We need to ensure that fpexcept.strict nodes are not optimized away even if
the result is unused. To do that, we need to chain them into the block's
terminator nodes, like already done for PendingExcepts.
This patch adds two new lists of pending chains, PendingConstrainedFP and
PendingConstrainedFPStrict to hold constrained FP intrinsic nodes without
and with fpexcept.strict markers. This allows not only to solve the above
problem, but also to relax chains a bit further by no longer flushing all
FP nodes before a store or other memory access. (They are still flushed
before nodes with other side effects.)
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D72341
As detailed in https://blog.regehr.org/archives/1709 we don't make use of the known leading/trailing zeros for shifted values in cases where we don't know the shift amount value.
This patch adds support to SelectionDAG::ComputeKnownBits to use KnownBits::countMinTrailingZeros and countMinLeadingZeros to set the minimum guaranteed leading/trailing known zero bits.
Differential Revision: https://reviews.llvm.org/D72573
Custom legalization can produce MERGE_VALUES to return multiple
results. We can expand them immediately instead of leaving them
around for DAG combine to clean up.
Some of the simplest handlers just call TLI and if that fails,
they fall back to unrolling. For those just inline the TLI call
and share the unrolling call with the default case of Expand.
For ExpandFSUB and ExpandBITREVERSE so that its obvious they
don't return results sometimes and want to defer to LegalizeDAG.
Summary:
This always just used the same libcall as unordered, but the comparison predicate was different. This change appears to have been made when targets were given the ability to override the predicates. Before that they were hardcoded into the type legalizer. At that time we never inverted predicates and we handled ugt/ult/uge/ule compares by emitting an unordered check ORed with a ogt/olt/oge/ole checks. So only ordered needed an inverted predicate. Later ugt/ult/uge/ule were optimized to only call a single libcall and invert the compare.
This patch removes the ordered entries and just uses the inverting logic that is now present. This removes some odd things in both the Mips and WebAssembly code.
Reviewers: efriedma, ABataev, uweigand, cameron.mcinally, kpn
Reviewed By: efriedma
Subscribers: dschuff, sdardis, sbc100, arichardson, jgravelle-google, kristof.beyls, hiraditya, aheejin, sunfish, atanasyan, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72536
ONE is currently softened to OGT | OLT. But the libcalls for OGT and OLT libcalls will trigger an exception for QNAN. At least for X86 with libgcc. UEQ on the other hand uses UO | OEQ. The UO and OEQ libcalls will not trigger an exception for QNAN.
This patch changes ONE to use the inverse of the UEQ lowering. So we now produce O & UNE. Technically the existing behavior was correct for a signalling ONE, but since I don't know how to generate one of those from clang that seemed like something we can deal with later as we would need to fix other predicates as well. Also removing spurious exceptions seemed better than missing an exception.
There are also problems with quiet OGT/OLT/OLE/OGE, but those are harder to fix.
Differential Revision: https://reviews.llvm.org/D72477
This system wasn't very well designed for multi-result nodes. As
a consequence they weren't consistently registered in the
LegalizedNodes map leading to nodes being revisited for different
results.
I've removed the "Result" variable from the main LegalizeOp method
and used a SDNode* instead. The result number from the incoming
Op SDValue is only used for deciding which result to return to the
caller. When LegalizeOp is called it should always register a
legalized result for all of its results. Future calls for any other
result should be pulled for the LegalizedNodes map.
Legal nodes will now register all of their results in the map
instead of just the one we were called for.
The Expand and Promote handling to use a vector of results similar
to LegalizeDAG. Each of the new results is then re-legalized and
logged in the LegalizedNodes map for all of the Results for the
node being legalized. None of the handles register their own
results now. And none call ReplaceAllUsesOfValueWith now.
Custom handling now always passes result number 0 to LowerOperation.
This matches what LegalizeDAG does. Since the introduction of
STRICT nodes, I've encountered several issues with X86's custom
handling being called with an SDValue pointing at the chain and
our custom handlers using that to get a VT instead of result 0.
This should prevent us from having any more of those issues. On
return we will update the LegalizedNodes map for all results so
we shouldn't call the custom handler again for each result number.
I want to push SDNode* further into the Expand and Promote
handlers, but I've left that for a follow to keep this patch size
down. I've created a dummy SDValue(Node, 0) to keep the handlers
working.
Differential Revision: https://reviews.llvm.org/D72224
In D71841 we inverted the sense of the SDNode-level flag to ensure all nodes
default to potentially raising FP exceptions unless otherwise specified --
i.e. if we forget to propagate the flag somewhere, the effect is now only
lost performance, not incorrect code.
However, the related flag at the MI level still defaults to nodes not raising
FP exceptions unless otherwise specified. To be fully on the (conservatively)
safe side, we should invert that flag as well.
This patch does so by replacing MIFlag::FPExcept with MIFlag::NoFPExcept.
(Note that this does also introduce an incompatible change in the MIR format.)
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D72466
Only PPC seems to be using it, and only checks some simple cases and
doesn't distinguish between FP. Just switch to using LLT to simplify
use from GlobalISel.
If we're doing a compare that only tests the sign bit and only the sign bit is demanded, we can just bypass the node. This removes one of the blend dependencies in our v2i64->v2f32 uint_to_fp codegen on pre-sse4.2 targets.
Differential Revision: https://reviews.llvm.org/D72356
If we are extracting a chunk of a vector that's a fraction of an
operand of the concatenated vector operand, we can extract directly
from one of those original operands.
This is another suggestion from PR42024:
https://bugs.llvm.org/show_bug.cgi?id=42024#c2
But I'm not sure yet if it will make any difference on those patterns.
It seems to help a few existing AVX512 tests though.
Differential Revision: https://reviews.llvm.org/D72361
This is a positive combination as long as the NEG is NOT free,
as we are reducing the number of NEG from two to one.
Differential Revision: https://reviews.llvm.org/D72312
Summary:
Added MIRFormatter for target specific MIR formating and parsing with
immediate and custom pseudo source values. Target machine can subclass
MIRFormatter and implement custom logic for printing and parsing
immediate and custom pseudo source values for better readability.
* Target specific immediate mnemonic need to start with "." follows by
identifier string. When MIR parser sees immediate it will call target
specific parsing function.
* Custom pseudo source value need to start with custom follows by
double-quoted string. MIR parser will pass the quoted string to target
specific PSV parsing function.
* MIRFormatter have 2 helper functions to facilitate LLVM value printing
and parsing for custom PSV if they refers LLVM values.
Patch by Peng Guo
Reviewers: dsanders, arsenm
Reviewed By: dsanders
Subscribers: wdng, jvesely, nhaehnle, hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69836
Summary:
Added MIRFormatter for target specific MIR formating and parsing with
immediate and custom pseudo source values. Target machine can subclass
MIRFormatter and implement custom logic for printing and parsing
immediate and custom pseudo source values for better readability.
* Target specific immediate mnemonic need to start with "." follows by
identifier string. When MIR parser sees immediate it will call target
specific parsing function.
* Custom pseudo source value need to start with custom follows by
double-quoted string. MIR parser will pass the quoted string to target
specific PSV parsing function.
* MIRFormatter have 2 helper functions to facilitate LLVM value printing
and parsing for custom PSV if they refers LLVM values.
Reviewers: dsanders, arsenm
Reviewed By: dsanders
Subscribers: wdng, jvesely, nhaehnle, hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69836
Summary:
This patch adds intrinsics and ISelDAG nodes for
signed and unsigned fixed-point division:
llvm.sdiv.fix.*
llvm.udiv.fix.*
These intrinsics perform scaled division on two
integers or vectors of integers. They are required
for the implementation of the Embedded-C fixed-point
arithmetic in Clang.
Patch by: ebevhan
Reviewers: bjope, leonardchan, efriedma, craig.topper
Reviewed By: craig.topper
Subscribers: Ka-Ka, ilya, hiraditya, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70007
Summary:
Remove the restrictions that preventing "asm goto" from returning non-void
values. The values returned by "asm goto" are only valid on the "fallthrough"
path.
Reviewers: jyknight, nickdesaulniers, hfinkel
Reviewed By: jyknight, nickdesaulniers
Subscribers: rsmith, hiraditya, llvm-commits, cfe-commits, craig.topper, rnk
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D69876
This is possibly a small part towards solving PR42024:
https://bugs.llvm.org/show_bug.cgi?id=42024
The vectorizer is creating shuffles of concat like this:
%63 = shufflevector <4 x i64> %x, <4 x i64> undef, <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 0, i32 1, i32 2, i32 3>
%64 = shufflevector <8 x i64> %63, <8 x i64> undef, <8 x i32> <i32 0, i32 4, i32 1, i32 5, i32 2, i32 6, i32 3, i32 7>
That might be fixable in the vectorizers, but we're not allowed to fold that into a single shuffle in instcombine,
so we should have a backend backstop to convert that into the likely simpler form:
%64 = shufflevector <4 x i64> %x, <4 x i64> undef, <8 x i32> <i32 0, i32 0, i32 1, i32 1, i32 2, i32 2, i32 3, i32 3>
Differential Revision: https://reviews.llvm.org/D72300
This patch adds widening which really just scalarizes because we don't have a strategy for the extra elements we would need to pad with.
Differential Revision: https://reviews.llvm.org/D72193
This isn't a functonal change since we also check the bit width is the
same and the input type is integer. This guarantees the input and
output type are the same. But passing the input type makes the code
more readable.
This is the DAG node for SIGN_EXTEND_INREG :
t21: v4i32 = sign_extend_inreg t18, ValueType:ch:v4i16
It has two operands. The first one is the value it want to extend, and the second
one is the type to specify how to extend the value. For this example, it means
that, it is signed extend the t18(v4i32) from v4i16 to v4i32. That is
the semantics of c code:
vector int foo(vector int m) {
return m << 16 >> 16;
}
And it could be any vector type that hardware support the operation, though
the type 'v4i16' is NOT legal for the target. When we are trying to combine
the srl + sra, what we did now is calling the TLI.isOperationLegal(), which
will also check the legality of the type. That doesn't make sense.
