i] = (x >> ((7-i) * 8)) & 255;
}
static u64 load64(const unsigned char* y)
{
u64 res = 0;
for(int i = 0; i != 8; ++i)
res |= (u64)(y[i]) << ((7-i) * 8);
return res;
}
The load64 has been implemented by https://reviews.llvm.org/D26149
This patch is trying to implement the store pattern.
Match a pattern where a wide type scalar value is stored by several narrow
stores. Fold it into a single store or a BSWAP and a store if the targets
supports it.
Assuming little endian target:
i8 *p = ...
i32 val = ...
p[0] = (val >> 0) & 0xFF;
p[1] = (val >> 8) & 0xFF;
p[2] = (val >> 16) & 0xFF;
p[3] = (val >> 24) & 0xFF;
>
*((i32)p) = val;
i8 *p = ...
i32 val = ...
p[0] = (val >> 24) & 0xFF;
p[1] = (val >> 16) & 0xFF;
p[2] = (val >> 8) & 0xFF;
p[3] = (val >> 0) & 0xFF;
>
*((i32)p) = BSWAP(val);
Differential Revision: https://reviews.llvm.org/D61843
llvm-svn: 362472
Summary: This change facilitates propagating fmf which was placed on setcc from fcmp through folds with selects so that back ends can model this path for arithmetic folds on selects in SDAG.
Reviewers: qcolombet, spatel
Reviewed By: qcolombet
Subscribers: nemanjai, jsji
Differential Revision: https://reviews.llvm.org/D62552
llvm-svn: 362439
We were missing this fold in the DAG, which I've copied directly from llvm::ConstantFoldCastInstruction
Differential Revision: https://reviews.llvm.org/D62807
llvm-svn: 362397
If we hit the limit, we do expand the outstanding tokenfactors.
Otherwise, we might drop nodes with users in the unexpanded
tokenfactors. This fixes the crashes reported by Jordan Rupprecht.
Reviewers: niravd, spatel, craig.topper, rupprecht
Reviewed By: niravd
Differential Revision: https://reviews.llvm.org/D62633
llvm-svn: 362350
Move this combine from x86 into generic DAGCombine, which currently only manages cases where the bitcast is between types of the same scalarsize.
Differential Revision: https://reviews.llvm.org/D59188
llvm-svn: 362324
Add (opt-in) support for implicit truncation to isConstOrConstSplat, which allows us to match truncated 'all ones' cases in isBitwiseNot.
PR41020 compares against using ISD::isBuildVectorAllOnes() instead, but that predicate silently accepts any UNDEF elements in the build vector which might not be what we want in isBitwiseNot - so I've added an opt-in 'AllowUndefs' flag that is set to false by default but will allow us to enable it on individual cases where its safe.
Differential Revision: https://reviews.llvm.org/D62783
llvm-svn: 362323
The results of the dyn_casts were immediately dereferenced on the next line
so they had better not be null.
I don't think there's any way for these dyn_casts to fail, so use a cast
of adding null check.
llvm-svn: 362315
Just copy all of the operands except the chain and call MorphNode on that.
This removes the IsUnary and IsTernary flags.
Also always get the result type from the result type of the original
nodes. Previously we got it from the operand except for two nodes
where that didn't work.
llvm-svn: 362269
[FPEnv] Added a special UnrollVectorOp method to deal with the chain on StrictFP opcodes
This change creates UnrollVectorOp_StrictFP. The purpose of this is to address a failure that consistently occurs when calling StrictFP functions on vectors whose number of elements is 3 + 2n on most platforms, such as PowerPC or SystemZ. The old UnrollVectorOp method does not expect that the vector that it will unroll will have a chain, so it has an assert that prevents it from running if this is the case. This new StrictFP version of the method deals with the chain while unrolling the vector. With this new function in place during vector widending, llc can run vector-constrained-fp-intrinsics.ll for SystemZ successfully.
Submitted by: Drew Wock <drew.wock@sas.com>
Reviewed by: Cameron McInally, Kevin P. Neal
Approved by: Cameron McInally
Differential Revision: https://reviews.llvm.org/D62546
llvm-svn: 362241
I don't have a test case for these, but there is a test case for D62266
where, even after all the constant-folding patches, we still end up
with endless combine loop. Which makes sense, since we don't constant
fold for opaque constants.
llvm-svn: 362156
Summary:
Only vector tests are being affected here,
since subtraction by scalar constant is rewritten
as addition by negated constant.
No surprising test changes.
https://rise4fun.com/Alive/pbT
This is a recommit, originally committed in rL361852, but reverted
to investigate test-suite compile-time hangs.
Reviewers: RKSimon, craig.topper, spatel
Reviewed By: RKSimon
Subscribers: javed.absar, kristof.beyls, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62257
llvm-svn: 362146
Summary:
Again only vectors affected. Frustrating. Let me take a look into that..
https://rise4fun.com/Alive/AAq
This is a recommit, originally committed in rL361852, but reverted
to investigate test-suite compile-time hangs, and then reverted in
rL362109 to fix missing constant folds that were causing
endless combine loops.
Reviewers: RKSimon, craig.topper, spatel
Reviewed By: RKSimon
Subscribers: javed.absar, JDevlieghere, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62294
llvm-svn: 362145
Summary:
This prevents regressions in next patch,
and somewhat recovers from the regression to AMDGPU test in D62223.
It is indeed not great that we leave vector decrement,
don't transform it into vector add all-ones..
https://rise4fun.com/Alive/ZRl
This is a recommit, originally committed in rL361852, but reverted
to investigate test-suite compile-time hangs, and then reverted in
rL362109 to fix missing constant folds that were causing
endless combine loops.
Reviewers: RKSimon, craig.topper, spatel, arsenm
Reviewed By: RKSimon, arsenm
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, javed.absar, dstuttard, tpr, t-tye, kristof.beyls, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62263
llvm-svn: 362144
Summary:
Direct sibling of D62223 patch.
While i don't have a direct motivational pattern for this,
it would seem to make sense to handle both patterns (or none),
for symmetry?
The aarch64 changes look neutral;
sparc and systemz look like improvement (one less instruction each);
x86 changes - 32bit case improves, 64bit case shows that LEA no longer
gets constructed, which may be because that whole test is `-mattr=+slow-lea,+slow-3ops-lea`
https://rise4fun.com/Alive/ffh
This is a recommit, originally committed in rL361852, but reverted
to investigate test-suite compile-time hangs, and then reverted in
rL362109 to fix missing constant folds that were causing
endless combine loops.
Reviewers: RKSimon, craig.topper, spatel, t.p.northover
Reviewed By: t.p.northover
Subscribers: t.p.northover, jyknight, javed.absar, kristof.beyls, fedor.sergeev, jrtc27, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62252
llvm-svn: 362143
Summary:
The main motivation is shown by all these `neg` instructions that are now created.
In particular, the `@reg32_lshr_by_negated_unfolded_sub_b` test.
AArch64 test changes all look good (`neg` created), or neutral.
X86 changes look neutral (vectors), or good (`neg` / `xor eax, eax` created).
I'm not sure about `X86/ragreedy-hoist-spill.ll`, it looks like the spill
is now hoisted into preheader (which should still be good?),
2 4-byte reloads become 1 8-byte reload, and are elsewhere,
but i'm not sure how that affects that loop.
I'm unable to interpret AMDGPU change, looks neutral-ish?
This is hopefully a step towards solving [[ https://bugs.llvm.org/show_bug.cgi?id=41952 | PR41952 ]].
https://rise4fun.com/Alive/pkdq (we are missing more patterns, i'll submit them later)
This is a recommit, originally committed in rL361852, but reverted
to investigate test-suite compile-time hangs, and then reverted in
rL362109 to fix missing constant folds that were causing
endless combine loops.
Reviewers: craig.topper, RKSimon, spatel, arsenm
Reviewed By: RKSimon
Subscribers: bjope, qcolombet, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, javed.absar, dstuttard, tpr, t-tye, kristof.beyls, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62223
llvm-svn: 362142
Summary:
Direct sibling of D62662, the root cause of the endless combine loop in D62257
https://rise4fun.com/Alive/d3W
Reviewers: RKSimon, craig.topper, spatel, t.p.northover
Reviewed By: t.p.northover
Subscribers: t.p.northover, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62664
llvm-svn: 362133
Summary:
No tests change, and i'm not sure how to test this, but it's better safe than sorry.
Reviewers: spatel, RKSimon, craig.topper, t.p.northover
Reviewed By: craig.topper
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62663
llvm-svn: 362132
Summary:
This was the root cause of the endless combine loop in D62257
https://rise4fun.com/Alive/d3W
Reviewers: RKSimon, spatel, craig.topper, t.p.northover
Reviewed By: t.p.northover
Subscribers: t.p.northover, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62662
llvm-svn: 362131
Summary: No tests change, and i'm not sure how to test this, but it's better safe than sorry.
Reviewers: spatel, RKSimon, craig.topper, t.p.northover
Reviewed By: craig.topper
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62661
llvm-svn: 362130
When we switch to opaque pointer types we will need some way to describe
how many bytes a 'byval' parameter should occupy on the stack. This adds
a (for now) optional extra type parameter.
If present, the type must match the pointee type of the argument.
The original commit did not remap byval types when linking modules, which broke
LTO. This version fixes that.
Note to front-end maintainers: if this causes test failures, it's probably
because the "byval" attribute is printed after attributes without any parameter
after this change.
llvm-svn: 362128
This change creates UnrollVectorOp_StrictFP. The purpose of this is to address a failure that consistently occurs when calling StrictFP functions on vectors whose number of elements is 3 + 2n on most platforms, such as PowerPC or SystemZ. The old UnrollVectorOp method does not expect that the vector that it will unroll will have a chain, so it has an assert that prevents it from running if this is the case. This new StrictFP version of the method deals with the chain while unrolling the vector. With this new function in place during vector widending, llc can run vector-constrained-fp-intrinsics.ll for SystemZ successfully.
Submitted by: Drew Wock <drew.wock@sas.com>
Reviewed by: Cameron McInally, Kevin P. Neal
Approved by: Cameron McInally
Differential Revision: http://reviews.llvm.org/D62546
llvm-svn: 362112
I was looking into an endless combine loop the uncommitted follow-up patch
was causing, and it appears even these patches can exibit such an
endless loop. The root cause is that we try to hoist one binop (add/sub) with
constant operand, and if we get two such binops both of which are
eligible for this hoisting, we get stuck.
Some cases may highlight missing constant-folds.
Reverts r361871,r361872,r361873,r361874.
llvm-svn: 362109
When we switch to opaque pointer types we will need some way to describe
how many bytes a 'byval' parameter should occupy on the stack. This adds
a (for now) optional extra type parameter.
If present, the type must match the pointee type of the argument.
Note to front-end maintainers: if this causes test failures, it's probably
because the "byval" attribute is printed after attributes without any parameter
after this change.
llvm-svn: 362012
This patch add the ISD::LRINT and ISD::LLRINT along with new
intrinsics. The changes are straightforward as for other
floating-point rounding functions, with just some adjustments
required to handle the return value being an interger.
The idea is to optimize lrint/llrint generation for AArch64
in a subsequent patch. Current semantic is just route it to libm
symbol.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D62017
llvm-svn: 361875
Summary:
Again only vectors affected. Frustrating. Let me take a look into that..
https://rise4fun.com/Alive/AAq
This is a recommit, originally committed in rL361856, but reverted
to investigate test-suite compile-time hangs.
Reviewers: RKSimon, craig.topper, spatel
Reviewed By: RKSimon
Subscribers: javed.absar, JDevlieghere, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62294
llvm-svn: 361874
Summary:
This prevents regressions in next patch,
and somewhat recovers from the regression to AMDGPU test in D62223.
It is indeed not great that we leave vector decrement,
don't transform it into vector add all-ones..
https://rise4fun.com/Alive/ZRl
This is a recommit, originally committed in rL361855, but reverted
to investigate test-suite compile-time hangs.
Reviewers: RKSimon, craig.topper, spatel, arsenm
Reviewed By: RKSimon, arsenm
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, javed.absar, dstuttard, tpr, t-tye, kristof.beyls, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62263
llvm-svn: 361873
Summary:
Direct sibling of D62223 patch.
While i don't have a direct motivational pattern for this,
it would seem to make sense to handle both patterns (or none),
for symmetry?
The aarch64 changes look neutral;
sparc and systemz look like improvement (one less instruction each);
x86 changes - 32bit case improves, 64bit case shows that LEA no longer
gets constructed, which may be because that whole test is `-mattr=+slow-lea,+slow-3ops-lea`
https://rise4fun.com/Alive/ffh
This is a recommit, originally committed in rL361853, but reverted
to investigate test-suite compile-time hangs.
Reviewers: RKSimon, craig.topper, spatel, t.p.northover
Reviewed By: t.p.northover
Subscribers: t.p.northover, jyknight, javed.absar, kristof.beyls, fedor.sergeev, jrtc27, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62252
llvm-svn: 361872
Summary:
The main motivation is shown by all these `neg` instructions that are now created.
In particular, the `@reg32_lshr_by_negated_unfolded_sub_b` test.
AArch64 test changes all look good (`neg` created), or neutral.
X86 changes look neutral (vectors), or good (`neg` / `xor eax, eax` created).