Differential Revision: https://reviews.llvm.org/D70230
The code here isn't great in all caess. Particularly v4f64->v4i32
on 64-bit AVX targets. But there is some improvement in some
configurations.
There's definitely some issues with computeNumSignBits with
X86ISD::STRICT_FCMP. As well as not being able to propagate sign
bits through merge_values nodes that get created during custom
legalization.
Previously, for vectors we created a vselect with a condition that
didn't match what the target wanted according to getSetCCResultType.
To make up for this, X86 had a special DAG combine to detect if
the condition was all sign bits and then insert its own truncate
or extend. By adding the extend/truncate here explicitly we can
avoid that.
ExpandStrictFPOp calls ExpandUINT_TO_FLOAT. Previously, ExpandUINT_TO_FLOAT
returned SDValue() if it wasn't able to handle and needed to unroll.
Then ExpandStrictFPOp would detect his SDValue() and do the unroll.
After this change, ExpandUINT_TO_FLOAT will directly call
UnrollStrictFPOp and return the unrolled result.
This patch attempts to peek through vectors based on the demanded bits/elt of a particular ISD::EXTRACT_VECTOR_ELT node, allowing us to avoid dependencies on ops that have no impact on the extract.
In particular this helps remove some unnecessary scalar->vector->scalar patterns.
The wasm shift patterns are annoying - @tlively has indicated that the wasm vector shift codegen are to be refactored in the near-term and isn't considered a major issue.
Reapplied after reversion at rL368660 due to PR42982 which was fixed at rGca7fdd41bda0.
Differential Revision: https://reviews.llvm.org/D65887
UpdateNodeOperands might CSE to another existing node. So we should make sure we're legalizing that node otherwise we might fail to hook up the operands properly. I've moved the result registration up to the caller to avoid having to pass both Result and Op into the functions where it might be confusing which is which.
This address 2 other issues pointed out in D71861.
Differential Revision: https://reviews.llvm.org/D72021
When the "disable-tail-calls" attribute was added, checks were added for
it in various backends. Now this code has proliferated, and it is
something the target is responsible for checking. Move that
responsibility back to the ISels (fast, global, and SD).
There's no major functionality change, except for targets that never
implemented this check.
This LLVM attribute was originally added in
d9699bc7bd (2015).
Reviewers: echristo, MaskRay
Differential Revision: https://reviews.llvm.org/D72118
The fold 'A - (A & (B - 1))' -> 'A & (0 - B)'
added in 8dab0a4a7d
is too specific. It should/can just be 'A - (A & B)' -> 'A & (~B)'
Even if we don't manage to fold `~` into B,
we have likely formed `ANDN` node.
Also, this way there's less similar-but-duplicate folds.
Name: X - (X & Y) -> X & (~Y)
%o = and i32 %X, %Y
%r = sub i32 %X, %o
=>
%n = xor i32 %Y, -1
%r = and i32 %X, %n
https://rise4fun.com/Alive/kOUl
See
https://bugs.llvm.org/show_bug.cgi?id=44448https://reviews.llvm.org/D71499
The fold 'A - (A & (B - 1))' -> 'A & (0 - B)'
added in 8dab0a4a7d
is too specific. It should just be 'A - (A & B)' -> 'A & (~B)',
but we currently fail to sink that '~' into `(B - 1)`.
Name: ~(X - 1) -> (0 - X)
%o = add i32 %X, -1
%r = xor i32 %o, -1
=>
%r = sub i32 0, %X
https://rise4fun.com/Alive/rjU
While we do manage to fold integer-typed IR in middle-end,
we can't do that for the main motivational case of pointers.
There is @llvm.ptrmask() intrinsic which may or may not be helpful,
but i'm not sure it is fully considered canonical yet,
not everything is fully aware of it likely.
Name: PR44448 ptr - (ptr & C) -> ptr & (~C)
%bias = and i32 %ptr, C
%r = sub i32 %ptr, %bias
=>
%r = and i32 %ptr, ~C
See
https://bugs.llvm.org/show_bug.cgi?id=44448https://reviews.llvm.org/D71499
While we do manage to fold integer-typed IR in middle-end,
we can't do that for the main motivational case of pointers.
There is @llvm.ptrmask() intrinsic which may or may not be helpful,
but i'm not sure it is fully considered canonical yet,
not everything is fully aware of it likely.
https://rise4fun.com/Alive/ZVdp
Name: ptr - (ptr & (alignment-1)) -> ptr & (0 - alignment)
%mask = add i64 %alignment, -1
%bias = and i64 %ptr, %mask
%r = sub i64 %ptr, %bias
=>
%highbitmask = sub i64 0, %alignment
%r = and i64 %ptr, %highbitmask
See
https://bugs.llvm.org/show_bug.cgi?id=44448https://reviews.llvm.org/D71499
The NoFPExcept bit in SDNodeFlags currently defaults to true, unlike all
other such flags. This is a problem, because it implies that all code that
transforms SDNodes without copying flags can introduce a correctness bug,
not just a missed optimization.
This patch changes the default to false. This makes it necessary to move
setting the (No)FPExcept flag for constrained intrinsics from the
visitConstrainedIntrinsic routine to the generic visit routine at the
place where the other flags are set, or else the intersectFlagsWith
call would erase the NoFPExcept flag again.
In order to avoid making non-strict FP code worse, whenever
SelectionDAGISel::SelectCodeCommon matches on a set of orignal nodes
none of which can raise FP exceptions, it will preserve this property
on all results nodes generated, by setting the NoFPExcept flag on
those result nodes that would otherwise be considered as raising
an FP exception.
To check whether or not an SD node should be considered as raising
an FP exception, the following logic applies:
- For machine nodes, check the mayRaiseFPException property of
the underlying MI instruction
- For regular nodes, check isStrictFPOpcode
- For target nodes, check a newly introduced isTargetStrictFPOpcode
The latter is implemented by reserving a range of target opcodes,
similarly to how memory opcodes are identified. (Note that there a
bit of a quirk in identifying target nodes that are both memory nodes
and strict FP nodes. To simplify the logic, right now all target memory
nodes are automatically also considered strict FP nodes -- this could
be fixed by adding one more range.)
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D71841
This was increasing the number of instructions when fsub was legalized
on AMDGPU with no signed zeros enabled. This fold should be guarded by
hasOneUse, and I don't think getNode should be doing that. The same
fold is already done as a regular combine through isNegatibleForFree.
This does require duplicating, even though isNegatibleForFree does
this combine already (and properly checks hasOneUse) to avoid one PPC
regression. In the regression, the outer fneg has nsz but the fsub
operand does not. isNegatibleForFree only sees the operand, and
doesn't see it's used from a nsz context. A nsz parameter needs to be
added and threaded through isNegatibleForFree to avoid this.
These operations are needed as building blocks for promoting so they
can't be promoted themselves.
This appeared to work because the fp_extend query type for operation
actions is the result type, not the input type so it never triggered
in the legalizer.
For fp_round, the vector op legalizer just ended up creating a
nop fp_extend that was elided by getNode, followed by a nop
fp_round that was also elided by getNode. This was followed by
a final fp_round from v4f32 back to vf416 which was CSEd to the
original node. Then legalize vector ops just believed that node
legalized to itself. LegalizeDAG took another crack at promoting
it, but didn't have a handler so just skipped it with a debug
message saying it wasn't promoted.
This patch just removes the operation actions to avoid this
non-sense. Found while trying to refactor LegalizeVectorOps to
handle multiple result nodes better.
This allows us to clean up some places that were peeking through
the MERGE_VALUES node after the call. By returning the SDValues
directly, we can clean that up.
Unfortunately, there are several call sites in AMDGPU that wanted
the MERGE_VALUES and now need to create their own.
This allows us to delete InlineAsm::Constraint_i workarounds in
SelectionDAGISel::SelectInlineAsmMemoryOperand overrides and
TargetLowering::getInlineAsmMemConstraint overrides.
They were introduced to X86 in r237517 to prevent crashes for
constraints like "=*imr". They were later copied to other targets.
SelectionDAG::transferDbgValues() can 'reattach' SDDbgValue from one to
another node, but doesn't change its source order. If the destination node has
the order greater than the SDDbgValue, there are two possible issues
revealed later:
* If debug info is attached to an instruction that is the first definition
of a register, this ends up with a def-after-use and the debug info
gets 'undef' later.
* If MIR has another definition of a register above the debug info,
the debug info may represent a source variable incorrectly because
it appears (significantly) before an instruction corresponded
to this debug info.
So, the patch changes the order of an SDDbgValue when it is moved
to a node with greater order.
Reviewers: dblaikie, jmorse, aprantl
Reviewed By: aprantl
Subscribers: aprantl, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71175
Fix several several additional problems with the int <-> FP conversion
logic both in common code and in the X86 target. In particular:
- The STRICT_FP_TO_UINT expansion emits a floating-point compare. This
compare can raise exceptions and therefore needs to be a strict compare.
I've made it signaling (even though quiet would also be correct) as
signaling is the more usual default for an LT. This code exists both
in common code and in the X86 target.
- The STRICT_UINT_TO_FP expansion algorithm was incorrect for strict mode:
it emitted two STRICT_SINT_TO_FP nodes and then used a select to choose one
of the results. This can cause spurious exceptions by the STRICT_SINT_TO_FP
that ends up not chosen. I've fixed the algorithm to use only a single
STRICT_SINT_TO_FP instead.
- The !isStrictFPEnabled logic in DoInstructionSelection would sometimes do
the wrong thing because it calls getOperationAction using the result VT.
But for some opcodes, incuding [SU]INT_TO_FP, getOperationAction needs to
be called using the operand VT.
- Remove some (obsolete) code in X86DAGToDAGISel::Select that would mutate
STRICT_FP_TO_[SU]INT to non-strict versions unnecessarily.
Reviewed by: craig.topper
Differential Revision: https://reviews.llvm.org/D71840
This moves the X86 specific transform from rL364407
into DAGCombiner to generically handle 'little to big' cases
(for example: extract_subvector(v2i64 bitcast(v16i8))). This
allows us to remove both the x86 implementation and the aarch64
bitcast(extract_subvector(bitcast())) combine.
Earlier patches that dealt with regressions initially exposed
by this patch:
rG5e5e99c041e4
rG0b38af89e2c0
Patch by: @RKSimon (Simon Pilgrim)
Differential Revision: https://reviews.llvm.org/D63815
Summary:
Without this check unnecessary FMA instructions are generated when the FSUB terms are reused.
This also has the side-effect that the same value is computed to different levels of precision, which can create undesirable effects if the results are used together in subsequent computation.
Reviewers: arsenm, nhaehnle, foad, tpr, dstuttard, spatel
Reviewed By: arsenm
Subscribers: jvesely, wdng, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71656
Summary:
We noticed in Julia that the sequence below no longer turned into
a sequence of FMA instructions in LLVM 7+, but it did in LLVM 6.
```
%29 = fmul contract <4 x double> %wide.load, %wide.load16
%30 = fmul contract <4 x double> %wide.load13, %wide.load17
%31 = fmul contract <4 x double> %wide.load14, %wide.load18
%32 = fmul contract <4 x double> %wide.load15, %wide.load19
%33 = fadd fast <4 x double> %vec.phi, %29
%34 = fadd fast <4 x double> %vec.phi10, %30
%35 = fadd fast <4 x double> %vec.phi11, %31
%36 = fadd fast <4 x double> %vec.phi12, %32
```
Unlike Clang, Julia doesn't set the `unsafe-fp-math=true` function
attribute, but rather emits more local instruction flags.
This partially undoes https://reviews.llvm.org/D46854 and if required I can try to minimize the test further.
Reviewers: spatel, mcberg2017
Reviewed By: spatel
Subscribers: chriselrod, merge_guards_bot, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71495
Add new intrinsics
llvm.experimental.constrained.minimum
llvm.experimental.constrained.maximum
as strict versions of llvm.minimum and llvm.maximum.
Includes SystemZ back-end support.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D71624
getTargetConstant prevents any optimizations from operating on the
value and basically says its already been iseled. But since we
want the index to be in a register, this isn't true.
Prior to this we were generating a vbroadcast with an immediate
argument which is illegal and was flagged by the expensive checks
bot.
This reverts commit 1f3dd83cc1, reapplying
commit bb1b0bc4e5.
The original commit failed on some builds seemingly due to the use of a
bracketed constructor with an std::array, i.e. `std::array<> arr({...})`.
Previously, LLVM had no functional way of performing casts inside of a
DIExpression(), which made salvaging cast instructions other than Noop
casts impossible. This patch enables the salvaging of casts by using the
DW_OP_LLVM_convert operator for SExt and Trunc instructions.
There is another issue which is exposed by this fix, in which fragment
DIExpressions (which are preserved more readily by this patch) for
values that must be split across registers in ISel trigger an assertion,
as the 'split' fragments extend beyond the bounds of the fragment
DIExpression causing an error. This patch also fixes this issue by
checking the fragment status of DIExpressions which are to be split, and
dropping fragments that are invalid.
Summary: Add calculation for elements in structures in getting uniform
base for the Gather/Scatter intrinsic.
Reviewers: craig.topper, c-rhodes, RKSimon
Subscribers: hiraditya, llvm-commits, annita.zhang, LuoYuanke
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71442
The caller will assert for nodes with more than 2 results unless
we return a null SDValue.
I tried to test this by copying an AArch64 test for ScalarizeVecOp_FP_ROUND.
While it did hit the assert and this commited fixed that. It also
hit a later problem that couldn't be fixed without adding strict
FP support to AArch64.
This started with adding a test to support get code coverage on
ScalarizeVecOp_UnaryOp_StrictFP by copying an existing AArch64 test
and using constrained sitofp/uitofp intrinsics.
This found 3 separate issues:
-ScalarizeVecOp_UnaryOp_StrictFP needs to do its own replacement
because the caller can't handle replacing multiple results.
-Missing integer promotion support for sitofp/uitofp
-Chain result not always assigned in ExpandLegalINT_TO_FP.
Committing them together so I can add the test case.
This is an alternate fix for the bug discussed in D70595.
This also includes minimal tests for other in-tree targets to show the problem more
generally.
We check the number of uses as a predicate for whether some value is free to negate,
but that use count can change as we rewrite the expression in getNegatedExpression().
So something that was marked free to negate during the cost evaluation phase becomes
not free to negate during the rewrite phase (or the inverse - something that was not
free becomes free). This can lead to a crash/assert because we expect that everything
in an expression that is negatible to be handled in the corresponding code within
getNegatedExpression().
This patch adds a hack to work-around the case where we probably no longer detect
that either multiply operand of an FMA isNegatibleForFree which is assumed to be
true when we started rewriting the expression.
Differential Revision: https://reviews.llvm.org/D70975
This is an alternate fix for the bug discussed in D70595.
This also includes minimal tests for other in-tree targets to show the problem more
generally.
We check the number of uses as a predicate for whether some value is free to negate,
but that use count can change as we rewrite the expression in getNegatedExpression().
So something that was marked free to negate during the cost evaluation phase becomes
not free to negate during the rewrite phase (or the inverse - something that was not
free becomes free). This can lead to a crash/assert because we expect that everything
in an expression that is negatible to be handled in the corresponding code within
getNegatedExpression().
This patch adds a hack to work-around the case where we probably no longer detect
that either multiply operand of an FMA isNegatibleForFree which is assumed to be
true when we started rewriting the expression.
Differential Revision: https://reviews.llvm.org/D70975
Summary:
Right now, DAGCombiner process the nodes in an iplementation defined order. This tends to be fragile as optimisation may or may not kick in depending on the traversal order.
This is part of a larger effort to get the DAGCombiner to process its node in topological order.
Reviewers: craig.topper, efriedma, RKSimon, lebedev.ri
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70921
of integers to floating point.
This includes some of Craig Topper's changes for promotion support from
D71130.
Differential Revision: https://reviews.llvm.org/D69275
It doesn't seem to do anything that SplitVecRes_StrictFPOp can't
do. SplitVecRes_StrictFPOp already handles nodes with a variable
number of arguments and a mix of scalar and vector arguments.
Summary:
To find potential opportunities to use getMemBasePlusOffset() I looked at
all ISD::ADD uses found with the regex getNode\(ISD::ADD,.+,.+Ptr
in lib/CodeGen/SelectionDAG. If this patch is accepted I will convert
the files in the individual backends too.
The motivation for this change is our out-of-tree CHERI backend
(https://github.com/CTSRD-CHERI/llvm-project). We use a separate register
type to store pointers (128-bit capabilities, which are effectively
unforgeable and monotonic fat pointers). These capabilities permit a
reduced set of operations and therefore use a separate ValueType (iFATPTR).
to represent pointers implemented as capabilities.
Therefore, we need to avoid using ISD::ADD for our patterns that operate
on pointers and need to use a function that chooses ISD::ADD or a new
ISD::PTRADD opcode depending on the value type.
We originally added a new DAG.getPointerAdd() function, but after this
patch series we can modify the implementation of getMemBasePlusOffset()
instead. Avoiding direct uses of ISD::ADD for pointer types will
significantly reduce the amount of assertion/instruction selection
failures for us in future upstream merges.
Reviewers: spatel
Reviewed By: spatel
Subscribers: merge_guards_bot, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71207
Summary:
This change is preparatory work to use this helper functions in more places.
In order to make this change, getMemBasePlusOffset() has been extended to
also take a SDNodeFlags parameter.
The motivation for this change is our out-of-tree CHERI backend
(https://github.com/CTSRD-CHERI/llvm-project). We use a separate register
type to store pointers (128-bit capabilities, which are effectively
unforgeable and monotonic fat pointers). These capabilities permit a
reduced set of operations and therefore use a separate ValueType (iFATPTR).
to represent pointers implemented as capabilities.
Therefore, we need to avoid using ISD::ADD for our patterns that operate
on pointers and need to use a function that chooses ISD::ADD or a new
ISD::PTRADD opcode depending on the value type.
We originally added a new DAG.getPointerAdd() function, but after this
patch series we can modify the implementation of getMemBasePlusOffset()
instead. Avoiding direct uses of ISD::ADD for pointer types will
significantly reduce the amount of assertion/instruction selection
failures for us in future upstream merges.
Reviewers: spatel
Reviewed By: spatel
Subscribers: merge_guards_bot, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71206
Summary:
This change is preparatory work to use this helper functions in more places.
Currently the function only allows integer constants offsets, but there
are cases where we can use an existing SDValue parameter.
The motivation for this change is our out-of-tree CHERI backend
(https://github.com/CTSRD-CHERI/llvm-project). We use a separate register
type to store pointers (128-bit capabilities, which are effectively
unforgeable and monotonic fat pointers). These capabilities permit a
reduced set of operations and therefore use a separate ValueType (iFATPTR).
to represent pointers implemented as capabilities.
Therefore, we need to avoid using ISD::ADD for our patterns that operate
on pointers and need to use a function that chooses ISD::ADD or a new
ISD::PTRADD opcode depending on the value type.
We originally added a new DAG.getPointerAdd() function, but after this
patch series we can modify the implementation of getMemBasePlusOffset()
instead. Avoiding direct uses of ISD::ADD for pointer types will
significantly reduce the amount of assertion/instruction selection
failures for us in future upstream merges.
Reviewers: spatel, craig.topper
Reviewed By: spatel, craig.topper
Subscribers: craig.topper, merge_guards_bot, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71205
Summary:
This change is preparatory work to use this helper functions in more places.
Currently the function only allows positive offsets, but there are cases
where we want to subtract an offset from an existing pointer.
The motivation for this change is our out-of-tree CHERI backend
(https://github.com/CTSRD-CHERI/llvm-project). We use a separate register
type to store pointers (128-bit capabilities, which are effectively
unforgeable and monotonic fat pointers). These capabilities permit a
reduced set of operations and therefore use a separate ValueType (iFATPTR).
to represent pointers implemented as capabilities.