I'm not sure about `X86/ragreedy-hoist-spill.ll`, it looks like the spill
is now hoisted into preheader (which should still be good?),
2 4-byte reloads become 1 8-byte reload, and are elsewhere,
but i'm not sure how that affects that loop.
I'm unable to interpret AMDGPU change, looks neutral-ish?
This is hopefully a step towards solving [[ https://bugs.llvm.org/show_bug.cgi?id=41952 | PR41952 ]].
https://rise4fun.com/Alive/pkdq (we are missing more patterns, i'll submit them later)
This is a recommit, originally committed in rL361852, but reverted
to investigate test-suite compile-time hangs.
Reviewers: craig.topper, RKSimon, spatel, arsenm
Reviewed By: RKSimon
Subscribers: bjope, qcolombet, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, javed.absar, dstuttard, tpr, t-tye, kristof.beyls, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62223
llvm-svn: 361871
Summary:
Again only vectors affected. Frustrating. Let me take a look into that..
https://rise4fun.com/Alive/AAq
Reviewers: RKSimon, craig.topper, spatel
Reviewed By: RKSimon
Subscribers: javed.absar, JDevlieghere, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62294
llvm-svn: 361856
Summary:
This prevents regressions in next patch,
and somewhat recovers from the regression to AMDGPU test in D62223.
It is indeed not great that we leave vector decrement,
don't transform it into vector add all-ones..
https://rise4fun.com/Alive/ZRl
Reviewers: RKSimon, craig.topper, spatel, arsenm
Reviewed By: RKSimon, arsenm
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, javed.absar, dstuttard, tpr, t-tye, kristof.beyls, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62263
llvm-svn: 361855
Summary:
Only vector tests are being affected here,
since subtraction by scalar constant is rewritten
as addition by negated constant.
No surprising test changes.
https://rise4fun.com/Alive/pbT
Reviewers: RKSimon, craig.topper, spatel
Reviewed By: RKSimon
Subscribers: javed.absar, kristof.beyls, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62257
llvm-svn: 361854
Summary:
Direct sibling of D62223 patch.
While i don't have a direct motivational pattern for this,
it would seem to make sense to handle both patterns (or none),
for symmetry?
The aarch64 changes look neutral;
sparc and systemz look like improvement (one less instruction each);
x86 changes - 32bit case improves, 64bit case shows that LEA no longer
gets constructed, which may be because that whole test is `-mattr=+slow-lea,+slow-3ops-lea`
https://rise4fun.com/Alive/ffh
Reviewers: RKSimon, craig.topper, spatel, t.p.northover
Reviewed By: t.p.northover
Subscribers: t.p.northover, jyknight, javed.absar, kristof.beyls, fedor.sergeev, jrtc27, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62252
llvm-svn: 361853
Summary:
The main motivation is shown by all these `neg` instructions that are now created.
In particular, the `@reg32_lshr_by_negated_unfolded_sub_b` test.
AArch64 test changes all look good (`neg` created), or neutral.
X86 changes look neutral (vectors), or good (`neg` / `xor eax, eax` created).
I'm not sure about `X86/ragreedy-hoist-spill.ll`, it looks like the spill
is now hoisted into preheader (which should still be good?),
2 4-byte reloads become 1 8-byte reload, and are elsewhere,
but i'm not sure how that affects that loop.
I'm unable to interpret AMDGPU change, looks neutral-ish?
This is hopefully a step towards solving [[ https://bugs.llvm.org/show_bug.cgi?id=41952 | PR41952 ]].
https://rise4fun.com/Alive/pkdq (we are missing more patterns, i'll submit them later)
Reviewers: craig.topper, RKSimon, spatel, arsenm
Reviewed By: RKSimon
Subscribers: bjope, qcolombet, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, javed.absar, dstuttard, tpr, t-tye, kristof.beyls, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62223
llvm-svn: 361852
Move the element index/count variables into the block where they are actually used - appeases cppcheck and helps avoid shadow variable warnings.
llvm-svn: 361821
This is derived from the related fold for build vectors.
We also have a version of this in DAGCombiner. The benefit of
having this fold at node creation time is (1) efficiency and
(2) preventing infinite looping from creating patterns that
should not exist in the first place.
Currently, the inf-loop could happen with MergeConsecutiveStores()
because it naively creates concat of extracts when forming a wider
vector store. That could fight with target-specific store narrowing.
llvm-svn: 361780
There's a possible missing fold here for extracting from the
same source vector. It's similar to a check that we use to
squash a build vector with all extracted elements from the
same source vector.
llvm-svn: 361778
Summary:
- The current implementation simplifies the case where the source of
`copyto` is `implicit-def`ed. However, it only works when that
`implicit-def` is single-used since it detects that from
`implicit-def` and cannot determine which destination vreg should be
used if there are multiple uses.
- This patch changes that detection when `copyto` is being emitted. If
that `copyto`'s source is defined from `implicit-def`, it simplifies
it. Hence, it works even that `implicit-def` is multi-used.
- Except it simplifies the internal IR, it won't improve the quality of
code generation. However, it helps to detect 'implicit-def` in a
straight-forward manner in some passes, such as `si-i1-copies`. A test
case is added.
Reviewers: sunfish, nhaehnle
Subscribers: jvesely, hiraditya, asbirlea, llvm-commits, yaxunl
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62342
llvm-svn: 361777
The DemandedElts variable is pretty much inert at the moment - the original GetDemandedBits implementation calls it with an 'all ones' DemandedElts value so the function is active and behaves exactly as it used to.
llvm-svn: 361773
Details: To make instruction selection really divergence driven it is necessary to assign
the correct register classes to the cross block values beforehand. For the divergent targets
same value type requires different register classes dependent on the value divergence.
Reviewers: rampitec, nhaehnle
Differential Revision: https://reviews.llvm.org/D59990
This commit was reverted because of the build failure.
The reason was mlformed patch.
Build failure fixed.
llvm-svn: 361741
The test based on PR42010:
https://bugs.llvm.org/show_bug.cgi?id=42010
...may show an inaccuracy for PPC's target defs, but we should not
be so aggressive with an assert here. There's no telling what out-of-tree
targets look like.
llvm-svn: 361696
Details: To make instruction selection really divergence driven it is necessary to assign
the correct register classes to the cross block values beforehand. For the divergent targets
same value type requires different register classes dependent on the value divergence.
Reviewers: rampitec, nhaehnle
Differential Revision: https://reviews.llvm.org/D59990
llvm-svn: 361644
This patch adds the overridable TargetLowering::getTargetConstantFromLoad function which allows targets to return any constant value loaded by a LoadSDNode node - only X86 makes use of this so far but everything should be in place for other targets.
computeKnownBits then uses this function to improve codegen, notably vector code after legalization.
A future commit will do the same for ComputeNumSignBits but computeKnownBits sees the bigger benefit.
This required a couple of fixes:
* SimplifyDemandedBits must early-out for getTargetConstantFromLoad cases to prevent infinite loops of constant regeneration (similar to what we already do for BUILD_VECTOR).
* Fix a DAGCombiner::visitTRUNCATE issue as we had trunc(shl(v8i32),v8i16) <-> shl(trunc(v8i16),v8i32) infinite loops after legalization on AVX512 targets.
Differential Revision: https://reviews.llvm.org/D61887
llvm-svn: 361620
This is no-functional-change-intended currently because the definition
of isBinOp() only includes opcodes that produce 1 value. But if we
share that implementation with isCommutativeBinOp() as proposed in
D62191, then we need to make sure that the callers bail out for
opcodes that they are not prepared to handle correctly.
llvm-svn: 361547
Add an intrinsic that takes 2 signed integers with the scale of them provided
as the third argument and performs fixed point multiplication on them. The
result is saturated and clamped between the largest and smallest representable
values of the first 2 operands.
This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.
Differential Revision: https://reviews.llvm.org/D55720
llvm-svn: 361289
DAGCombiner simplifies this more liberally as:
// If inserting an UNDEF, just return the original vector.
if (N1.isUndef())
return N0;
So there's no way to make this visible in output AFAIK, but
doing this at node creation time should be slightly more efficient.
llvm-svn: 361287
getNode() squashes concatenation of undefs via FoldCONCAT_VECTORS():
// Concat of UNDEFs is UNDEF.
if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
return DAG.getUNDEF(VT);
llvm-svn: 361284
There are no FP callers of DAGCombiner::reassociateOps() currently,
but we can add a fast-math check to make sure this API is not being
misused.
This was noted as a potential risk (and that risk might increase) with:
D62191
llvm-svn: 361268
Summary:
The endianess used in the calling convention does not always match the
endianess of the target on all architectures, namely AVR.
When an argument is too large to be legalised by the architecture and is
split for the ABI, a new hook TargetLoweringInfo::shouldSplitFunctionArgumentsAsLittleEndian
is queried to find the endianess that function arguments must be laid
out in.
This approach was recommended by Eli Friedman.
Originally reported in https://github.com/avr-rust/rust/issues/129.
Patch by Carl Peto.
Reviewers: bogner, t.p.northover, RKSimon, niravd, efriedma
Reviewed By: efriedma
Subscribers: JDevlieghere, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62003
llvm-svn: 361222
Since INLINEASM_BR is a terminator we need to flush the pending exports before
emitting it. If we don't do this, a TokenFactor can be inserted between it and
the BR instruction emitted to finish the callbr lowering.
It looks like nodes are glued to the INLINEASM_BR so I had to make sure we emit
the TokenFactor before that.
Differential Revision: https://reviews.llvm.org/D59981
llvm-svn: 361177
We shouldn't really make assumptions about possible sizes for long and long long. And longer term we should probably support vectorizing these intrinsics. By making the result types not fixed we can support vectors as well.
Differential Revision: https://reviews.llvm.org/D62026
llvm-svn: 361169
This changes the isShift variable to include the constant operand
check that was previously in the if statement.
While there fix an 80 column violation and an unnecessary use of
getNode. Also fix variable name capitalization.
llvm-svn: 361168
Fixes issue reported by aemerson on D57348. Vector op legalization
support is added for uaddo, usubo, saddo and ssubo (umulo and smulo
were already supported). As usual, by extracting TargetLowering methods
and calling them from vector op legalization.
Vector op legalization doesn't really deal with multiple result nodes,
so I'm explicitly performing a recursive legalization call on the
result value that is not being legalized.
There are some existing test changes because expansion happens
earlier, so we don't get a DAG combiner run in between anymore.
Differential Revision: https://reviews.llvm.org/D61692
llvm-svn: 361166
Refactor DIExpression::With* into a flag enum in order to be less
error-prone to use (as discussed on D60866).
Patch by Djordje Todorovic.
Differential Revision: https://reviews.llvm.org/D61943
llvm-svn: 361137
Summary:
That check claims that the transform is illegal otherwise.
That isn't true:
1. For `ISD::ADD`, we only process `ISD::SHL` outer shift => sign bit does not matter
https://rise4fun.com/Alive/K4A
2. For `ISD::AND`, there is no restriction on constants:
https://rise4fun.com/Alive/Wy3
3. For `ISD::OR`, there is no restriction on constants:
https://rise4fun.com/Alive/GOH
3. For `ISD::XOR`, there is no restriction on constants:
https://rise4fun.com/Alive/ml6
So, why is it there then?
This changes the testcase that was touched by @spatel in rL347478,
but i'm not sure that test tests anything particular?
Reviewers: RKSimon, spatel, craig.topper, jojo, rengolin
Reviewed By: spatel
Subscribers: javed.absar, llvm-commits, spatel
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61918
llvm-svn: 361044
The recent introduction of v3i32 etc as an MVT, and its use in AMDGPU
3-dword memory instructions, caused a de-optimization problem for code
with such a load that then bitcasts via vector of i8, because v12i8 is
not an MVT so it legalizes the bitcast by widening it.
This commit adds the ability to widen a bitcast using extract_subvector
on the result, so the value does not need to go via memory.
Differential Revision: https://reviews.llvm.org/D60457
Change-Id: Ie4abb7760547e54a2445961992eafc78e80d4b64
llvm-svn: 360942
This patch add the ISD::LROUND and ISD::LLROUND along with new
intrinsics. The changes are straightforward as for other
floating-point rounding functions, with just some adjustments
required to handle the return value being an interger.
The idea is to optimize lround/llround generation for AArch64
in a subsequent patch. Current semantic is just route it to libm
symbol.
llvm-svn: 360889
Before this change, they were erroneously constructed with the EH_LABEL
SDNode opcode, which caused other passes to interact with them in
incorrect ways. See the FIXME about fastisel that this addresses in the
existing test case.
Fixes PR41890
llvm-svn: 360818
Summary:
X86TargetLowering::LowerAsmOperandForConstraint had better support than
TargetLowering::LowerAsmOperandForConstraint for arbitrary depth
getelementpointers for "i", "n", and "s" extended inline assembly
constraints. Hoist its support from the derived class into the base
class.
Link: https://github.com/ClangBuiltLinux/linux/issues/469
Reviewers: echristo, t.p.northover
Reviewed By: t.p.northover
Subscribers: t.p.northover, E5ten, kees, jyknight, nemanjai, javed.absar, eraman, hiraditya, jsji, llvm-commits, void, craig.topper, nathanchance, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61560
llvm-svn: 360604
We catch most of these patterns (on x86 at least) by matching
a concat vectors opcode early in combining, but the pattern may
emerge later using insert subvector instead.