Therefore, we need to avoid using ISD::ADD for our patterns that operate
on pointers and need to use a function that chooses ISD::ADD or a new
ISD::PTRADD opcode depending on the value type.
We originally added a new DAG.getPointerAdd() function, but after this
patch series we can modify the implementation of getMemBasePlusOffset()
instead. Avoiding direct uses of ISD::ADD for pointer types will
significantly reduce the amount of assertion/instruction selection
failures for us in future upstream merges.
Reviewers: spatel
Reviewed By: spatel
Subscribers: merge_guards_bot, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71204
The initial attempt (rG89633320) botched the logic by reversing
the source/dest types. Added x86 tests for additional coverage.
The vector tests show a potential improvement (fold vector load
instead of broadcasting), but that's a known/existing problem.
This fold is done in IR by instcombine, and we have a special
form of it already here in DAGCombiner, but we want the more
general transform too:
https://rise4fun.com/Alive/3jZm
Name: general
Pre: (C1 + zext(C2) < 64)
%s = lshr i64 %x, C1
%t = trunc i64 %s to i16
%r = lshr i16 %t, C2
=>
%s2 = lshr i64 %x, C1 + zext(C2)
%a = and i64 %s2, zext((1 << (16 - C2)) - 1)
%r = trunc %a to i16
Name: special
Pre: C1 == 48
%s = lshr i64 %x, C1
%t = trunc i64 %s to i16
%r = lshr i16 %t, C2
=>
%s2 = lshr i64 %x, C1 + zext(C2)
%r = trunc %s2 to i16
...because D58017 exposes a regression without this fold.
GEP index size can be specified in the DataLayout, introduced in D42123. However, there were still places
in which getIndexSizeInBits was used interchangeably with getPointerSizeInBits. This notably caused issues
with Instcombine's visitPtrToInt; but the unit tests was incorrect, so this remained undiscovered.
This fixes the buildbot failures.
Differential Revision: https://reviews.llvm.org/D68328
Patch by Joseph Faulls!
Summary:
The use of a boolean isInteger flag (generally initialized using
VT.isInteger()) caused errors in our out-of-tree CHERI backend
(https://github.com/CTSRD-CHERI/llvm-project).
In our backend, pointers use a separate ValueType (iFATPTR) and therefore
.isInteger() returns false. This meant that getSetCCInverse() was using the
floating-point variant and generated incorrect code for us:
`(void *)0x12033091e < (void *)0xffffffffffffffff` would return false.
Committing this change will significantly reduce our merge conflicts
for each upstream merge.
Reviewers: spatel, bogner
Reviewed By: bogner
Subscribers: wuzish, arsenm, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, jrtc27, atanasyan, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70917
Updated pred_load patterns added to AArch64SVEInstrInfo.td by this patch
to use reg + imm non-temporal loads to fix previous test failures.
Original commit message:
Adds the following intrinsics:
- llvm.aarch64.sve.ldnt1
- llvm.aarch64.sve.stnt1
This patch creates masked loads and stores with the
MONonTemporal flag set when used with the intrinsics above.
I believe this is a leftover from when fp128 was softened to fp128
on X86-64. In that case type legalization must have been able to
create a load that was the same as N which would make this
replacement fail or assert. Since we no longer do that, this
check should be unneeded.
This fold is done in IR by instcombine, and we have a special
form of it already here in DAGCombiner, but we want the more
general transform too:
https://rise4fun.com/Alive/3jZm
Name: general
Pre: (C1 + zext(C2) < 64)
%s = lshr i64 %x, C1
%t = trunc i64 %s to i16
%r = lshr i16 %t, C2
=>
%s2 = lshr i64 %x, C1 + zext(C2)
%a = and i64 %s2, zext((1 << (16 - C2)) - 1)
%r = trunc %a to i16
Name: special
Pre: C1 == 48
%s = lshr i64 %x, C1
%t = trunc i64 %s to i16
%r = lshr i16 %t, C2
=>
%s2 = lshr i64 %x, C1 + zext(C2)
%r = trunc %s2 to i16
...because D58017 exposes a regression without this fold.
This is not quite NFC because I changed the SDLoc to use the more
standard 'N' (the starting node for the fold).
This transform is a special-case of a more general fold that we
do in IR, but it seems like the general fold is needed here too
to avoid a potential regression seen in D58017.
https://rise4fun.com/Alive/3jZm
During SelectionDAG, if a value which is associated with a DBG_VALUE
needs to be split across multiple registers, the DBG_VALUE will be split
into a set of fragment expressions to recreate the original value.
If one or more of these fragments cannot be created, they would
previously be silently dropped, causing the old debug value to live past
its expiry date. This patch fixes this issue by keeping invalid
fragments while setting their value as Undef.
Differential revision: https://reviews.llvm.org/D70248
GEP index size can be specified in the DataLayout, introduced in D42123. However, there were still places
in which getIndexSizeInBits was used interchangeably with getPointerSizeInBits. This notably caused issues
with Instcombine's visitPtrToInt; but the unit tests was incorrect, so this remained undiscovered.
Differential Revision: https://reviews.llvm.org/D68328
Patch by Joseph Faulls!
This has two main effects:
- Optimizes debug info size by saving 221.86 MB of obj file size in a
Windows optimized+debug build of 'all'. This is 3.03% of 7,332.7MB of
object file size.
- Incremental step towards decoupling target intrinsics.
The enums are still compact, so adding and removing a single
target-specific intrinsic will trigger a rebuild of all of LLVM.
Assigning distinct target id spaces is potential future work.
Part of PR34259
Reviewers: efriedma, echristo, MaskRay
Reviewed By: echristo, MaskRay
Differential Revision: https://reviews.llvm.org/D71320
The fp16 to larger than fp32 inserts an extend that need to
re-legalized if fp16 is promoted. But if we check for fp16
promotion first, then we can avoid emiting the fp_extend all
together.
This is an alternate fix for the bug discussed in D70595.
This also includes minimal tests for other in-tree targets
to show the problem more generally.
We check the number of uses as a predicate for whether some
value is free to negate, but that use count can change as we
rewrite the expression in getNegatedExpression(). So something
that was marked free to negate during the cost evaluation
phase becomes not free to negate during the rewrite phase (or
the inverse - something that was not free becomes free).
This can lead to a crash/assert because we expect that
everything in an expression that is negatible to be handled
in the corresponding code within getNegatedExpression().
This patch skips the use check during the rewrite phase.
So we determine that some expression isNegatibleForFree
(identically to without this patch), but during the rewrite,
don't rely on use counts to decide how to create the optimal
expression.
Differential Revision: https://reviews.llvm.org/D70975
Summary:
Adds the following intrinsics:
- llvm.aarch64.sve.ldnt1
- llvm.aarch64.sve.stnt1
This patch creates masked loads and stores with the
MONonTemporal flag set when used with the intrinsics above.
Reviewers: sdesmalen, paulwalker-arm, dancgr, mgudim, efriedma, rengolin
Reviewed By: efriedma
Subscribers: tschuett, kristof.beyls, hiraditya, rkruppe, psnobl, cfe-commits, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71000
I think this is no longer needed. The system should take care
of legalizing any new nodes that are added. I think this might
have been needed prior to r371709 or r307053.
Summary: This is a follow up of D69281, it enables the X86 backend support for the FP comparision.
Reviewers: uweigand, kpn, craig.topper, RKSimon, cameron.mcinally, andrew.w.kaylor
Subscribers: hiraditya, llvm-commits, annita.zhang, LuoYuanke, LiuChen3
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70582
Summary:
This fixes PR44135.
The special case when we promote a bitcast from a vector to an int
needs special handling when we are on a big-endian target.
Prior to this fix, for the added vec_to_int we see the following in the
SelectionDAG printouts
Type-legalized selection DAG: %bb.1 'foo:bb.1'
SelectionDAG has 9 nodes:
t0: ch = EntryToken
t2: v8i16,ch = CopyFromReg t0, Register:v8i16 %0
t17: v4i32 = bitcast t2
t23: i32 = extract_vector_elt t17, Constant:i32<3>
t8: ch,glue = CopyToReg t0, Register:i32 $r0, t23
t9: ch = ARMISD::RET_FLAG t8, Register:i32 $r0, t8:1
and I think here the extract_vector_elt is wrong and extracts the value
from the wrong index.
The program program should return the 32 bits made up of the elements at
index 4 and 5 in the vec6 array, but with
t23: i32 = extract_vector_elt t17, Constant:i32<3>
as far as I can tell, we will extract values that originally didn't even
exist in the vec6 vectore.
If we would instead extract the element at index 2 we would get the wanted
values.
With this fix we insert a right shift after the bitcast in
DAGTypeLegalizer::PromoteIntRes_BITCAST which then gives us
Type-legalized selection DAG: %bb.1 'vec_to_int:bb.1'
SelectionDAG has 9 nodes:
t0: ch = EntryToken
t2: v8i16,ch = CopyFromReg t0, Register:v8i16 %0
t23: v4i32 = bitcast t2
t27: i32 = extract_vector_elt t23, Constant:i32<2>
t8: ch,glue = CopyToReg t0, Register:i32 $r0, t27
t9: ch = ARMISD::RET_FLAG t8, Register:i32 $r0, t8:1
So now we get
t27: i32 = extract_vector_elt t23, Constant:i32<2>
which is what we want.
Similarly, the new int_to_vec testcase exposes a bug where we cast the other
direction. Then we instead need to add a left shift before the bitcast on
big-endian targets for the bits in the input integer to end up at the exptected
place in the vector.
Reviewers: bogner, spatel, craig.topper, t.p.northover, dmgreen, efriedma, SjoerdMeijer, samparker
Reviewed By: efriedma
Subscribers: eli.friedman, bjope, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70942
Summary:
Split off of D67120.
Add the profile guided size optimization instrumentation / queries in the code
gen or target passes. This doesn't enable the size optimizations in those passes
yet as they are currently disabled in shouldOptimizeForSize (for non-IR pass
queries).
A second try after reverted D71072.
Reviewers: davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71149
This adds support for constrained floating-point comparison intrinsics.