The AVX1 diffs for add/sub overflow show another missed narrowing
pattern. That one may be falling though the cracks because of
combine ordering and multiple uses.
llvm-svn: 360585
The new fptrunc and fpext intrinsics are constrained versions of the
regular fptrunc and fpext instructions.
Reviewed by: Andrew Kaylor, Craig Topper, Cameron McInally, Conner Abbot
Approved by: Craig Topper
Differential Revision: https://reviews.llvm.org/D55897
llvm-svn: 360581
Summary:
When we know for sure whether two addresses do or do not alias, we
should immediately return from DAGCombiner::isAlias().
I think this comes from a bad copy/paste, Sorry for not catching that during the
code review.
Fixes PR41855.
Reviewers: niravd, gchatelet, EricWF
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61846
llvm-svn: 360566
I've included a new fix in X86RegisterInfo to prevent PR41619 without
reintroducing r359392. We might be able to improve that in the base class
implementation of shouldRewriteCopySrc somehow. But this hopefully enables
forward progress on SimplifyDemandedBits improvements for now.
Original commit message:
This patch adds support for BigBitWidth -> SmallBitWidth bitcasts, splitting the DemandedBits/Elts accordingly.
The AMDGPU backend needed an extra (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) combine to encourage BFE creation, I investigated putting this in DAGComb
but it caused a lot of noise on other targets - some improvements, some regressions.
The X86 changes are all definite wins.
llvm-svn: 360552
I noticed that we were failing to narrow an x86 ymm math op in a case similar
to the 'madd' test diff. That is because a bitcast is sitting between the math
and the extract subvector and thwarting our pattern matching for narrowing:
t56: v8i32 = add t59, t58
t68: v4i64 = bitcast t56
t73: v2i64 = extract_subvector t68, Constant:i64<2>
t96: v4i32 = bitcast t73
There are a few wins and neutral diffs in the other tests.
Differential Revision: https://reviews.llvm.org/D61806
llvm-svn: 360541
We already updated the LegalizedNodes map at the end of the Expand call. This
would have marked the new node as being mapped to itself. So the LegalizeOp
call will find that an immediately return.
llvm-svn: 360472
Split out from D61692 per RKSimon's suggestion. Vector op
legalization will automatically recursively legalize the returned
SDValue, but we need to take care of the other results ourselves.
Otherwise it will end up getting legalized only during op
legalization, by which point it might be too late (though I'm not
aware of any specific cases right now).
There are codegen differences because expansion occurs earlier now
and we don't get a DAGCombiner run in between.
Differential Revision: https://reviews.llvm.org/D61744
llvm-svn: 360470
To find the candidates to merge stores we iterate over all nodes in a chain
for each store, which leads to quadratic compile times for large basic blocks
with a large number of stores.
Reviewers: niravd, spatel, craig.topper
Reviewed By: niravd
Differential Revision: https://reviews.llvm.org/D61511
llvm-svn: 360357
This patch allows for expansion of ADDCARRY and SUBCARRY when the target does not support it.
Differential Revision: https://reviews.llvm.org/D61411
llvm-svn: 360303
This is extracted from the original draft of D61419 with some additional tests.
We don't currently get this in IR (it's conservatively turned into a NaN),
but presumably that'll get updated as we add real IR support for 'fneg'
rather than 'fsub -0.0, x'.
The x86-32 run shows the following, and I haven't looked further to see why,
but that seems to be independent:
Legalizing: t1: f32 = undef
Trying to expand node
Creating fp constant: t4: f32 = ConstantFP<0.000000e+00>
Differential Revision: https://reviews.llvm.org/D61516
llvm-svn: 360296
This patch adds support for calling selectFNeg for FNeg instructions in addition to the fsub idiom
Differential Revision: https://reviews.llvm.org/D61624
llvm-svn: 360273
Add a new function to do the endian check, as I will commit another patch later, which will also need the endian check.
Differential Revision: https://reviews.llvm.org/D61236
llvm-svn: 360226
When simplifying TokenFactors, we potentially iterate over all
operands of a large number of TokenFactors. This causes quadratic
compile times in some cases and the large token factors cause additional
scalability problems elsewhere.
This patch adds some limits to the number of nodes explored for the
cases mentioned above.
Reviewers: niravd, spatel, craig.topper
Reviewed By: niravd
Differential Revision: https://reviews.llvm.org/D61397
llvm-svn: 360171
Summary:
If fneg lowering for fsub -0.0, x fails we currently fall back to treating it as an fsub. This has different behavior for nans than the xor with sign bit trick we normally try to do. On X86, the xor trick for double fails fast-isel in 32-bit mode with sse2 due to 64 bit integer types not being available. With -O2 we would always use an xorpd for this case. If we use subsd, this creates an observable behavior difference between -O0 and -O2. So fall back to SelectionDAG if we can't fast-isel it, that way SelectionDAG will use the xorpd.
I believe this patch is restoring the behavior prior to r345295 from last October. This was missed then because our fast isel case in 32-bit mode aborted fast-isel earlier for another reason. But I've added new tests to cover that.
Reviewers: andrew.w.kaylor, cameron.mcinally, spatel, efriedma
Reviewed By: cameron.mcinally
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61622
llvm-svn: 360111
The problem was that we were creating a CMOV64rr <TargetFrameIndex>, <TargetFrameIndex>. The entire point of a TFI is that address code is not generated, so there's no way to legalize/lower this. Instead, simply prevent it's creation.
Arguably, we shouldn't be using *Target*FrameIndices in StatepointLowering at all, but that's a much deeper change.
llvm-svn: 360090
It's possible to use the 'y' mmx constraint with a type narrower than 64-bits.
This patch supports this by bitcasting the mmx type to 64-bits and then
truncating to the desired type.
There are probably other missing type combinations we need to support, but this
is the case we have a bug report for.
Fixes PR41748.
Differential Revision: https://reviews.llvm.org/D61582
llvm-svn: 360069
Reverts "[X86] Remove (V)MOV64toSDrr/m and (V)MOVDI2SSrr/m. Use 128-bit result MOVD/MOVQ and COPY_TO_REGCLASS instead"
Reverts "[TargetLowering][AMDGPU][X86] Improve SimplifyDemandedBits bitcast handling"
Eric Christopher and Jorge Gorbe Moya reported some issues with these patches to me off list.
Removing the CodeGenOnly instructions has changed how fneg is handled during fast-isel with sse/sse2. We're now emitting fsub -0.0, x instead
moving to the integer domain(in a GPR), xoring the sign bit, and then moving back to xmm. This is because the fast isel table no longer
contains an entry for (f32/f64 bitcast (i32/i64)) so the target independent fneg code fails. The use of fsub changes the behavior of nan with
respect to -O2 codegen which will always use a pxor. NOTE: We still have a difference with double with -m32 since the move to GPR doesn't work
there. I'll file a separate PR for that and add test cases.
Since removing the CodeGenOnly instructions was fixing PR41619, I'm reverting r358887 which exposed that PR. Though I wouldn't be surprised
if that bug can still be hit independent of that.
This should hopefully get Google back to green. I'll work with Simon and other X86 folks to figure out how to move forward again.
llvm-svn: 360066
This addresses one half of https://bugs.llvm.org/show_bug.cgi?id=41635
by combining a VECREDUCE_AND/OR into VECREDUCE_UMIN/UMAX (if latter is
legal but former is not) for zero-or-all-ones boolean reductions (which
are detected based on sign bits).
Differential Revision: https://reviews.llvm.org/D61398
llvm-svn: 360054
Based on PR41748, not all cases are handled in this function.
llvm_unreachable is treated as an optimization hint than can prune code paths
in a release build. This causes weird behavior when PR41748 is encountered on a
release build. It appears to generate an fp_round instruction from the floating
point code.
Making this a report_fatal_error prevents incorrect optimization of the code
and will instead generate a message to file a bug report.
llvm-svn: 360008
As a result of the underlying cause of PR41678 we created an ANY_EXTEND node with a scalar result type and v1i1 input type. Ideally we would have asserted for this instead of letting it go through to instruction selection and generate bad machine IR
Differential Revision: https://reviews.llvm.org/D61463
llvm-svn: 359836
The original patch was committed at rL359398 and reverted at rL359695 because of
infinite looping.
This includes a fix to check for a vector splat of "1.0" to avoid the infinite loop.
Original commit message:
This was originally part of D61028, but it's an independent diff.
If we try the repeated divisor reciprocal transform before producing an estimate sequence,
then we have an opportunity to use scalar fdiv. On x86, the trade-off is 1 divss vs. 5
vector FP ops in the default estimate sequence. On recent chips (Skylake, Ryzen), the
full-precision division is only 3 cycle throughput, so that's probably the better perf
default option and avoids problems from x86's inaccurate estimates.
The last 2 tests show that users still have the option to override the defaults by using
the function attributes for reciprocal estimates, but those patterns are potentially made
faster by converting the vector ops (including ymm ops) to scalar math.
Differential Revision: https://reviews.llvm.org/D61149
llvm-svn: 359793
We don't have FP exception limits in the IR constant folder for the binops (apart from strict ops),
so it does not make sense to have them here in the DAG either. Nothing else in the backend tries
to preserve exceptions (again outside of strict ops), so I don't see how this could have ever
worked for real code that cares about FP exceptions.
There are still cases (examples: unary opcodes in SDAG, FMA in IR) where we are trying (at least
partially) to preserve exceptions without even asking if the target supports FP exceptions. Those
should be corrected in subsequent patches.
Real support for FP exceptions requires several changes to handle the constrained/strict FP ops.
Differential Revision: https://reviews.llvm.org/D61331
llvm-svn: 359791
In preparation for supporting ILP32 on AArch64, this modifies the SelectionDAG
builder code so that pointers are allowed to have a larger type when "live" in
the DAG compared to memory.
Pointers get zero-extended whenever they are loaded, and truncated prior to
stores. In addition, a few not quite so obvious locations need updating:
* A GEP that has not been marked inbounds needs to enforce the IR-documented
2s-complement wrapping at the memory pointer size. Inbounds GEPs are
undefined if they overflow the address space, so no additional operations
are needed.
* Signed comparisons would give incorrect results if performed on the
zero-extended values.
This shouldn't affect CodeGen for now, but will become active when the AArch64
ILP32 support is committed.
llvm-svn: 359676
We don't have this restriction in IR, so it should not be here
either simply out of consistency. Code that wants to handle FP
exceptions is expected to use the 'strict' variants of these
nodes.
We don't get the frem case because frem by 0.0 produces NaN (invalid),
and that's the remaining check here (so the removed check for frem
was dead code AFAIK).
This is the only place in SDAG that uses "HasFPExceptions", so I
think we should remove that entirely as a follow-up patch.
llvm-svn: 359566
This was a local static funtion in SelectionDAG, which I've promoted to
TargetLowering so that I can reuse it to estimate the cost of a memory
operation in D59787.
Differential Revision: https://reviews.llvm.org/D59766
llvm-svn: 359543
The MachineFunction wasn't used in getOptimalMemOpType, but more importantly,
this allows reuse of findOptimalMemOpLowering that is calling getOptimalMemOpType.
This is the groundwork for the changes in D59766 and D59787, that allows
implementation of TTI::getMemcpyCost.
Differential Revision: https://reviews.llvm.org/D59785
llvm-svn: 359537
Do not combine (trunc adde(X, Y, Carry)) into (adde trunc(X), trunc(Y), Carry),
if adde is not legal for the target. Even it's at type-legalize phase.
Because adde is special and will not be legalized at operation-legalize phase later.
This fixes: PR40922
https://bugs.llvm.org/show_bug.cgi?id=40922
Differential Revision: https://reviews.llvm.org//D60854
llvm-svn: 359532
Summary:
Extract the logic for doing reassociations
from DAGCombiner::reassociateOps into a helper
function DAGCombiner::reassociateOpsCommutative,
and use that helper to trigger reassociation
on the original operand order, or the commuted
operand order.
Codegen is not identical since the operand order will
be different when doing the reassociations for the
commuted case. That causes some unfortunate churn in
some test cases. Apart from that this should be NFC.
Reviewers: spatel, craig.topper, tstellar
Reviewed By: spatel
Subscribers: dmgreen, dschuff, jvesely, nhaehnle, javed.absar, sbc100, jgravelle-google, hiraditya, aheejin, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61199
llvm-svn: 359476
This was originally part of D61028, but it's an independent diff.
If we try the repeated divisor reciprocal transform before producing an estimate sequence,
then we have an opportunity to use scalar fdiv. On x86, the trade-off is 1 divss vs. 5
vector FP ops in the default estimate sequence. On recent chips (Skylake, Ryzen), the
full-precision division is only 3 cycle throughput, so that's probably the better perf
default option and avoids problems from x86's inaccurate estimates.
The last 2 tests show that users still have the option to override the defaults by using
the function attributes for reciprocal estimates, but those patterns are potentially made
faster by converting the vector ops (including ymm ops) to scalar math.
Differential Revision: https://reviews.llvm.org/D61149
llvm-svn: 359398
As detailed on PR40758, Bobcat/Jaguar can perform vector immediate shifts on the same pipes as vector ANDs with the same latency - so it doesn't make sense to replace a shl+lshr with a shift+and pair as it requires an additional mask (with the extra constant pool, loading and register pressure costs).