Specifically, we add:
declare <ty2>
@llvm.experimental.constrained.fcmp(<type> <op1>, <type> <op2>,
metadata <condition code>,
metadata <exception behavior>)
declare <ty2>
@llvm.experimental.constrained.fcmps(<type> <op1>, <type> <op2>,
metadata <condition code>,
metadata <exception behavior>)
The first variant implements an IEEE "quiet" comparison (i.e. we only
get an invalid FP exception if either argument is a SNaN), while the
second variant implements an IEEE "signaling" comparison (i.e. we get
an invalid FP exception if either argument is any NaN).
The condition code is implemented as a metadata string. The same set
of predicates as for the fcmp instruction is supported (except for the
"true" and "false" predicates).
These new intrinsics are mapped by SelectionDAG codegen onto two new
ISD opcodes, ISD::STRICT_FSETCC and ISD::STRICT_FSETCCS, again
representing quiet vs. signaling comparison operations. Otherwise
those nodes look like SETCC nodes, with an additional chain argument
and result as usual for strict FP nodes. The patch includes support
for the common legalization operations for those nodes.
The patch also includes full SystemZ back-end support for the new
ISD nodes, mapping them to all available SystemZ instruction to
fully implement strict semantics (scalar and vector).
Differential Revision: https://reviews.llvm.org/D69281
D53794 introduced code to perform the FP_TO_UINT expansion via FP_TO_SINT in a way that would never expose floating-point exceptions in the intermediate steps. Unfortunately, I just noticed there is still a way this can happen. As discussed in D53794, the compiler now generates this sequence:
// Sel = Src < 0x8000000000000000
// Val = select Sel, Src, Src - 0x8000000000000000
// Ofs = select Sel, 0, 0x8000000000000000
// Result = fp_to_sint(Val) ^ Ofs
The problem is with the Src - 0x8000000000000000 expression. As I mentioned in the original review, that expression can never overflow or underflow if the original value is in range for FP_TO_UINT. But I missed that we can get an Inexact exception in the case where Src is a very small positive value. (In this case the result of the sub is ignored, but that doesn't help.)
Instead, I'd suggest to use the following sequence:
// Sel = Src < 0x8000000000000000
// FltOfs = select Sel, 0, 0x8000000000000000
// IntOfs = select Sel, 0, 0x8000000000000000
// Result = fp_to_sint(Val - FltOfs) ^ IntOfs
In the case where the value is already in range of FP_TO_SINT, we now simply compute Val - 0, which now definitely cannot trap (unless Val is a NaN in which case we'd want to trap anyway).
In the case where the value is not in range of FP_TO_SINT, but still in range of FP_TO_UINT, the sub can never be inexact, as Val is between 2^(n-1) and (2^n)-1, i.e. always has the 2^(n-1) bit set, and the sub is always simply clearing that bit.
There is a slight complication in the case where Val is a constant, so we know at compile time whether Sel is true or false. In that scenario, the old code would automatically optimize the sub away, while this no longer happens with the new code. Instead, I've added extra code to check for this case and then just fall back to FP_TO_SINT directly. (This seems to catch even slightly more cases.)
Original version of the patch by Ulrich Weigand. X86 changes added by Craig Topper
Differential Revision: https://reviews.llvm.org/D67105
Summary:
Split off of D67120.
Add the profile guided size optimization instrumentation / queries in the code
gen or target passes. This doesn't enable the size optimizations in those passes
yet as they are currently disabled in shouldOptimizeForSize (for non-IR pass
queries).
Reviewers: davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71072
This patch implements the following changes:
1) SelectionDAGBuilder::visitConstrainedFPIntrinsic currently treats
each constrained intrinsic like a global barrier (e.g. a function call)
and fully serializes all pending chains. This is actually not required;
it is allowed for constrained intrinsics to be reordered w.r.t one
another or (nonvolatile) memory accesses. The MI-level scheduler already
allows for that flexibility, so it makes sense to allow it at the DAG
level as well.
This patch therefore changes the way chains for constrained intrisincs
are created, and handles them basically like load operations are handled.
This has the effect that constrained intrinsics are no longer serialized
against one another or (nonvolatile) loads. They are still serialized
against stores, but that seems hard to change with the current DAG chain
setup, and it also doesn't seem to be a big problem preventing DAG
2) The OPC_CheckFoldableChainNode check requires that each of the
intermediate nodes in a multi-node pattern match only has a single use.
This check tends to fail if those intermediate nodes are strict operations
as those have a chain output that typically indeed has another use.
However, we don't really need to consider chains here at all, since they
will all be rewritten anyway by UpdateChains later. Other parts of the
matcher therefore already ignore chains, but this hasOneUse check doesn't.
This patch replaces hasOneUse by a custom test that verifies there is no
more than one use of any non-chain output value.
In theory, this change could affect code unrelated to strict FP nodes,
but at least on SystemZ I could not find any single instance of that
happening
3) The SystemZ back-end currently does not allow matching multiply-and-
extend operations (32x32 -> 64bit or 64x64 -> 128bit FP multiply) for
strict FP operations. This was not possible in the past due to the
problems described under 1) and 2) above.
With those issues fixed, it is now possible to fully support those
instructions in strict mode as well, and this patch does so.
Differential Revision: https://reviews.llvm.org/D70913
Summary:
This follows a previous patch that changes the X86 datalayout to represent
mixed size pointers (32-bit sext, 32-bit zext, and 64-bit) with address spaces
(https://reviews.llvm.org/D64931)
This patch implements the address space cast lowering to the corresponding
sign extension, zero extension, or truncate instructions.
Related to https://bugs.llvm.org/show_bug.cgi?id=42359
Reviewers: rnk, craig.topper, RKSimon
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69639
InstCombine may synthesize FMINNUM/FMAXNUM nodes from fcmp+select
sequences (where the fcmp is marked nnan). Currently, if the
target does not otherwise handle these nodes, they'll get expanded
to libcalls to fmin/fmax. However, these functions may reside in
libm, which may introduce a library dependency that was not originally
present in the source code, potentially resulting in link failures.
To fix this problem, add code to TargetLowering::expandFMINNUM_FMAXNUM
to expand FMINNUM/FMAXNUM to a compare+select sequence instead of the
libcall. This is done only if the node is marked as "nnan"; in this case,
the expansion to compare+select is always correct. This also suffices to
catch all cases where FMINNUM/FMAXNUM was synthesized as above.
Differential Revision: https://reviews.llvm.org/D70965
This is an alternative to D64662 that shares more code between
strict and non-strict nodes. It's modeled after the implementation
that I did for softening.
Differential Revision: https://reviews.llvm.org/D70867
As it can be seen from accompanying cleanup, it is not unheard of
to write `~Known.Zero` meaning "what maximal value can this KnownBits
produce". But i think `~Known.Zero` isn't *that* self-explanatory,
as compared to a method with a name.
Note that not all `~Known.Zero` places were cleaned up,
only those where this arguably improves things.
These nodes have a FIXME that they only get here because a Custom
handler returned SDValue() instead of the original Op.
Even though we aren't expanding them, we should return true here to
prevent ConvertNodeToLibcall from also trying to process them until
the FIXME has been addressed.
I'm hoping to add checking to ConvertNodeToLibcall to make sure
we don't give it nodes it doesn't have support for.
The code that processes the Results vector also calls ReplaceNode
and makes ExpandNode return true.
If we don't add it to the Results node, we end up returning false
from ExpandNode. This causes ConvertNodeToLibcall to be called next.
But ConvertNodeToLibcall doesn't do anything for shifts so they
just pass through unmodified. Except for printing a debug message.
Ultimately, I'd like to add more checks to ExpandNode and
ConvertNodeToLibcall to make sure we don't have nodes marked as
Expand that don't have any Expand or libcall handling.
These will be needed for ARM fp-instrinsics.ll which is currently
XFAILed.
One of the getOperand calls in SoftenFloatRes_FP_EXTEND was not
taking strict FP into account. It only affected the call
to setTypeListBeforeSoften which only has an effect on some targets.
We would previously fallback if the type wasn't f32/f64/f128. But
I don't think any of the other floating point types ever go through
the softening code anyway. So this code is dead.
Summary: This combine showed up as needed when exploring the regression when processing the DAG in topological order.
Reviewers: craig.topper, efriedma, RKSimon, lebedev.ri
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68195
This is based on what's required for softening fp128 operations on 32-bit X86 assuming f32/f64/f80 are legal. So there could be some things missing.
Differential Revision: https://reviews.llvm.org/D70654
Summary: This will be enhanced in a follow up to add strict fp support
Reviewers: efriedma
Reviewed By: efriedma
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70751
This has been factored out of D70654 which will add strict FP support to these functions. By making the helpers we avoid repeating even more code.
Differential Revision: https://reviews.llvm.org/D70736
MVE has a basic symmetry between it's normal loads/store operations and
the masked variants. This means that masked loads and stores can use
pre-inc and post-inc addressing modes, just like the standard loads and
stores already do.
To enable that, this patch adds all the relevant infrastructure for
treating masked loads/stores addressing modes in the same way as normal
loads/stores.
This involves:
- Adding an AddressingMode to MaskedLoadStoreSDNode, along with an extra
Offset operand that is added after the PtrBase.
- Extending the IndexedModeActions from 8bits to 16bits to store the
legality of masked operations as well as normal ones. This array is
fairly small, so doubling the size still won't make it very large.
Offset masked loads can then be controlled with
setIndexedMaskedLoadAction, similar to standard loads.
- The same methods that combine to indexed loads, such as
CombineToPostIndexedLoadStore, are adjusted to handle masked loads in
the same way.
- The ARM backend is then adjusted to make use of these indexed masked
loads/stores.
- The X86 backend is adjusted to hopefully be no functional changes.
Differential Revision: https://reviews.llvm.org/D70176
There seems to have been a misunderstanding of what ISD::FTRUNC
represents. ISD::FTRUNC is equivalent to llvm.trunc which takes
a floating point value, truncates it without changing the size
of the value and returns it.
Despite its similar name, its different than the fptrunc instruction
in IR which changes a floating point value to a smaller floating
point value. fptrunc is represented by ISD::FP_ROUND in SelectionDAG.