Differential Revision: https://reviews.llvm.org/D61068
llvm-svn: 359293
We had special case handling here, but it uses a scalar any_extend for the
promotion then bitcasts to the final type. This won't split up the input data
into multiple promoted elements like we need.
This patch falls back to doing the conversion through memory.
Fixes PR41594 which I believe was reflected in the bitcast-vector-bool.ll
changes. The changes to vector-half-conversions.ll are fixing a previously
unknown miscompile from this issue.
Differential Revision: https://reviews.llvm.org/D61114
llvm-svn: 359219
Summary:
This emits labels around heapallocsite calls and S_HEAPALLOCSITE debug
info in codeview. Currently only changes FastISel, so emitting labels still
needs to be implemented in SelectionDAG.
Reviewers: rnk
Subscribers: aprantl, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D61083
llvm-svn: 359149
If we have a vector FP division with a splatted divisor, use the existing transform
that converts 'x/y' into 'x * (1.0/y)' to allow more conversions. This can then
potentially be converted into a scalar FP division by existing combines (rL358984)
as seen in the tests here.
That can be a potentially big perf difference if scalar fdiv has better timing
(including avoiding possible frequency throttling for vector ops).
Differential Revision: https://reviews.llvm.org/D61028
llvm-svn: 359147
Summary:
Both the input Value pointer and the returned Value
pointers in GetUnderlyingObjects are now declared as
const.
It turned out that all current (in-tree) uses of
GetUnderlyingObjects were trivial to update, being
satisfied with have those Value pointers declared
as const. Actually, in the past several of the users
had to use const_cast, just because of ValueTracking
not providing a version of GetUnderlyingObjects with
"const" Value pointers. With this patch we get rid
of those const casts.
Reviewers: hfinkel, materi, jkorous
Reviewed By: jkorous
Subscribers: dexonsmith, jkorous, jholewinski, sdardis, eraman, hiraditya, jrtc27, atanasyan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61038
llvm-svn: 359072
If we only match build vectors, we can miss some patterns
that use shuffles as seen in the affected tests.
Note that the underlying calls within getSplatSourceVector()
have the potential for compile-time explosion because of
exponential recursion looking through binop opcodes, but
currently the list of supported opcodes is very limited.
Both of those problems should be addressed in follow-up
patches.
llvm-svn: 358984
Summary:
The DAGCombiner is rewriting (canonicalizing) an ISD::ADD
with no common bits set in the operands as an ISD::OR node.
This could sometimes result in "missing out" on some
combines that normally are performed for ADD. To be more
specific this could happen if we already have rewritten an
ADD into OR, and later (after legalizations or combines)
we expose patterns that could have been optimized if we
had seen the OR as an ADD (e.g. reassociations based on ADD).
To make the DAG combiner less sensitive to if ADD or OR is
used for these "no common bits set" ADD/OR operations we
now apply most of the ADD combines also to an OR operation,
when value tracking indicates that the operands have no
common bits set.
Reviewers: spatel, RKSimon, craig.topper, kparzysz
Reviewed By: spatel
Subscribers: arsenm, rampitec, lebedev.ri, jvesely, nhaehnle, hiraditya, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59758
llvm-svn: 358965
This was supposed to be NFC, but the change in SDLoc
definitions causes instruction scheduling changes.
There's nothing x86-specific in this code, and it can
likely be used from DAGCombiner's simplifyVBinOp().
llvm-svn: 358930
This patch adds support for BigBitWidth -> SmallBitWidth bitcasts, splitting the DemandedBits/Elts accordingly.
The AMDGPU backend needed an extra (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) combine to encourage BFE creation, I investigated putting this in DAGCombine but it caused a lot of noise on other targets - some improvements, some regressions.
The X86 changes are all definite wins.
Differential Revision: https://reviews.llvm.org/D60462
llvm-svn: 358887
Summary:
This emits labels around heapallocsite calls and S_HEAPALLOCSITE debug
info in codeview. Currently only changes FastISel, so emitting labels still
needs to be implemented in SelectionDAG.
Reviewers: hans, rnk
Subscribers: aprantl, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D60800
llvm-svn: 358783
These are general queries, so they should not die when given
a degenerate input like an all undef mask. Callers should be
able to deal with an op that will eventually be simplified away.
llvm-svn: 358761
Currently there is a single point in ScheduleDAGRRList, where we
actually query the topological order (besides init code). Currently we
are recomputing the order after adding a node (which does not have
predecessors) and then we add predecessors edge-by-edge.
We can avoid adding edges one-by-one after we added a new node. In that case, we can
just rebuild the order from scratch after adding the edges to the DAG
and avoid all the updates to the ordering.
Also, we can delay updating the DAG until we query the DAG, if we keep a
list of added edges. Depending on the number of updates, we can either
apply them when needed or recompute the order from scratch.
This brings down the geomean compile time for of CTMark with -O1 down 0.3% on X86,
with no regressions.
Reviewers: MatzeB, atrick, efriedma, niravd, paquette
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D60125
llvm-svn: 358583
As discussed on PR41359, this patch renames the pair of shift-mask target feature functions to make their purposes more obvious.
shouldFoldShiftPairToMask -> shouldFoldConstantShiftPairToMask
preferShiftsToClearExtremeBits -> shouldFoldMaskToVariableShiftPair
llvm-svn: 358526
The checks in `canFoldInAddressingMode` tested for addressing modes that have a
base register but didn't set the `HasBaseReg` flag to true (it's false by
default). This patch fixes that. Although the omission of the flag was
technically incorrect it had no known observable impact, so no tests were
changed by this patch.
Differential Revision: https://reviews.llvm.org/D60314
llvm-svn: 358502
Arguments already have a flag to inform backends when they have been split up.
The AArch64 arm64_32 ABI makes use of these on return types too, so that code
emitted for armv7k can be ABI-compliant.
There should be no CodeGen changes yet, just making more information available.
llvm-svn: 358399
The arm64_32 ABI specifies that pointers (despite being 32-bits) should be
zero-extended to 64-bits when passed in registers for efficiency reasons. This
means that the SelectionDAG needs to be able to tell the backend that an
argument was originally a pointer, which is implmented here.
Additionally, some memory intrinsics need to be declared as taking an i8*
instead of an iPTR.
There should be no CodeGen change yet, but it will be triggered when AArch64
backend support for ILP32 is added.
llvm-svn: 358398
Summary:
Use KnownBits::computeForAddSub/computeForAddCarry
in SelectionDAG::computeKnownBits when doing value
tracking for addition/subtraction.
This should improve the precision of the known bits,
as we only used to make a simple estimate of known
zeroes. The KnownBits support functions are also
able to deduce bits that are known to be one in the
result.
Reviewers: spatel, RKSimon, nikic, lebedev.ri
Reviewed By: nikic
Subscribers: nikic, javed.absar, lebedev.ri, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60460
llvm-svn: 358372
// shuffle (concat X, undef), (concat Y, undef), Mask -->
// concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1)
The ARM changes with 'vtrn' and narrowed 'vuzp' are improvements.
The x86 changes look neutral or better. There's one test with an
extra instruction, but that could be reversed for a subtarget with
the right attributes. But by default, we want to avoid the 256-bit
op when possible (in my motivating benchmark, a handful of ymm ops
sprinkled into a sequence of xmm ops are triggering frequency
throttling on Haswell resulting in significantly worse perf).
Differential Revision: https://reviews.llvm.org/D60545
llvm-svn: 358291
If the upper bits of the SHL result aren't used, we might be able to use a narrower shift. For example, on X86 this can turn a 64-bit into 32-bit enabling a smaller encoding.
Differential Revision: https://reviews.llvm.org/D60358
llvm-svn: 358257
// bo (build_vec ...undef, x, undef...), (build_vec ...undef, y, undef...) -->
// build_vec ...undef, (bo x, y), undef...
The lifetime of the nodes in these examples is different for variables versus constants,
but they are all build vectors briefly, so I'm proposing to catch them in this form to
handle all of the leading examples in the motivating test file.
Before we have build vectors, we might have insert_vector_element. After that, we might
have scalar_to_vector and constant pool loads.
It's going to take more work to ensure that FP vector operands are getting simplified
with undef elements, so this transform can apply more widely. In a non-loose FP environment,
we are likely simplifying FP elements to NaN values rather than undefs.
We also need to allow more opcodes down this path. Eg, we don't handle FP min/max flavors
yet.
Differential Revision: https://reviews.llvm.org/D60514
llvm-svn: 358172
Certain optimisations from ConstantHoisting and CGP rely on Selection DAG not
seeing through to the constant in other blocks. Revert this patch while we come
up with a better way to handle that.
I will try to follow this up with some better tests.
llvm-svn: 358113
This lines up with what we do for regular subtract and it matches up better with X86 assumptions in isel patterns that add with immediate is more canonical than sub with immediate.
Differential Revision: https://reviews.llvm.org/D60020
llvm-svn: 358027
When bitcasting from a source op to a larger bitwidth op, split the demanded bits and OR them on top of one another and demand those merged bits in the SimplifyDemandedBits call on the source op.
llvm-svn: 357992
Second half of PR40800, this patch adds DAG undef handling to fcmp instructions to match the behavior in llvm::ConstantFoldCompareInstruction, this permits constant folding of vector comparisons where some elements had been reduced to UNDEF (by SimplifyDemandedVectorElts etc.).
This involves a lot of tweaking to reduced tests as bugpoint loves to reduce fcmp arguments to undef........
Differential Revision: https://reviews.llvm.org/D60006
llvm-svn: 357765
There are a variety of vector patterns that may be profitably reduced to a
scalar op when scalar ops are performed using a subset (typically, the
first lane) of the vector register file.
For x86, this is true for float/double ops and element 0 because
insert/extract is just a sub-register rename.
Other targets should likely enable the hook in a similar way.
Differential Revision: https://reviews.llvm.org/D60150
llvm-svn: 357760
Summary:
Teach SelectionDAG how to compute known bits of ISD::CopyFromReg if
the virtual reg used has one def only.
This can be particularly useful when calling isBaseWithConstantOffset()
with the ISD::CopyFromReg argument, as more optimizations may get enabled
in the result.
Also add a missing truncation on X86, found by testing of this patch.
Change-Id: Id1c9fceec862d118c54a5b53adf72ada5d6daefa
Reviewers: bogner, craig.topper, RKSimon
Reviewed By: RKSimon
Subscribers: lebedev.ri, nemanjai, jvesely, nhaehnle, javed.absar, jsji, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59535
llvm-svn: 357745
Lowering safepoint checks that all gc.relocaes observed in safepoint
must be lowered. However Fast-Isel is able to skip dead gc.relocate.
To resolve this issue we just ignore dead gc.relocate in the check.
Reviewers: reames
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D60184
llvm-svn: 357742
The Fast ISel has a fallback to SelectionDAGISel in case it cannot handle the instruction.
This works as follows:
Using reverse order, try to select instruction using Fast ISel, if it cannot handle instruction it fallbacks to SelectionDAGISel
for these instructions if it is a call and continue fast instruction selections.
However if unhandled instruction is not a call or statepoint related instruction it fallbacks to SelectionDAGISel for all remaining
instructions in basic block.
However gc.result instruction is missed and as a result it is possible that gc.result is processed earlier than statepoint
causing breakage invariant the gc.results should be handled after statepoint.
Test is updated because in the current form fast-isel cannot handle ret instruction (due to i1 ret type without explicit ext)
and as a result test does not check fast-isel at all.
Reviewers: reames
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D60182
llvm-svn: 357672
There are 3 changes to make this correspond to the same transform in instcombine:
1. Remove the legality check - we can't create anything less legal than we started with.
2. Ease the use restriction, so we only bail out if both operands have >1 use.
3. Ease the use restriction for binops with a repeated operand (eg, mul x, x).
As discussed in D60150, there's a scalarization opportunity that will be made
easier by allowing this transform more generally.
llvm-svn: 357580
Summary:
Nodes that have no uses are eventually pruned when they are selected
from the worklist. Record nodes newly added to the worklist or DAG and
perform pruning after every combine attempt.
Reviewers: efriedma, RKSimon, craig.topper, spatel, jyknight
Reviewed By: jyknight
Subscribers: jdoerfert, jyknight, nemanjai, jvesely, nhaehnle, javed.absar, hiraditya, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58070
llvm-svn: 357283
Summary:
Various SelectionDAG non-combine operations (e.g. the getNode smart
constructor and legalization) may leave dangling nodes by applying
optimizations without fully pruning unused result values. This results
in nodes that are never added to the worklist and therefore can not be
pruned.
Add a node inserter for the combiner to make sure such nodes have the
chance of being pruned. This allows a number of additional peephole
optimizations.
Reviewers: efriedma, RKSimon, craig.topper, jyknight
Reviewed By: jyknight
Subscribers: msearles, jyknight, sdardis, nemanjai, javed.absar, hiraditya, jrtc27, atanasyan, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58068
llvm-svn: 357279
After investigating the examples from D59777 targeting an SSE4.1 machine,
it looks like a very different problem due to how we map illegal types (256-bit in these cases).
We're missing a shuffle simplification that maps elements of a vector back to a shuffled operand.
We have a more general version of this transform in DAGCombiner::visitVECTOR_SHUFFLE(), but that
generality means it is limited to patterns with a one-use constraint, and the examples here have
2 uses. We don't need any uses or legality limitations for a simplification (no new value is
created).
It looks like we miss this pattern in IR too.
In one of the zext examples here, we have shuffle masks like this:
Shuf0 = vector_shuffle<0,u,3,7,0,u,3,7>
Shuf = vector_shuffle<4,u,6,7,u,u,u,u>
...so that's moving the high half of the 1st vector into the low half. But the high half of the
1st vector is already identical to the low half.
Differential Revision: https://reviews.llvm.org/D59961
llvm-svn: 357258
This is a sibling to rL357178 that I noticed we'd hit if we chose
an alternate transform in D59818.
%z = zext i8 %x to i32
%dec = add i32 %z, -1
%r = sext i32 %dec to i64
=>
%z2 = zext i8 %x to i64
%r = add i64 %z2, -1
https://rise4fun.com/Alive/kPP
The x86 vector diffs show a slight regression, so there's a chance
that we should limit this and the previous transform to scalars.
But given that we allowed vectors before, I'm matching that behavior
here. We should change both transforms together if that's the right
thing to do.
llvm-svn: 357254
In the example below, we would previously emit two range checks, one for cases
1--3 and one for 4--6. This patch makes us exploit the fact that the
fall-through is unreachable and only one range check is necessary.
switch i32 %i, label %default [
i32 1, label %bb1
i32 2, label %bb1
i32 3, label %bb1
i32 4, label %bb2
i32 5, label %bb2
i32 6, label %bb2
]
default: unreachable
llvm-svn: 357252
If scalar truncates are free, attempt to pre-truncate build_vectors source operands.
Only attempt to do this before legalization as we often end up with truncations/extensions during build_vector lowering.
Differential Revision: https://reviews.llvm.org/D59654
llvm-svn: 357161
When lowering a load or store for TypeWidenVector, the type legalizer
would use a single load or store if the associated integer type was legal
or promoted. E.g. it loads a v4i8 as an i32 if i32 is legal/promotable.
(See https://reviews.llvm.org/rL236528 for reference.)
This applies that behaviour to vector types. If the vector type is
TypePromoteInteger, the element type is going to be TypePromoteInteger
as well, which will lead to have a single promoting load rather than N
individual promoting loads. For instance, if we have a v3i1, we would
now have a load of v4i1 instead of 3 loads of i1.
Patch by Guillaume Marques. Thanks!
Differential Revision: https://reviews.llvm.org/D56201
llvm-svn: 357120
Split out from D59749. The current implementation of isWrappedSet()
doesn't do what it says on the tin, and treats ranges like
[X, Max] as wrapping, because they are represented as [X, 0) when
using half-inclusive ranges. This also makes it inconsistent with
the semantics of isSignWrappedSet().
This patch renames isWrappedSet() to isUpperWrapped(), in preparation
for the introduction of a new isWrappedSet() method with corrected
behavior.
llvm-svn: 357107
Rework BaseIndexOffset and isAlias to fully work with lifetime nodes
and fold in lifetime alias analysis.
This is mostly NFC.
Reviewers: courbet
Reviewed By: courbet
Subscribers: hiraditya, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59794
llvm-svn: 357070
Original commit by Ayonam Ray.
This commit adds a regression test for the issue discovered in the
previous commit: that the range check for the jump table can only be
omitted if the fall-through destination of the jump table is
unreachable, which isn't necessarily true just because the default of
the switch is unreachable.
This addresses the missing optimization in PR41242.
> During the lowering of a switch that would result in the generation of a
> jump table, a range check is performed before indexing into the jump
> table, for the switch value being outside the jump table range and a
> conditional branch is inserted to jump to the default block. In case the
> default block is unreachable, this conditional jump can be omitted. This
> patch implements omitting this conditional branch for unreachable
> defaults.
>
> Differential Revision: https://reviews.llvm.org/D52002
> Reviewers: Hans Wennborg, Eli Freidman, Roman Lebedev
llvm-svn: 357067
getAsCarry() checks that the input argument is a carry-producing node before
allowing a transformation to addcarry. This patch adds a check to make sure
that the carry-producing node is legal. If it is not, it may not remain in a
form that is manageable by the target backend. The test case caused a
compilation failure during instruction selection for this reason on SystemZ.
Patch by Ulrich Weigand.
Review: Sanjay Patel
https://reviews.llvm.org/D59822
llvm-svn: 357052
We have the folds for fadd/fsub/fmul already in DAGCombiner,
so it may be possible to remove that code if we can guarantee that
these ops are zapped before they can exist.
llvm-svn: 357029
Various SelectionDAG non-combine operations (e.g. the getNode smart
constructor and legalization) may leave dangling nodes by applying
optimizations or not fully pruning unused result values. This can
result in nodes that are never added to the worklist and therefore can
not be pruned.
Add a node inserter as the current node deleter to make sure such
nodes have the chance of being pruned.
Many minor changes, mostly positive.
llvm-svn: 356996
This helps us relax the extension of a lot of scalar elements before they are inserted into a vector.
Its exposes an issue in DAGCombiner::convertBuildVecZextToZext as some/all the zero-extensions may be relaxed to ANY_EXTEND, so we need to handle that case to avoid a couple of AVX2 VPMOVZX test regressions.
Once this is in it should be easier to fix a number of remaining failures to fold loads into VBROADCAST nodes.
Differential Revision: https://reviews.llvm.org/D59484
llvm-svn: 356989
DenseMap iteration order is not guaranteed, use MapVector instead.
Fix provided by srhines.
Differential Revision: https://reviews.llvm.org/D59807
llvm-svn: 356988
First half of PR40800, this patch adds DAG undef handling to icmp instructions to match the behaviour in llvm::ConstantFoldCompareInstruction and SimplifyICmpInst, this permits constant folding of vector comparisons where some elements had been reduced to UNDEF (by SimplifyDemandedVectorElts etc.).
This involved a lot of tweaking to reduced tests as bugpoint loves to reduce icmp arguments to undef........
Differential Revision: https://reviews.llvm.org/D59363
llvm-svn: 356938
An i16 bswap can be implemented with an i16 rotate by 8. We previously emitted
a shift and OR sequence that DAG combine should be able to turn back into
rotate. But we might as well go there directly. If rotate isn't legal,
LegalizeDAG should further legalize it to either the opposite rotate, or the
shift and OR pattern.
I don't know of any way to get the existing DAG combine reliance to fail. So
I don't know any way to add new tests for this that wouldn't have worked
previously.
llvm-svn: 356860
SDNodes can only have 64k operands and for some inputs (e.g. large
number of stores), we can reach this limit when creating TokenFactor
nodes. This patch is a follow up to D56740 and updates a few more places
that potentially can create TokenFactors with too many operands.
Reviewers: efriedma, craig.topper, aemerson, RKSimon
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D59156
llvm-svn: 356668
The actual code change is fairly straight forward, but exercising it isn't. First, it turned out we weren't adding the appropriate flags in SelectionDAG. Second, it turned out that we've got some optimization gaps, so obvious test cases don't work.
My first attempt (in atomic-unordered.ll) points out a deficiency in our peephole-opt folding logic which I plan to fix separately. Instead, I'm exercising this through MachineLICM.
Differential Revision: https://reviews.llvm.org/D59375
llvm-svn: 356494
In r311255 we added a case where we split vectors whose elements are
all derived from the same input vector so that we could shuffle it
more efficiently. In doing so, createBuildVecShuffle was taught to
adjust for the fact that all indices would be based off of the first
vector when this happens, but it's possible for the code that checked
that to fire incorrectly if we happen to have a BUILD_VECTOR of
extracts from subvectors and don't hit this new optimization.
Instead of trying to detect if we've split the vector by checking if
we have extracts from the same base vector, we can just pass that
information into createBuildVecShuffle, avoiding the miscompile.
Differential Revision: https://reviews.llvm.org/D59507
llvm-svn: 356476
These changes are related to PR37743 and include:
SelectionDAGBuilder::visitSelect handles the unary SelectPatternFlavor::SPF_ABS case to build ABS node.
Delete the redundant recognizer of the integer ABS pattern from the DAGCombiner.
Add promoting the integer ABS node in the LegalizeIntegerType.
Expand-based legalization of integer result for the ABS nodes.
Expand-based legalization of ABS vector operations.
Add some integer abs testcases for different typesizes for Thumb arch
Add the custom ABS expanding and change the SAD pattern recognizer for X86 arch: The i64 result of the ABS is expanded to:
tmp = (SRA, Hi, 31)
Lo = (UADDO tmp, Lo)
Hi = (XOR tmp, (ADDCARRY tmp, hi, Lo:1))
Lo = (XOR tmp, Lo)
The "detectZextAbsDiff" function is changed for the recognition of pattern with the ABS node. Given a ABS node, detect the following pattern:
(ABS (SUB (ZERO_EXTEND a), (ZERO_EXTEND b))).
Change integer abs testcases for codegen with the ABS node support for AArch64.
Indicate that the ABS is legal for the i64 type when the NEON is supported.
Change the integer abs testcases to show changing of codegen.
Add combine and legalization of ABS nodes for Thumb arch.
Extend 'matchSelectPattern' to recognize the ABS patterns with ICMP_SGE condition.
For discussion, see https://bugs.llvm.org/show_bug.cgi?id=37743
Patch by: @ikulagin (Ivan Kulagin)
Differential Revision: https://reviews.llvm.org/D49837
llvm-svn: 356468
This allows better code size for aarch64 floating point materialization
in a future patch.
Reviewers: evandro
Differential Revision: https://reviews.llvm.org/D58690
llvm-svn: 356389
Delete temporarily constructed node uses for analysis after it's use,
holding onto original input nodes. Ideally this would be rewritten
without making nodes, but this appears relatively complex.
Reviewers: spatel, RKSimon, craig.topper
Subscribers: jdoerfert, hiraditya, deadalnix, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57921
llvm-svn: 356382
Summary:
Look past bitcasts when looking for parameter debug values that are
described by frame-index loads in `EmitFuncArgumentDbgValue()`.
In the attached test case we would be left with an undef `DBG_VALUE`
for the parameter without this patch.
A similar fix was done for parameters passed in registers in D13005.
This fixes PR40777.
Reviewers: aprantl, vsk, jmorse
Reviewed By: aprantl
Subscribers: bjope, javed.absar, jdoerfert, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D58831
llvm-svn: 356363
AMDGPU would like to have MVTs for v3i32, v3f32, v5i32, v5f32. This
commit does not add them, but makes preparatory changes:
* Exclude non-legal non-power-of-2 vector types from ComputeRegisterProp
mechanism in TargetLoweringBase::getTypeConversion.
* Cope with SETCC and VSELECT for odd-width i1 vector when the other
vectors are legal type.
Some of this patch is from Matt Arsenault, also of AMD.
Differential Revision: https://reviews.llvm.org/D58899
Change-Id: Ib5f23377dbef511be3a936211a0b9f94e46331f8
llvm-svn: 356350
Fold (x & ~y) | y and it's four commuted variants to x | y. This pattern
can in particular appear when a vselect c, x, -1 is expanded to
(x & ~c) | (-1 & c) and combined to (x & ~c) | c.
This change has some overlap with D59066, which avoids creating a
vselect of this form in the first place during uaddsat expansion.
Differential Revision: https://reviews.llvm.org/D59174
llvm-svn: 356333
This is a subset of what was proposed in:
D59006
...and may overlap with test changes from:
D59174
...but it seems like a good general optimization to turn selects
into bitwise-logic when possible because we never know exactly
what can happen at this stage of DAG combining depending on how
the target has defined things.
Differential Revision: https://reviews.llvm.org/D59066
llvm-svn: 356332
rL356292 reduces the size of scalar_to_vector if we know the upper bits are undef - which means that shuffles may find they are suddenly referencing scalar_to_vector elements other than zero - so make sure we handle this as undef.
llvm-svn: 356327
Summary:
In the new wasm EH proposal, `rethrow` takes an `except_ref` argument.
This change was missing in r352598.
This patch adds `llvm.wasm.rethrow.in.catch` intrinsic. This is an
intrinsic that's gonna eventually be lowered to wasm `rethrow`
instruction, but this intrinsic can appear only within a catchpad or a
cleanuppad scope. Also this intrinsic needs to be invokable - otherwise
EH pad successor for it will not be correctly generated in clang.
This also adds lowering logic for this intrinsic in
`SelectionDAGBuilder::visitInvoke`. This routine is basically a
specialized and simplified version of
`SelectionDAGBuilder::visitTargetIntrinsic`, but we can't use it
because if is only for `CallInst`s.
This deletes the previous `llvm.wasm.rethrow` intrinsic and related
tests, which was meant to be used within a `__cxa_rethrow` library
function. Turned out this needs some more logic, so the intrinsic for
this purpose will be added later.
LateEHPrepare takes a result value of `catch` and inserts it into
matching `rethrow` as an argument.
`RETHROW_IN_CATCH` is a pseudo instruction that serves as a link between
`llvm.wasm.rethrow.in.catch` and the real wasm `rethrow` instruction. To
generate a `rethrow` instruction, we need an `except_ref` argument,
which is generated from `catch` instruction. But `catch` instrutions are
added in LateEHPrepare pass, so we use `RETHROW_IN_CATCH`, which takes
no argument, until we are able to correctly lower it to `rethrow` in
LateEHPrepare.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59352
llvm-svn: 356316
Summary:
A number of optimizations are inhibited by single-use TokenFactors not
being merged into the TokenFactor using it. This makes we consider if
we can do the merge immediately.