Since the ISD::FP_TO_FP16 node takes a floating point value and
converts it to f16 its more similar to ISD::FP_ROUND. In fact there
is identical code to what is being removed here in SoftenFloatRes_FP_ROUND.
I assume this bug was never encountered because it would require
f16 to be legalized by softening rather than the default of
promoting.
We already have this simplification at node-creation-time, but
the test from:
https://bugs.llvm.org/show_bug.cgi?id=44139
...shows that we can combine our way to an assert/crash too.
I need to be able to drop an operand for STRICT_FP_ROUND handling on X86. Merging these functions gives me the ArrayRef interface that passes the return type, operands, and debugloc instead of the Node.
Differential Revision: https://reviews.llvm.org/D70503
Summary:
This is a preparatory cleanup before i add more
of this fold to deal with comparisons with non-zero.
In essence, the current lowering is:
```
Name: (X % C1) == 0 -> X * C3 <= C4
Pre: (C1 u>> countTrailingZeros(C1)) * C3 == 1
%zz = and i8 C3, 0 ; trick alive into making C3 avaliable in precondition
%o0 = urem i8 %x, C1
%r = icmp eq i8 %o0, 0
=>
%zz = and i8 C3, 0 ; and silence it from complaining about said reg
%C4 = -1 /u C1
%n0 = mul i8 %x, C3
%n1 = lshr i8 %n0, countTrailingZeros(C1) ; rotate right
%n2 = shl i8 %n0, ((8-countTrailingZeros(C1)) %u 8) ; rotate right
%n3 = or i8 %n1, %n2 ; rotate right
%r = icmp ule i8 %n3, %C4
```
https://rise4fun.com/Alive/oqd
It kinda just works, really no weird edge-cases.
But it isn't all that great for when comparing with non-zero.
In particular, given `(X % C1) == C2`, there will be problems
in the always-false tautological case where `C2 u>= C1`:
https://rise4fun.com/Alive/pH3
That case is tautological, always-false:
```
Name: (X % Y) u>= Y
%o0 = urem i8 %x, %y
%r = icmp uge i8 %o0, %y
=>
%r = false
```
https://rise4fun.com/Alive/ofu
While we can't/shouldn't get such tautological case normally,
we do deal with non-splat vectors, so unless we want to give up
in this case, we need to fixup/short-circuit such lanes.
There are two lowering variants:
1. We can blend between whatever computed result and the correct tautological result
```
Name: (X % C1) == C2 -> X * C3 <= C4 || false
Pre: (C2 == 0 || C1 u<= C2) && (C1 u>> countTrailingZeros(C1)) * C3 == 1
%zz = and i8 C3, 0 ; trick alive into making C3 avaliable in precondition
%o0 = urem i8 %x, C1
%r = icmp eq i8 %o0, C2
=>
%zz = and i8 C3, 0 ; and silence it from complaining about said reg
%C4 = -1 /u C1
%n0 = mul i8 %x, C3
%n1 = lshr i8 %n0, countTrailingZeros(C1) ; rotate right
%n2 = shl i8 %n0, ((8-countTrailingZeros(C1)) %u 8) ; rotate right
%n3 = or i8 %n1, %n2 ; rotate right
%is_tautologically_false = icmp ule i8 C1, C2
%res = icmp ule i8 %n3, %C4
%r = select i1 %is_tautologically_false, i1 0, i1 %res
```
https://rise4fun.com/Alive/PjT5https://rise4fun.com/Alive/1KV
2. We can invert the comparison result
```
Name: (X % C1) == C2 -> X * C3 <= C4 || false
Pre: (C2 == 0 || C1 u<= C2) && (C1 u>> countTrailingZeros(C1)) * C3 == 1
%zz = and i8 C3, 0 ; trick alive into making C3 avaliable in precondition
%o0 = urem i8 %x, C1
%r = icmp eq i8 %o0, C2
=>
%zz = and i8 C3, 0 ; and silence it from complaining about said reg
%C4 = -1 /u C1
%n0 = mul i8 %x, C3
%n1 = lshr i8 %n0, countTrailingZeros(C1) ; rotate right
%n2 = shl i8 %n0, ((8-countTrailingZeros(C1)) %u 8) ; rotate right
%n3 = or i8 %n1, %n2 ; rotate right
%is_tautologically_false = icmp ule i8 C1, C2
%C4_fixed = select i1 %is_tautologically_false, i8 -1, i8 %C4
%res = icmp ule i8 %n3, %C4_fixed
%r = xor i1 %res, %is_tautologically_false
```
https://rise4fun.com/Alive/2xChttps://rise4fun.com/Alive/jpb5
3. We can expand into `and`/`or`:
https://rise4fun.com/Alive/WGnhttps://rise4fun.com/Alive/lcb5
Blend-one is likely better since we avoid having to load the
replacement from constant pool. `xor` is second best since
it's still pretty general. I'm not adding `and`/`or` variants.
Reviewers: RKSimon, craig.topper, spatel
Reviewed By: RKSimon
Subscribers: nick, hiraditya, xbolva00, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70051
float node
This patch add an option 'disable-strictnode-mutation' to prevent strict
node mutating to an normal node.
So we can make sure that the patch which sets strict-node as legal works
correctly.
Patch by Chen Liu(LiuChen3)
Differential Revision: https://reviews.llvm.org/D70226
Summary:
Most libraries are defined in the lib/ directory but there are also a
few libraries defined in tools/ e.g. libLLVM, libLTO. I'm defining
"Component Libraries" as libraries defined in lib/ that may be included in
libLLVM.so. Explicitly marking the libraries in lib/ as component
libraries allows us to remove some fragile checks that attempt to
differentiate between lib/ libraries and tools/ libraires:
1. In tools/llvm-shlib, because
llvm_map_components_to_libnames(LIB_NAMES "all") returned a list of
all libraries defined in the whole project, there was custom code
needed to filter out libraries defined in tools/, none of which should
be included in libLLVM.so. This code assumed that any library
defined as static was from lib/ and everything else should be
excluded.
With this change, llvm_map_components_to_libnames(LIB_NAMES, "all")
only returns libraries that have been added to the LLVM_COMPONENT_LIBS
global cmake property, so this custom filtering logic can be removed.
Doing this also fixes the build with BUILD_SHARED_LIBS=ON
and LLVM_BUILD_LLVM_DYLIB=ON.
2. There was some code in llvm_add_library that assumed that
libraries defined in lib/ would not have LLVM_LINK_COMPONENTS or
ARG_LINK_COMPONENTS set. This is only true because libraries
defined lib lib/ use LLVMBuild.txt and don't set these values.
This code has been fixed now to check if the library has been
explicitly marked as a component library, which should now make it
easier to remove LLVMBuild at some point in the future.
I have tested this patch on Windows, MacOS and Linux with release builds
and the following combinations of CMake options:
- "" (No options)
- -DLLVM_BUILD_LLVM_DYLIB=ON
- -DLLVM_LINK_LLVM_DYLIB=ON
- -DBUILD_SHARED_LIBS=ON
- -DBUILD_SHARED_LIBS=ON -DLLVM_BUILD_LLVM_DYLIB=ON
- -DBUILD_SHARED_LIBS=ON -DLLVM_LINK_LLVM_DYLIB=ON
Reviewers: beanz, smeenai, compnerd, phosek
Reviewed By: beanz
Subscribers: wuzish, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, mgorny, mehdi_amini, sbc100, jgravelle-google, hiraditya, aheejin, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, steven_wu, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, dang, Jim, lenary, s.egerton, pzheng, sameer.abuasal, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70179
This allows operations that are marked Custom, but have some type
combinations that are legal to get past this code.
Add custom mutation code to X86's Select function for the nodes
that don't have isel patterns yet.
Summary:
Convert (uaddo (uaddo x, y), carryIn) into addcarry x, y, carryIn if-and-only-if the carry flags of the first two uaddo are merged via OR or XOR.
Work remaining: match ADD, etc.
Reviewers: craig.topper, RKSimon, spatel, niravd, jonpa, uweigand, deadalnix, nikic, lebedev.ri, dmgreen, chfast
Reviewed By: lebedev.ri
Subscribers: chfast, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70079
This is recommit of commit e6584b2b7b, which was reverted in
30e7ee3c4b together with af57dbf12e.
Original message is below.
Enumerations that describe rounding mode and exception behavior were
defined inside ConstrainedFPIntrinsic. It makes sense to use the same
definitions to represent the same properties in other cases, not only
in constrained intrinsics. It was however inconvenient as required to
include constrained intrinsics definitions even if they were not needed.
Also using long scope prefix reduced readability.
This change moves these definitioins to the namespace llvm::fp.
No functional changes.
Differential Revision: https://reviews.llvm.org/D69552
Summary
In several places we need to enumerate all constrained intrinsics or IR
nodes that should be represented by them. It is easy to miss some of
the cases. To make working with these intrinsics more convenient and
robust, this change introduces file containing definitions of all
constrained intrinsics and some of their properties. This file can be
included to generate constrained intrinsics processing code.
Reviewers: kpn, andrew.w.kaylor, cameron.mcinally, uweigand
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69887
Cleanup handling of the denormal-fp-math attribute. Consolidate places
checking the allowed names in one place.
This is in preparation for introducing FP type specific variants of
the denormal-fp-mode attribute. AMDGPU will switch to using this in
place of the current hacky use of subtarget features for the denormal
mode.
Introduce a new header for dealing with FP modes. The constrained
intrinsic classes define related enums that should also be moved into
this header for uses in other contexts.
The verifier could use a check to make sure the denorm-fp-mode
attribute is sane, but there currently isn't one.
Currently, DAGCombiner incorrectly asssumes non-IEEE behavior by
default in the one current user. Clang must be taught to start
emitting this attribute by default to avoid regressions when this is
switched to assume ieee behavior if the attribute isn't present.
AMDGPU needs to know the FP mode for the function to answer this
correctly when this is removed from the subtarget.
AArch64 had to make this more complicated by using this from an IR
hook, so add an IR typed overload.
Previously we mutated the node and then converted it to a libcall. But this loses the chain information.
This patch keeps the chain, but unfortunately breaks tail call optimization as the functions involved in deciding if a node is in tail call position can't handle the chain. But correct ordering seems more important to be right.
Somehow the SystemZ tests improved. I looked at one of them and it seemed that we're handling the split vector elements in a different order and that made the copies work better.
Differential Revision: https://reviews.llvm.org/D70334
and a follow-up NFC rearrangement as it's causing a crash on valid. Testcase is on the original review thread.
This reverts commits af57dbf12e and e6584b2b7b
* Implements scalable size queries for MVTs, split out from D53137.
* Contains a fix for FindMemType to avoid using scalable vector type
to contain non-scalable types.
* Explicit casts for several places where implicit integer sign
changes or promotion from 32 to 64 bits caused problems.
* CodeGenDAGPatterns will treat scalable and non-scalable vector types
as different.
Reviewers: greened, cameron.mcinally, sdesmalen, rovka
Reviewed By: rovka
Differential Revision: https://reviews.llvm.org/D66871
These were both recently added. While the call to GetSoftenedFloat
is a little more optimal, we don't do it in the expand for
FP_TO_SINT/UINT so there's no real reason to do it here. This
avoids a FIXME for strict fp.
This doesn't handle softening the input type, but we don't handle
softening any of the strict nodes yet. Skipping that made it easy
to reuse an existing function for creating a libcall from a node
with a chain.
Before this we were emitting a bitcast to integer from the lowering
code that itself will need to be legalized. By calling
GetSoftenedFloat we get the integer conversion in one step without
needing to relegalize a bitcast.
This code isn't exercised, and was in the wrong place. If we need
this, we would need to promote the type before figuring out which
libcall to use.
I'm choosing to remove it rather than fixing since we don't
support PromoteFloat for LRINT/LROUND/LLRINT/LLROUND when the
result type is legal so I don't see much reason to support it
for the case where the result type isn't legal.
These too functions are were the same except for which libcall gets
emitted. Just merge them into one.
This is prep work for some other work including strict fp support.
Enumerations that describe rounding mode and exception behavior were
defined inside ConstrainedFPIntrinsic. It makes sense to use the same
definitions to represent the same properties in other cases, not only
in constrained intrinsics. It was however inconvenient as required to
include constrained intrinsics definitions even if they were not needed.
Also using long scope prefix reduced readability.
This change moves these definitioins to the namespace llvm::fp.
No functional changes.
Differential Revision: https://reviews.llvm.org/D69552
I reviewed the diff hunks of 05da2fe521 that don't contain
'#include' lines, and found two unintended changes. I deleted a header
banner inadvertently while inserting a header, and changed the
indentation of a constructor in an odd way. Add back the banner, and
reformat the constructor.
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
This patch adds a target interface to set the StackID for a given type,
which allows scalable vectors (e.g. `<vscale x 16 x i8>`) to be assigned a
'sve-vec' StackID, so it is allocated in the SVE area of the stack frame.
Reviewers: ostannard, efriedma, rengolin, cameron.mcinally
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D70080
Summary:
Replaces
```
unsigned getShiftAmountThreshold(EVT VT)
```
by
```
bool shouldAvoidTransformToShift(EVT VT, unsigned amount)
```
thus giving more flexibility for targets to decide whether particular shift amounts must be considered expensive or not.
Updates the MSP430 target with a custom implementation.
This continues D69116, D69120, D69326 and updates them, so all of them must be committed before this.
Existing tests apply, a few more have been added.
Reviewers: asl, spatel
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70042
Summary:
This patch redefines freeze instruction from being UnaryOperator to a subclass of UnaryInstruction.
ConstantExpr freeze is removed, as discussed in the previous review.
FreezeOperator is not added because there's no ConstantExpr freeze.
`freeze i8* null` test is added to `test/Bindings/llvm-c/freeze.ll` as well, because the null pointer-related bug in `tools/llvm-c/echo.cpp` is now fixed.
InstVisitor has visitFreeze now because freeze is not unaryop anymore.
Reviewers: whitequark, deadalnix, craig.topper, jdoerfert, lebedev.ri
Reviewed By: craig.topper, lebedev.ri
Subscribers: regehr, nlopes, mehdi_amini, hiraditya, steven_wu, dexonsmith, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69932
Summary:
Additional filtering of undesired shifts for targets that do not support them efficiently.
Related with D69116 and D69120
Applies the TLI.getShiftAmountThreshold hook to prevent undesired generation of shifts for the following IR code:
```
define i16 @testShiftBits(i16 %a) {
entry:
%and = and i16 %a, -64
%cmp = icmp eq i16 %and, 64
%conv = zext i1 %cmp to i16
ret i16 %conv
}
define i16 @testShiftBits_11(i16 %a) {
entry:
%cmp = icmp ugt i16 %a, 63
%conv = zext i1 %cmp to i16
ret i16 %conv
}
define i16 @testShiftBits_12(i16 %a) {
entry:
%cmp = icmp ult i16 %a, 64
%conv = zext i1 %cmp to i16
ret i16 %conv
}
```
The attached diff file shows the piece code in TargetLowering that is responsible for the generation of shifts in relation to the IR above.
Before applying this patch, shifts will be generated to replace non-legal icmp immediates. However, shifts may be undesired if they are even more expensive for the target.
For all my previous patches in this series (cited above) I added test cases for the MSP430 target. However, in this case, the target is not suitable for showing improvements related with this patch, because the MSP430 does not implement "isLegalICmpImmediate". The default implementation returns always true, therefore the patched code in TargetLowering is never reached for that target. Targets implementing both "isLegalICmpImmediate" and "getShiftAmountThreshold" will benefit from this.
The differential effect of this patch can only be shown for the MSP430 by temporarily implementing "isLegalICmpImmediate" to return false for large immediates. This is simulated with the implementation of a command line flag that was incorporated in D69975
This patch belongs to a initiative to "relax" the generation of shifts by LLVM for targets requiring it
Reviewers: spatel, lebedev.ri, asl
Reviewed By: spatel
Subscribers: lenary, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69326
We had some code for this for 32-bit ARM, but this doesn't really need
to be in target-specific code; generalize it.
(I think this started showing up recently because we added an
optimization that converts pow to powi.)
Differential Revision: https://reviews.llvm.org/D69013
This is a partial fix for the issues described in commit message of 027aa27 (the revert of G24609). Unfortunately, I can't provide test coverage for it on it's own as the only (known) wrong example is still wrong, but due to a separate issue.
These fixes are cases where when performing unrelated DAG combines, we were dropping the atomicity flags entirely.
Summary:
Functions replaceStoreOfFPConstant() and OptimizeFloatStore() both
replace store of float by a store of an integer unconditionally. However
this generates wrong code when the store that is replaced is an indexed
or truncating store. This commit solves this issue by adding an early
return in these functions when the store being considered is not a
normal store.
Bug was only observed on out of tree targets, hence the lack of testcase
in this commit.
Reviewers: efriedma
Subscribers: hiraditya, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68420
Continuation of:
D69116
Contributes to a fix for PR43559:
https://bugs.llvm.org/show_bug.cgi?id=43559
See also D69099 and D69116
Use the TLI hook in DAGCombine.cpp to guard against creating
shift nodes that are not optimal for a target.
Patch by: @joanlluch (Joan LLuch)
Differential Revision: https://reviews.llvm.org/D69120
Small refactoring in visitConstrainedFPIntrinsic that should make
it easier to create DAG nodes requiring extra arguments. That is
the case currently only for STRICT_FP_ROUND, but may be the case
for additional nodes (in particular compares) in the future.
Extracted from the patch for D69281.
NFC.
We need to be checking the value types for the inner setccs not
the outer setcc. We need to ensure those setccs produce a 0/1
value or that the xor is on the i1 type. I think at the time
this code was originally written, getBooleanContents didn't
take any arguments so this was probably correct. But now we can
have a different boolean contents for integer and floating point.
Not sure why the other combines below the xor were also checking
the boolean contents. None of them involve any setccs other than
the outer one and they only produce a new setcc.
Differential Revision: https://reviews.llvm.org/D69480
For AMDGPU this depends on whether denormals are enabled in the
default FP mode for the function. Currently this is treated as a
subtarget feature, so FMAD is selectively legal based on that. I want
to move this out of the subtarget features so this can be controlled
with a denormal mode attribute. Additionally, this will allow folding
based on a future ftz fast math flag.
From SelectionDAGs point of view, debug variable locations specified with
dbg.declare and dbg.addr are indirect -- they specify the address of
something. But calling conventions might mean that a Value is placed on
the stack somewhere, and this too is indirection. Previously this was
mixed up in the "IsIndirect" field of DBG_VALUE insts; this patch
separates them by encoding the indirection in a DIExpression.
If we have a dbg.declare or dbg.addr, then the expression produces an
address that then becomes a DWARF memory location. We can represent
this by putting a DW_OP_deref on the _end_ of the expression. If a Value
has been placed on the stack, then we need to put a DW_OP_deref on the
_start_ of the expression, to load the Value from the stack and have
the rest of the expression operate on it.
Differential Revision: https://reviews.llvm.org/D69028
Summary:
This is used on AMDGPU for rounding from v3f64 (which is illegal) to
v3f32 (which is legal).
Subscribers: jvesely, nhaehnle, tpr, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69339
Enable the new SelectionDAG representation for unordered loads and stores introduced in r371441 by default. As a reminder, the new lowering changes the representation of an unordered atomic load from an AtomicSDNode - which is essentially a black box which gets passed through without combines messing with it - to a LoadSDNode w/a atomic marker on the MMO. The later parallels the way we handle volatiles, and I've audited the code to ensure that every location which checks one checks the other.
This has been fairly heavily fuzzed, and I examined diffs in a reasonable large corpus of assembly by hand, so I'm reasonable sure this is correct for the common case. Late in the review for this, it was discovered that I hadn't correctly handled cases which could be legalized into CAS operations. This points out that there's a strong bias in the IR of the frontend I'm working with towards only legal atomics. If there are problems with this patch, the most likely area will be legalization.