Most tests changes here are due to the change in visitation causing
minor reorderings and associated reassociation of paired memory
operations.
CodeGen tests with non-reordering changes:
X86/aligned-variadic.ll -- memory-based add folded into stored leaq
value.
X86/constant-combiners.ll -- Optimizes out overlap between stores.
X86/pr40631_deadstore_elision -- folds constant byte store into
preceding quad word constant store.
Reviewers: RKSimon, craig.topper, spatel, efriedma, courbet
Reviewed By: courbet
Subscribers: dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, javed.absar, eraman, hiraditya, kbarton, jrtc27, atanasyan, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59260
llvm-svn: 356068
First step towards PR40800 - I intend to move the float case in a separate future patch.
I had to tweak the (overly reduced) thumb2 test and the x86 widening test change is annoying (no longer rematerializable) but we should address this separately.
Differential Revision: https://reviews.llvm.org/D59244
llvm-svn: 356040
The existing statepoint lowering code does something odd; it adds machine memory operands post instruction selection. This was copied from the stackmap/patchpoint implementation, but appears to be non-idiomatic.
This change is largely NFC. It moves the MMO creation logic into SelectionDAG building. It ends up not quite being NFC because the size of the stack slot is reflected in the MMO. The old code blindly used pointer size for the MMO size, which appears to have always been incorrect for larger values. It just happened nothing actually relied on the MMOs, so it worked out okay.
For context, I'm planning on removing the MOVolatile flag from these in a future commit, and then removing the MOStore flag from deopt spill slots in a separate one. Doing so is motivated by a small test case where we should be able to better schedule spill slots, but don't do so due to a memory use/def implied by the statepoint.
Differential Revision: https://reviews.llvm.org/D59106
llvm-svn: 355953
Expand MULO with constant power of two operand into a shift. The
overflow is checked with (x << shift) >> shift == x, where the right
shift will be logical for umulo and arithmetic for smulo (with
exception for multiplications by signed_min).
Differential Revision: https://reviews.llvm.org/D59041
llvm-svn: 355937
Fixes https://bugs.llvm.org/show_bug.cgi?id=36796.
Implement basic legalizations (PromoteIntRes, PromoteIntOp,
ExpandIntRes, ScalarizeVecOp, WidenVecOp) for VECREDUCE opcodes.
There are more legalizations missing (esp float legalizations),
but there's no way to test them right now, so I'm not adding them.
This also includes a few more changes to make this work somewhat
reasonably:
* Add support for expanding VECREDUCE in SDAG. Usually
experimental.vector.reduce is expanded prior to codegen, but if the
target does have native vector reduce, it may of course still be
necessary to expand due to legalization issues. This uses a shuffle
reduction if possible, followed by a naive scalar reduction.
* Allow the result type of integer VECREDUCE to be larger than the
vector element type. For example we need to be able to reduce a v8i8
into an (nominally) i32 result type on AArch64.
* Use the vector operand type rather than the scalar result type to
determine the action, so we can control exactly which vector types are
supported. Also change the legalize vector op code to handle
operations that only have vector operands, but no vector results, as
is the case for VECREDUCE.
* Default VECREDUCE to Expand. On AArch64 (only target using VECREDUCE),
explicitly specify for which vector types the reductions are supported.
This does not handle anything related to VECREDUCE_STRICT_*.
Differential Revision: https://reviews.llvm.org/D58015
llvm-svn: 355860
Includes a fix to emit a CheckOpcode for build_vector when immAllZerosV/immAllOnesV is used as a pattern root. This means it can't be used to look through bitcasts when used as a root, but that's probably ok. This extra CheckOpcode will ensure that the first match in the isel table will be a SwitchOpcode which is needed by the caching optimization in the ISel Matcher.
Original commit message:
Previously we had build_vector PatFrags that called ISD::isBuildVectorAllZeros/Ones. Internally the ISD::isBuildVectorAllZeros/Ones look through bitcasts, but we aren't able to take advantage of that in isel. Instead of we have to canonicalize the types of the all zeros/ones build_vectors and insert bitcasts. Then we have to pattern match those exact bitcasts.
By emitting specific matchers for these 2 nodes, we can make isel look through any bitcasts without needing to explicitly match them. We should also be able to remove the canonicalization to vXi32 from lowering, but I've left that for a follow up.
This removes something like 40,000 bytes from the X86 isel table.
Differential Revision: https://reviews.llvm.org/D58595
llvm-svn: 355784
This avoids breaking possible value dependencies when sorting loads by
offset.
AMDGPU has some load instructions that write into the high or low bits
of the destination register, and have a tied input for the other input
bits. These can easily have the same base pointer, but be a swizzle so
the high address load needs to come first. This was inserting glue
forcing the opposite ordering, producing a cycle the InstrEmitter
would assert on. It may be potentially expensive to look for the
dependency between the other loads, so just skip any where this could
happen.
Fixes bug 40936 by reverting r351379, which added a hacky attempt to
fix this by adding chains in this case, which I think was just working
around broken glue before the InstrEmitter. The core of the patch is
re-implementing the fix for that problem.
llvm-svn: 355728
Move the x86 combine from D58974 into the DAGCombine VSELECT code and update the SELECT version to use the isBooleanFlip helper as well.
Requested by @spatel on D59006
llvm-svn: 355533
During the lowering of a switch that would result in the generation of a
jump table, a range check is performed before indexing into the jump
table, for the switch value being outside the jump table range and a
conditional branch is inserted to jump to the default block. In case the
default block is unreachable, this conditional jump can be omitted. This
patch implements omitting this conditional branch for unreachable
defaults.
Differential Revision: https://reviews.llvm.org/D52002
Reviewers: Hans Wennborg, Eli Freidman, Roman Lebedev
llvm-svn: 355490
During the lowering of a switch that would result in the generation of a
jump table, a range check is performed before indexing into the jump
table, for the switch value being outside the jump table range and a
conditional branch is inserted to jump to the default block. In case the
default block is unreachable, this conditional jump can be omitted. This
patch implements omitting this conditional branch for unreachable
defaults.
Differential Revision: https://reviews.llvm.org/D52002
Reviewers: Hans Wennborg, Eli Freidman, Roman Lebedev
llvm-svn: 355483
This caused the first matcher in the isel table for many targets to Opc_Scope instead of Opc_SwitchOpcode. This leads to a significant increase in isel match failures.
llvm-svn: 355433
This patch enables combining integer bitcasts of integer build vectors when the new scalar type is legal. I've avoided floating point because the implementation bitcasts float to int along the way and we would need to check the intermediate types for legality
Differential Revision: https://reviews.llvm.org/D58884
llvm-svn: 355324
Summary:
Before when we implemented the first EH proposal, 'catch <tag>'
instruction may not catch an exception so there were multiple EH pads an
exception can unwind to. That means a BB could have multiple EH pad
successors.
Now after we switched to the new proposal, every 'catch' instruction
catches an exception, and there is only one catchpad per catchswitch, so
we at most have one EH pad successor, making `ThrowUnwindDest` map in
`WasmEHInfo` unnecessary.
Keeping `ThrowUnwindDest` map in `WasmEHInfo` has its own problems,
because other optimization passes can split a BB that contains possibly
throwing calls (previously invokes), and we have to update the map every
time that happens, which is not easy for common CodeGen passes.
This also correctly updates successor info in LateEHPrepare when we add
a rethrow instruction.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58486
llvm-svn: 355296
Previously we had build_vector PatFrags that called ISD::isBuildVectorAllZeros/Ones. Internally the ISD::isBuildVectorAllZeros/Ones look through bitcasts, but we aren't able to take advantage of that in isel. Instead of we have to canonicalize the types of the all zeros/ones build_vectors and insert bitcasts. Then we have to pattern match those exact bitcasts.
By emitting specific matchers for these 2 nodes, we can make isel look through any bitcasts without needing to explicitly match them. We should also be able to remove the canonicalization to vXi32 from lowering, but I've left that for a follow up.
This removes something like 40,000 bytes from the X86 isel table.
Differential Revision: https://reviews.llvm.org/D58595
llvm-svn: 355224
Summary:
The description of KnownBits::zext() and
KnownBits::zextOrTrunc() has confusingly been telling
that the operation is equivalent to zero extending the
value we're tracking. That has not been true, instead
the user has been forced to explicitly set the extended
bits as known zero afterwards.
This patch adds a second argument to KnownBits::zext()
and KnownBits::zextOrTrunc() to control if the extended
bits should be considered as known zero or as unknown.
Reviewers: craig.topper, RKSimon
Reviewed By: RKSimon
Subscribers: javed.absar, hiraditya, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58650
llvm-svn: 355099
At the moment, we mark every atomic memory access as being also volatile. This is unnecessarily conservative and prohibits many legal transforms (DCE, folding, etc..).
This patch removes MOVolatile from the MachineMemOperands of atomic, but not volatile, instructions. This should be strictly NFC after a series of previous patches which have gone in to ensure backend code is conservative about handling of isAtomic MMOs. Once it's in and baked for a bit, we'll start working through removing unnecessary bailouts one by one. We applied this same strategy to the middle end a few years ago, with good success.
To make sure this patch itself is NFC, it is build on top of a series of other patches which adjust code to (for the moment) be as conservative for an atomic access as for a volatile access and build up a test corpus (mostly in test/CodeGen/X86/atomics-unordered.ll)..
Previously landed
D57593 Fix a bug in the definition of isUnordered on MachineMemOperand
D57596 [CodeGen] Be conservative about atomic accesses as for volatile
D57802 Be conservative about unordered accesses for the moment
rL353959: [Tests] First batch of cornercase tests for unordered atomics.
rL353966: [Tests] RMW folding tests w/unordered atomic operations.
rL353972: [Tests] More unordered atomic lowering tests.
rL353989: [SelectionDAG] Inline a single use helper function, and remove last non-MMO interface
rL354740: [Hexagon, SystemZ] Be super conservative about atomics
rL354800: [Lanai] Be super conservative about atomics
rL354845: [ARM] Be super conservative about atomics
Attention Out of Tree Backend Owners: This patch may break you. If it does, you can use the TLI getMMOFlags hook to restore the MOVolatile to any instruction you need to. (See llvm-dev thread titled "PSA: Changes to how atomics are handled in backends" started Feb 27, 2019.)
Differential Revision: https://reviews.llvm.org/D57601
llvm-svn: 355025
If SADDSAT/SSUBSAT are legal, then we can expand SADDO/SSUBO by performing a ADD/SUB and a SADDO/SSUBO and then compare the results.
I looked at doing this for UADDO/USUBO as well but as we don't have to do as many range comparisons I didn't see any/much benefit.
Differential Revision: https://reviews.llvm.org/D58637
llvm-svn: 354866
These helpers extend the existing isConstOrConstSplat helper checks to support DemandedElts masks as well.
We already had a local version of this in SelectionDAG that computeKnownBits/ComputeNumSignBits made use of, but this adds the functionality directly to the BuildVectorSDNode node and extends isConstOrConstSplat etc. to use that.
This will allow us to reuse the functionality in SimplifyDemandedVectorElts/SimplifyDemandedBits.
Differential Revision: https://reviews.llvm.org/D58503
llvm-svn: 354797
Support undef shuffle mask indices in the shuffle(concat_vectors, concat_vectors) -> concat_vectors fold
Differential Revision: https://reviews.llvm.org/D58585
llvm-svn: 354793
OPC_CheckCondCode is always used as operand 2 of a setcc. And its always surrounded by a MoveChild2 and a MoveParent. By having a dedicated opcode for this case we can reduce the number of bytes needed for this pattern from 4 bytes to 2.
This saves ~3000 bytes in the X86 table.
llvm-svn: 354763
Summary:
When promoting the over flow vector for these ops we should use the target's desired setcc result type. This way a v8i32 result type will use a v8i32 overflow vector instead of a v8i16 overflow vector. A v8i16 overflow vector will cause LegalizeDAG/LegalizeVectorOps to have to use v8i32 and truncate to v8i16 in its expansion. By doing this in type legalization instead, we get the truncate into the DAG earlier and give DAG combine more of a chance to optimize it.
We also have to fix unrolling to use the scalar setcc result type for the scalarized operation, and convert it to the required vector element type after the scalar operation. We have to observe the vector boolean contents when doing this conversion. The previous code was just taking the scalar result and putting it in the vector. But for X86 and AArch64 that would have only put a the boolean value in bit 0 of the element and left all other bits in the element 0. We need to ensure all bits in the element are the same. I'm using a select with constants here because that's what setcc unrolling in LegalizeVectorOps used.
Reviewers: spatel, RKSimon, nikic
Reviewed By: nikic
Subscribers: javed.absar, kristof.beyls, dmgreen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58567
llvm-svn: 354753
r354648 was a follow up to fix a regression "[X86] Add a DAG combine for (aext_vector_inreg (aext_vector_inreg X)) -> (aext_vector_inreg X) to fix a regression from my previous commit."
These were reverted in r354713 as their context depended on other patches that were reverted for a bug.
llvm-svn: 354734
r354363 caused https://crbug.com/934963#c1, which has a plain C reduced
test case.
I also had to revert some dependent changes:
- r354648
- r354647
- r354640
- r354511
llvm-svn: 354713
When we need to merge two adjacent loads the AND mask for the low piece was still sized for the full src element size. But we didn't have that many bits. The upper bits are already zero due to the SRL. So we can skip the AND if we're going to combine with the high bits.
We do need an AND to clear out any bits from the high part. We were anding the high part before combining with the low part, but it looks like ANDing after the OR gets better results.
So we can just emit the final AND after the optional concatentation is done. That will handling skipping before the OR and get rid of extra high bits after the OR.
llvm-svn: 354655
Otherwise we end up creating extract_vector_elts that then each need to have their input promoted. This can lead to truncates needing to be emitted for each of those.
But we already emitted any_extends when we legalized the extract_subvector. So now we have pairs of any_extend+trunc that partially cancel. But depending on how DAGCombiner visits them we can get weird results.
By promoting the input at the same time we can create only a single any_extend or truncate.
There's one regression in the vector-narrow-binop.ll case, but that looks easy to fix with a follow up patch.
llvm-svn: 354647
This fold can occur during legalization, so it can fight with promotion
to the larger type. It apparently takes a special sequence and subtarget
to avoid more basic simplifications that would hide the problem.
But there's a bigger question raised here: why does distributeTruncateThroughAnd()
even exist? It duplicates functionality from a more minimal pattern that we
already have. But getting rid of this function requires some preliminary steps.
https://bugs.llvm.org/show_bug.cgi?id=40793
llvm-svn: 354594
If the LHS has known zeros, then the RHS immediate mask might have been simplified to remove those bits.
This patch adds a call to computeKnownBits to get the known zeroes to handle that possibility. I left an early out to skip the call if all of the demanded bits are set in the mask.
Differential Revision: https://reviews.llvm.org/D58464
llvm-svn: 354514
Second part of https://bugs.llvm.org/show_bug.cgi?id=40442.
This adds an extra UnrollVectorOverflowOp() method to SDAG, because
the general UnrollOverflowOp() method can't deal with multiple results.
Additionally we need to expand UMULO/SMULO during vector op
legalization, as it may result in unrolling, which may need additional
type legalization.
Differential Revision: https://reviews.llvm.org/D57997
llvm-svn: 354513
If the bit position has known zeros in it, then the AND immediate will likely be optimized to remove bits.
This can prevent GetDemandedBits from recognizing that the AND is unnecessary.
llvm-svn: 354498
Directly use the correct shift amount type if it is possible, and
future-proof the code against vectors. The added test makes sure that
bitwidths that do not fit into the shift amount type do not assert.
Split out from D57997.
llvm-svn: 354359
Summary:
A store to an object whose lifetime is about to end can be removed.
See PR40550 for motivation.
Reviewers: niravd
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D57541
llvm-svn: 354244
In preparation for supporting vector expansion.
Add an isPostTypeLegalization flag to makeLibCall(), because this
expansion relies on the legalized form using MERGE_VALUES. Drop
the corresponding variant of ExpandLibCall, which is no longer used.
Differential Revision: https://reviews.llvm.org/D58006
llvm-svn: 354226
While rebasing a refactor in r353950 I accidentally swapped two function
arguments; one is SelectionDAGBuilders "current" DebugLoc, the other is the one
from the "current" debug intrinsic. They're probably always identical, but I
haven't proved that yet.
llvm-svn: 354019
For D57601, we need to know whether the instruction is volatile. We'd either have to pass yet another parameter, or just standardize on the MMO interface. I chose the second.
llvm-svn: 353989
The helper function was used by only two callers, and largely ended up providing distinct functionality based on optional arguments and opcode. Inline and simply to make the functionality much more clear.
llvm-svn: 353977
In this patch SelectionDAG tries to salvage any dbg.values that are going to be
dropped, in case they can be recovered from Values in the current BB. It also
strengthens SelectionDAGs handling of dangling debug data, so that dbg.values
are *always* emitted (as Undef or otherwise) instead of dangling forever.
The motivation behind this patch exists in the new test case: a memory address
(here a bitcast and GEP) exist in one basic block, and a dbg.value referring to
the address is left in the 'next' block. The base pointer is live across all
basic blocks. In current llvm trunk the dbg.value cannot be encoded, and it
isn't even emitted as an Undef DBG_VALUE.
The change is simply: if we're definitely going to drop a dbg.value, repeatedly
apply salvageDebugInfo to its operand until either we find something that can
be encoded, or we can't salvage any further in which case we produce an Undef
DBG_VALUE. To know when we're "definitely going to drop a dbg.value",
SelectionDAG signals SelectionDAGBuilder when all IR instructions have been
encoded to force salvaging. This ensures that any dbg.value that's dangling
after DAG creation will have a corresponding DBG_VALUE encoded.
Differential Revision: https://reviews.llvm.org/D57694
llvm-svn: 353954
This is a pure copy-and-paste job, moving the logic for lowering dbg.value
intrinsics to SDDbgValues into its own function. This is ahead of adding some
more users of this logic.
Differential Revision: https://reviews.llvm.org/D57697
llvm-svn: 353950
SelectionDAGBuilder has special handling for dbg.value intrinsics that are
understood to define the location of function parameters on entry to the
function. To enable this, we avoid recording a dbg.value as a virtual register
reference if it might be such a parameter, so that it later hits
EmitFuncArgumentDbgValue.
This patch reduces the set of circumstances where we avoid recording a
dbg.value as a virtual register reference, to allow more "normal" variables
to be recorded that way. We now only bypass for potential parameters if:
* The dbg.value operand is an Argument,
* The Variable is a parameter, and
* The Variable is not inlined.
meaning it's very likely that the dbg.value is a function-entry parameter
location.
Differential Revision: https://reviews.llvm.org/D57584
llvm-svn: 353948
If we're comparing some value for equality against 2 constants
and those constants have an absolute difference of just 1 bit,
then we can offset and mask off that 1 bit and reduce to a single
compare against zero:
and/or (setcc X, C0, ne), (setcc X, C1, ne/eq) -->
setcc ((add X, -C1), ~(C0 - C1)), 0, ne/eq
https://rise4fun.com/Alive/XslKj
This transform is disabled by default using a TLI hook
("convertSetCCLogicToBitwiseLogic()").
That should be overridden for AArch64, MIPS, Sparc and possibly
others based on the asm shown in:
https://bugs.llvm.org/show_bug.cgi?id=40611
llvm-svn: 353859
Summary:
The SMULO/UMULO DAG nodes, when not directly supported by the target,
expand to a multiplication twice as wide. In case that the resulting
type is not legal, the legalizer cannot directly call the intrinsic
with the wide arguments; instead, it "pre-lowers" them by splitting
them in halves.
rL283203 made sure that on big endian targets, the legalizer passes
the argument halves in the correct order. It did not do the same
for the return value halves because the existing code used a hack;
it put an illegal type into DAG and hoped that nothing would break
and it would be correctly lowered elsewhere.
rL307207 fixed this, handling return value halves similar to how
argument handles are handled, but did not take big-endian targets
into account.
This commit fixes the expansion on big-endian targets, such as
the out-of-tree OR1K target.
Reviewers: eli.friedman, vadimcn
Subscribers: george-hopkins, efriedma, llvm-commits
Differential Revision: https://reviews.llvm.org/D45355
llvm-svn: 353854
Summary:
This patch fixes PR40587.
When a dbg.value instrinsic is emitted to the DAG
by using EmitFuncArgumentDbgValue the resulting
DBG_VALUE is hoisted to the beginning of the entry
block. I think the idea is to be able to locate
a formal argument already from the start of the
function.
However, EmitFuncArgumentDbgValue only checked that
the value that was used to describe a variable was
originating from a function parameter, not that the
variable itself actually was an argument to the
function. So when for example assigning a local
variable "local" the value from an argument "a",
the assocated DBG_VALUE instruction would be hoisted
to the beginning of the function, even if the scope
for "local" started somewhere else (or if "local"
was mapped to other values earlier in the function).
This patch adds some logic to EmitFuncArgumentDbgValue
to check that the variable being described actually
is an argument to the function. And that the dbg.value
being lowered already is in the entry block. Otherwise
we bail out, and the dbg.value will be handled as an
ordinary dbg.value (not as a "FuncArgumentDbgValue").
A tricky situation is when both the variable and
the value is related to function arguments, but not
neccessarily the same argument. We make sure that we
do not describe the same argument more than once as
a "FuncArgumentDbgValue". This solution works as long
as opt has injected a "first" dbg.value that corresponds
to the formal argument at the function entry.
Reviewers: jmorse, aprantl
Subscribers: jyknight, hiraditya, fedor.sergeev, dstenb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57702
llvm-svn: 353735
`CallBase` class rather than `CallSite` wrappers.
I pushed this change down through most of the statepoint infrastructure,
completely removing the use of CallSite where I could reasonably do so.
I ended up making a couple of cut-points: generic call handling
(instcombine, TLI, SDAG). As soon as it hit truly generic handling with
users outside the immediate code, I simply transitioned into or out of
a `CallSite` to make this a reasonable sized chunk.
Differential Revision: https://reviews.llvm.org/D56122
llvm-svn: 353660
Now that we have vector support for [US](ADD|SUB)O we no longer
need to scalarize when expanding [US](ADD|SUB)SAT.
This matches what the cost model already does.
Differential Revision: https://reviews.llvm.org/D57348
llvm-svn: 353651
Now that we have SimplifyDemandedBits support for funnel shifts (rL353539), we need to simplify funnel shifts back to bitshifts in cases where either argument has been folded to undef/zero.
Differential Revision: https://reviews.llvm.org/D58009
llvm-svn: 353645
SimplifySetCC still has much room for improvement, but this should
fix the remaining problem examples from:
https://bugs.llvm.org/show_bug.cgi?id=40657
The initial fix for this problem was rL353615.
llvm-svn: 353639
There's effectively no difference for the cases with variables.
We just trade a sub for an add on those. But the case with a
subtract from constant would require an extra move instruction
on x86, so this looks like a reasonable generic combine.
llvm-svn: 353619
In preparation for supporting vector expansion.
Also drop a variant of ExpandLibCall, of which the MULO expansions
were the only user.
llvm-svn: 353611
This patch accompanies the RFC posted here:
http://lists.llvm.org/pipermail/llvm-dev/2018-October/127239.html
This patch adds a new CallBr IR instruction to support asm-goto
inline assembly like gcc as used by the linux kernel. This
instruction is both a call instruction and a terminator
instruction with multiple successors. Only inline assembly
usage is supported today.
This also adds a new INLINEASM_BR opcode to SelectionDAG and
MachineIR to represent an INLINEASM block that is also
considered a terminator instruction.
There will likely be more bug fixes and optimizations to follow
this, but we felt it had reached a point where we would like to
switch to an incremental development model.
Patch by Craig Topper, Alexander Ivchenko, Mikhail Dvoretckii
Differential Revision: https://reviews.llvm.org/D53765
llvm-svn: 353563
The sqrt case is faster and we already do this for the case where
the exponent is 0.25. This adds the 0.75 case which is also not
sensitive to signed zeros.
Patch by Whitney Tsang (Whitney)
Differential revision: https://reviews.llvm.org/D57434
llvm-svn: 353557
Replace OR(SHL,SRL) pattern with ISD::FSHR (legalization expands this later if necessary) - this helps with the scale == 0 'undefined' drop-through case that was discussed on D55720.
llvm-svn: 353546
This is part of https://bugs.llvm.org/show_bug.cgi?id=40442.
Vector legalization is implemented for the add/sub overflow opcodes.
UMULO/SMULO are also handled as far as legalization is concerned, but
they don't support vector expansion yet (so no tests for them).
The vector result widening implementation is suboptimal, because it
could result in a legalization loop.
Differential Revision: https://reviews.llvm.org/D57639
llvm-svn: 353464
Move the (add (umax X, C), -C) --> (usubsat X, C) X86 combine into generic DAGCombiner
First of a number of saturated arithmetic folds that can be moved out of X86-specific code for PR40111.
Differential Revision: https://reviews.llvm.org/D57754
llvm-svn: 353457
I noticed that we are missing this canonicalization in IR:
rL352515
...and then realized that we don't get this right in SDAG either,
so this has to be fixed first regardless of what we choose to do in IR.
The existing fold was limited to scalars and using the wrong predicate
to guard the transform. We have a boolean contents TLI query that can
be used to decide which direction to fold.
This may eventually lead back to the problems/question in:
https://bugs.llvm.org/show_bug.cgi?id=40486
...but it makes no difference to that yet.
Differential Revision: https://reviews.llvm.org/D57401
llvm-svn: 353433
Summary:
If the index isn't constant, this transform inserts a multiply and an add on the index to calculating the base pointer for a scalar load. But we still create a memory operand with an offset of 0 and the size of the scalar access. But the access is really to an unknown offset within the original access size.
This can cause the machine scheduler to incorrectly calculate dependencies between this load and other accesses. In the case we saw, there was a 32 byte vector store that was split into two 16 byte stores, one with offset 0 and one with offset 16. The size of the memory operand for both was 16. The scheduler correctly detected the alias with the offset 0 store, but not the offset 16 store.
This patch discards the pointer info so we don't incorrectly detect aliasing. I wasn't sure if we could keep using the original offset and size without risking some other transform on the load changing the size.
I tried to reduce a test case, but there's still a lot of memory operations needed to get the scheduler to do the bad reordering. So it looked pretty fragile to maintain.
Reviewers: efriedma
Reviewed By: efriedma
Subscribers: arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57616
llvm-svn: 353124
Add an intrinsic that takes 2 unsigned integers with the scale of them
provided as the third argument and performs fixed point multiplication on
them.
This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.
Differential Revision: https://reviews.llvm.org/D55625
llvm-svn: 353059
Noticed while investigating PR40483, and fixes the basic test case from the bug - but not a more general case.
We're pretty weak at dealing with ADD/SUB combines compared to the SimplifyAssociativeOrCommutative/SimplifyUsingDistributiveLaws abilities that InstCombine can manage.
llvm-svn: 353044
We already have the getConstantOperandVal helper which returns a uint64_t, but along comes the fuzzer and inserts a i128 -1 constant or something and the whole thing asserts.......
I've updated a few obvious cases, and tried to make use of the const reference where possible, but there's more to do. A number of existing oss-fuzz tickets should be fixed if we start using APInt and perform value clamping where necessary.
llvm-svn: 352961
Summary: This fixes using the correct stack registers for SEH when stack realignment is needed or when variable size objects are present.
Reviewers: rnk, efriedma, ssijaric, TomTan
Reviewed By: rnk, efriedma
Subscribers: javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D57183
llvm-svn: 352923
This cleans up all CallInst creation in LLVM to explicitly pass a
function type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57170
llvm-svn: 352909
The version of FoldConstantArithmetic() that takes arbitrary nodes
was confusingly naming those nodes as constants when they might
not be; also "Cst" reads like "Cast".
llvm-svn: 352884
This might be the start of tracking all vector element constants generally if we take it to its
logical conclusion, but let's stop here and make sure this is correct/beneficial so far.
The affected tests require a convoluted path before they get simplified currently because we
don't call SimplifyDemandedVectorElts() from binops directly and don't modify the binop operands
directly in SimplifyDemandedVectorElts().
That's why the tests all have a trailing shuffle to induce a chain reaction of transforms. So
something like this is happening:
1. Improve the knowledge of undefs in the binop via a SimplifyDemandedVectorElts() call that
originates from a shuffle.
2. Transfer that undef knowledge back to the shuffle mask user as more undef lanes.
3. Combine the modified shuffle by calling SimplifyDemandedVectorElts() again.
4. Translate the improved shuffle mask as undemanded lanes of build vector constants causing
those to become full undef constants.
5. Simplify the binop now that it has a full undef operand.
As we can see from the unchanged 'and' and 'or' tests, tracking undefs alone isn't a full solution.
We would need to track zero and all-ones constants to improve those opcodes. We'd probably need to
track NaN for FP ops too (assuming we don't have fast-math-flags set).
Differential Revision: https://reviews.llvm.org/D57066
llvm-svn: 352880
For targets where i32 is not a legal type (e.g. 64-bit RISC-V),
LegalizeIntegerTypes must promote the integer operand of ISD::FPOWI. As this
is a signed value, this should be sign-extended.
This patch enables all tests in test/CodeGen/RISCVfloat-intrinsics.ll for
RV64, as prior to this patch that file couldn't be compiled for RV64 due to an
assertion when performing codegen for fpowi.
Differential Revision: https://reviews.llvm.org/D54574
llvm-svn: 352832
This patch fixes pr39098.
For the attached test case, CombineZExtLogicopShiftLoad can optimize it to
t25: i64 = Constant<1099511627775>
t35: i64 = Constant<0>
t0: ch = EntryToken
t57: i64,ch = load<(load 4 from `i40* undef`, align 8), zext from i32> t0, undef:i64, undef:i64
t58: i64 = srl t57, Constant:i8<1>
t60: i64 = and t58, Constant:i64<524287>
t29: ch = store<(store 5 into `i40* undef`, align 8), trunc to i40> t57:1, t60, undef:i64, undef:i64
But later visitANDLike transforms it to
t25: i64 = Constant<1099511627775>
t35: i64 = Constant<0>
t0: ch = EntryToken
t57: i64,ch = load<(load 4 from `i40* undef`, align 8), zext from i32> t0, undef:i64, undef:i64
t61: i32 = truncate t57
t63: i32 = srl t61, Constant:i8<1>
t64: i32 = and t63, Constant:i32<524287>
t65: i64 = zero_extend t64
t58: i64 = srl t57, Constant:i8<1>
t60: i64 = and t58, Constant:i64<524287>
t29: ch = store<(store 5 into `i40* undef`, align 8), trunc to i40> t57:1, t60, undef:i64, undef:i64
And it triggers CombineZExtLogicopShiftLoad again, causes a dead loop.
Both forms should generate same instructions, CombineZExtLogicopShiftLoad generated IR looks cleaner. But it looks more difficult to prevent visitANDLike to do the transform, so I prevent CombineZExtLogicopShiftLoad to do the transform if the ZExt is free.
Differential Revision: https://reviews.llvm.org/D57491
llvm-svn: 352792
While dangling nodes will eventually be pruned when they are
considered, leaving them disables combines requiring single-use.
Reviewers: Carrot, spatel, craig.topper, RKSimon, efriedma
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D57520
llvm-svn: 352784
r zero scale SMULFIX, expand into MUL which produces better code for X86.
For vector arguments, expand into MUL if SMULFIX is provided with a zero scale.
Otherwise, expand into MULH[US] or [US]MUL_LOHI.
Differential Revision: https://reviews.llvm.org/D56987
llvm-svn: 352783
And instead just generate a libcall. My motivating example on ARM was a simple:
shl i64 %A, %B
for which the code bloat is quite significant. For other targets that also
accept __int128/i128 such as AArch64 and X86, it is also beneficial for these
cases to generate a libcall when optimising for minsize. On these 64-bit targets,
the 64-bits shifts are of course unaffected because the SHIFT/SHIFT_PARTS
lowering operation action is not set to custom/expand.
Differential Revision: https://reviews.llvm.org/D57386
llvm-svn: 352736
Summary:
Fixes PR40267, in which the removed assertion was triggering on
perfectly valid IR. As far as I can tell, constant out of bounds
indices should be allowed when splitting extract_vector_elt, since
they will simply be propagated as out of bounds indices in the
resulting split vector and handled appropriately elsewhere.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya
Differential Revision: https://reviews.llvm.org/D57471
llvm-svn: 352702
These can be triggered by mistakenly using a 64-bit mode only intrinsics with a -mtriple=i686. Using report_fatal_error gives a better experience for this mistake in release builds instead of probably crashing.
We already do this for some of the vector type legalization handles.
llvm-svn: 352699
This extends the existing transform for:
add X, 0/1 --> sub X, 0/-1
...to allow the sibling subtraction fold.
This pattern could regress with the proposed change in D57401.
llvm-svn: 352680
Summary:
This switches the EH implementation to the new proposal:
https://github.com/WebAssembly/exception-handling/blob/master/proposals/Exceptions.md
(The previous proposal was
https://github.com/WebAssembly/exception-handling/blob/master/proposals/old/Exceptions.md)
- Instruction changes
- Now we have one single `catch` instruction that returns a except_ref
value
- `throw` now can take variable number of operations
- `rethrow` does not have 'depth' argument anymore
- `br_on_exn` queries an except_ref to see if it matches the tag and
branches to the given label if true.
- `extract_exception` is a pseudo instruction that simulates popping
values from wasm stack. This is to make `br_on_exn`, a very special
instruction, work: `br_on_exn` puts values onto the stack only if it
is taken, and the # of values can vay depending on the tag.
- Now there's only one `catch` per `try`, this patch removes all special
handling for terminate pad with a call to `__clang_call_terminate`.
Before it was the only case there are two catch clauses (a normal
`catch` and `catch_all` per `try`).
- Make `rethrow` act as a terminator like `throw`. This splits BB after
`rethrow` in WasmEHPrepare, and deletes an unnecessary `unreachable`
after `rethrow` in LateEHPrepare.
- Now we stop at all catchpads (because we add wasm `catch` instruction
that catches all exceptions), this creates new
`findWasmUnwindDestinations` function in SelectionDAGBuilder.
- Now we use `br_on_exn` instrution to figure out if an except_ref
matches the current tag or not, LateEHPrepare generates this sequence
for catch pads:
```
catch
block i32
br_on_exn $__cpp_exception
end_block
extract_exception
```
- Branch analysis for `br_on_exn` in WebAssemblyInstrInfo
- Other various misc. changes to switch to the new proposal.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D57134
llvm-svn: 352598
This is the sibling fold for insert-of-insert that was added with D56604.
Now that we have x86 shuffle narrowing (D57156), this change shows improvements for
lots of AVX512 reduction code (not sure that we would ever expect extract-of-extract otherwise).
There's a small regression in some of the partial-permute tests (extracting followed by splat).
That is tracked by PR40500:
https://bugs.llvm.org/show_bug.cgi?id=40500
Differential Revision: https://reviews.llvm.org/D57336
llvm-svn: 352528
This fixes most references to the paths:
llvm.org/svn/
llvm.org/git/
llvm.org/viewvc/
github.com/llvm-mirror/
github.com/llvm-project/
reviews.llvm.org/diffusion/
to instead point to https://github.com/llvm/llvm-project.
This is *not* a trivial substitution, because additionally, all the
checkout instructions had to be migrated to instruct users on how to
use the monorepo layout, setting LLVM_ENABLE_PROJECTS instead of
checking out various projects into various subdirectories.
I've attempted to not change any scripts here, only documentation. The
scripts will have to be addressed separately.
Additionally, I've deleted one document which appeared to be outdated
and unneeded:
lldb/docs/building-with-debug-llvm.txt
Differential Revision: https://reviews.llvm.org/D57330
llvm-svn: 352514
During the lowering of a switch that would result in the generation of a
jump table, a range check is performed before indexing into the jump
table, for the switch value being outside the jump table range and a
conditional branch is inserted to jump to the default block. In case the
default block is unreachable, this conditional jump can be omitted. This
patch implements omitting this conditional branch for unreachable
defaults.
Review ID: D52002
Reviewers: Hans Wennborg, Eli Freidman, Roman Lebedev
llvm-svn: 352484
A FrameIndex should be valid throughout a block regardless of what instructions
get selected in that block -- therefore we shouldn't harness dbg.values that
refer to FrameIndexes to an SDNode. There are numerous codegen reasons why
an SDNode never appears or doesn't become a location that a DBG_VALUE can
refer to. None of them actually affect the variable location.
Therefore, before any other tests to encode dbg_values in a SelectionDAG,
identify FrameIndex operands and encode them unattached to any SDNode.
Differential Revision: https://reviews.llvm.org/D57328
llvm-svn: 352467
This did not cause the buildbot failure it was previously reverted for.
Original commit message:
I'm not sure why we were using SEXTLOAD. EXTLOAD seems more appropriate since we don't care about the upper bits.
This patch changes this and then modifies the X86 post legalization combine to emit a extending shuffle instead of a sign_extend_vector_inreg. Could maybe use an any_extend_vector_inre
On AVX512 targets I think we might be able to use a masked vpmovzx and not have to expand this at all.
llvm-svn: 352433
Followup to D56636, this time handling the UADDSAT case by expanding
uadd.sat(a, b) to umin(a, ~b) + b.
Differential Revision: https://reviews.llvm.org/D56869
llvm-svn: 352409
This patch improves the placement of DBG_VALUEs when by SelectionDAG, which
as documented in PR40427 can go very wrong. At the core of this is
ProcessSourceNode, which assumes the last instruction in a BB is the start
of the last processed IR instruction, which isn't always true.
Instead, use a helper function to call InstrEmitter::EmitNode, that records
before-and-after iterators and determines the first of any new instruction
created during emission. This is passed to ProcessSourceNode, which can
then make more elightened decisions about ordering for DBG_VALUE placement.
Differential revision: https://reviews.llvm.org/D57163
llvm-svn: 352350
Summary:
I'm not sure why we were using SEXTLOAD. EXTLOAD seems more appropriate since we don't care about the upper bits.
This patch changes this and then modifies the X86 post legalization combine to emit a extending shuffle instead of a sign_extend_vector_inreg. Could maybe use an any_extend_vector_inreg, but I just did what we already do in LowerLoad. I think we can actually get rid of this code entirely if we switch to -x86-experimental-vector-widening-legalization.
On AVX512 targets I think we might be able to use a masked vpmovzx and not have to expand this at all.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D57186
llvm-svn: 352255
It should be emitted when any floating-point operations (including
calls) are present in the object, not just when calls to printf/scanf
with floating point args are made.
The difference caused by this is very subtle: in static (/MT) builds,
on x86-32, in a program that uses floating point but doesn't print it,
the default x87 rounding mode may not be set properly upon
initialization.
This commit also removes the walk of the types pointed to by pointer
arguments in calls. (To assist in opaque pointer types migration --
eventually the pointee type won't be available.)
That latter implies that it will no longer consider a call like
`scanf("%f", &floatvar)` as sufficient to emit _fltused on its
own. And without _fltused, `scanf("%f")` will abort with error R6002. This
new behavior is unlikely to bite anyone in practice (you'd have to
read a float, and do nothing with it!), and also, is consistent with
MSVC.
Differential Revision: https://reviews.llvm.org/D56548
llvm-svn: 352076