Differential Revision: https://reviews.llvm.org/D69219
Summary:
Fixes some things from original commit at https://reviews.llvm.org/D69136. The main
change is that the heap alloc marker is always stored as ExtraInfo in the machine
instruction instead of in the PointerSumType because it cannot hold more than
4 pointer types.
Add instruction marker to MachineInstr ExtraInfo. This does almost the
same thing as Pre/PostInstrSymbols, except that it doesn't create a label until
printing instructions. This allows for labels to be put around instructions that
are deleted/duplicated somewhere.
Use this marker to track heap alloc site call instructions.
Reviewers: rnk
Subscribers: MatzeB, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69536
Summary:
A new function pass (Transforms/CFGuard/CFGuard.cpp) inserts CFGuard checks on
indirect function calls, using either the check mechanism (X86, ARM, AArch64) or
or the dispatch mechanism (X86-64). The check mechanism requires a new calling
convention for the supported targets. The dispatch mechanism adds the target as
an operand bundle, which is processed by SelectionDAG. Another pass
(CodeGen/CFGuardLongjmp.cpp) identifies and emits valid longjmp targets, as
required by /guard:cf. This feature is enabled using the `cfguard` CC1 option.
Reviewers: thakis, rnk, theraven, pcc
Subscribers: ychen, hans, metalcanine, dmajor, tomrittervg, alex, mehdi_amini, mgorny, javed.absar, kristof.beyls, hiraditya, steven_wu, dexonsmith, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D65761
This enhances D69127 (rGe6c145e0548e3b3de6eab27e44e1504387cf6b53)
to handle the looser "any_extend" cast in addition to zext.
This is a prerequisite step for canonicalizing in the other direction
(narrow the popcount) in IR - PR43688:
https://bugs.llvm.org/show_bug.cgi?id=43688
We would previously have no soft-float softening for cbrt, so could hit
a crash failing to select. This fills in what appears to be missing.
Differential Revision: https://reviews.llvm.org/D69345
Similar to:
rG4c47617627fb
This makes the DAG behavior consistent with IR's insertelement.
https://bugs.llvm.org/show_bug.cgi?id=42689
I've tried to maintain test intent for AArch64 and WebAssembly
by replacing undef index operands with something else.
If the target's preferred shift amount VT can't hold any shift
amount for the promoted VT, we should use i32. The specific shift
amount shouldn't matter. The type will be adjusted later when the
shift itself is type legalized. This avoids an assert in getNode.
Fixes PR43820.
This combine is only valid if the inner setcc produces a 0/1 result
or the inner type is MVT::i1.
I haven't seen this cause any issues, just happened to notice it
while reviewing combines in this function.
While there also fix another call to use the value type from the
SDValue for the operand instead of calling SDNode::getValueType(0).
Though its likely the use is result 0, its not guaranteed.
This makes the DAG behavior consistent with IR's extractelement after:
rGb32e4664a715
https://bugs.llvm.org/show_bug.cgi?id=42689
I've tried to maintain test intent for WebAssembly.
The AMDGPU test is trying to test for crashing or other bad behavior,
but I'm not sure if that's possible after this change.
zext (ctpop X) --> ctpop (zext X)
This is a prerequisite step for canonicalizing in the other direction (narrow the popcount) in IR - PR43688:
https://bugs.llvm.org/show_bug.cgi?id=43688
I'm not sure if any other targets are affected, but I found a missing fold for PPC, so added tests based on that.
The reason we widen all the way to 64-bit in these tests is because the initial DAG looks something like this:
t5: i8 = ctpop t4
t6: i32 = zero_extend t5 <-- created based on IR, but unused node?
t7: i64 = zero_extend t5
Differential Revision: https://reviews.llvm.org/D69127
Summary:
Add instruction marker to MachineInstr ExtraInfo. This does almost the
same thing as Pre/PostInstrSymbols, except that it doesn't create a label until
printing instructions. This allows for labels to be put around instructions that
are deleted/duplicated somewhere.
Also undo the workaround in r375137.
Reviewers: rnk
Subscribers: MatzeB, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69136
Summary:
Ternary expression checks for ISD::ADD instead of ISD::UADDO inside DAGTypeLegalizer::ExpandIntRes_UADDSUBO.
This means the ternary expression will evaluate to ISD::SUBCARRY for both ISD::UADDO and ISD::USUBO nodes.
Targets are likely to implement both, so impact will be very limited in practice.
Reviewers: bogner, lebedev.ri
Reviewed By: lebedev.ri
Subscribers: lebedev.ri, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68123
This broke various Windows builds, see comments on the Phabricator
review.
This also reverts the follow-up 20bf0cf.
> Summary:
> This fold, helps recover from the rest of the D62266 ARM regressions.
> https://rise4fun.com/Alive/TvpC
>
> Note that while the fold is quite flexible, i've restricted it
> to the single interesting pattern at the moment.
>
> Reviewers: efriedma, craig.topper, spatel, RKSimon, deadalnix
>
> Reviewed By: deadalnix
>
> Subscribers: javed.absar, kristof.beyls, llvm-commits
>
> Tags: #llvm
>
> Differential Revision: https://reviews.llvm.org/D62450
We should do the fold only if both constants are plain,
non-opaque constants, at least that is the DAG.FoldConstantArithmetic()
requirement.
And if the constant we are comparing with is zero - we shouldn't be
trying to do this fold in the first place.
Fixes https://bugs.llvm.org/show_bug.cgi?id=43769
Summary:
This fold, helps recover from the rest of the D62266 ARM regressions.
https://rise4fun.com/Alive/TvpC
Note that while the fold is quite flexible, i've restricted it
to the single interesting pattern at the moment.
Reviewers: efriedma, craig.topper, spatel, RKSimon, deadalnix
Reviewed By: deadalnix
Subscribers: javed.absar, kristof.beyls, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62450
Provides a TLI hook to allow targets to relax the emission of shifts, thus enabling
codegen improvements on targets with no multiple shift instructions and cheap selects
or branches.
Contributes to a Fix for PR43559:
https://bugs.llvm.org/show_bug.cgi?id=43559
Patch by: @joanlluch (Joan LLuch)
Differential Revision: https://reviews.llvm.org/D69116
llvm-svn: 375347
Adds a new ISD node to replicate a scalar value across all elements of
a vector. This is needed for scalable vectors, since BUILD_VECTOR cannot
be used.
Fixes up default type legalization for scalable vectors after the
new MVT type ranges were introduced.
At present I only use this node for scalable vectors. A DAGCombine has
been added to transform a BUILD_VECTOR into a SPLAT_VECTOR if all
elements are the same, but only if the default operation action of
Expand has been overridden by the target.
I've only added result promotion legalization for scalable vector
i8/i16/i32/i64 types in AArch64 for now.
Reviewers: t.p.northover, javed.absar, greened, cameron.mcinally, jmolloy
Reviewed By: jmolloy
Differential Revision: https://reviews.llvm.org/D47775
llvm-svn: 375222
The default promotion for the add_sat/sub_sat nodes currently does:
ANY_EXTEND iN to iM
SHL by M-N
[US][ADD|SUB]SAT
L/ASHR by M-N
If the promoted add_sat or sub_sat node is not legal, this can produce code
that effectively does a lot of shifting (and requiring large constants to be
materialised) just to use the overflow flag. It is simpler to just do the
saturation manually, using the higher bitwidth addition and a min/max against
the saturating bounds. That is what this patch attempts to do.
Differential Revision: https://reviews.llvm.org/D68926
llvm-svn: 375211
Add generic DAG combine for extending masked loads.
Allow us to generate sext/zext masked loads which can access v4i8,
v8i8 and v4i16 memory to produce v4i32, v8i16 and v4i32 respectively.
Differential Revision: https://reviews.llvm.org/D68337
llvm-svn: 375085
Similar to r374970, but I don't have a test for this.
PromoteTargetBoolean is intended to be use for legalizing an
operand that needs to be promoted. It picks its type based on
the return from getSetccResultType and is intended to be used
when we have freedom to pick the new type. But the return type
we need for WidenVecOp_SETCC is completely determined by the
type of the input node.
llvm-svn: 374972
PromoteTargetBoolean calls getSetccResultType to get the return
type. But we were passing it the setcc result type rather than the
setcc input type. This causes an issue on X86 with avx512vl where
the setcc result type for vXf16 vectors is vXi16 while the
result type for vXi16 vectors is vXi1.
There's really no guarantee that getSetccResultType is the type
we need here. So now we just grab the extend type from
getExtendForContent and extend to the original result VT of the
node we're splitting.
llvm-svn: 374970
Examples:
i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1
i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1
This is a small generalization of a fold requested in PR43650:
https://bugs.llvm.org/show_bug.cgi?id=43650
The sign-bit of the condition operand can be used as a mask for the true operand:
https://rise4fun.com/Alive/paT
Note that we already handle some of the patterns (isNegative + scalar) because
there's an over-specialized, yet over-reaching fold for that in foldSelectCCToShiftAnd().
It doesn't use any TLI hooks, so I can't easily rip out that code even though we're
duplicating part of it here. This fold is guarded by TLI.convertSelectOfConstantsToMath(),
so it should not cause problems for targets that prefer select over shift.
Also worth noting: I thought we could generalize this further to include the case where
the true operand of the select is not constant, but Alive says that may allow poison to
pass through where it does not in the original select form of the code.
Differential Revision: https://reviews.llvm.org/D68949
llvm-svn: 374902
This patch kills off a significant user of the "IsIndirect" field of
DBG_VALUE machine insts. Brought up in in PR41675, IsIndirect is
techncally redundant as it can be expressed by the DIExpression of a
DBG_VALUE inst, and it isn't helpful to have two ways of expressing
things.
Rather than setting IsIndirect, have DBG_VALUE creators add an extra deref
to the insts DIExpression. There should now be no appearences of
IsIndirect=True from isel down to LiveDebugVariables / VirtRegRewriter,
which is ensured by an assertion in LDVImpl::handleDebugValue. This means
we also get to delete the IsIndirect handling in LiveDebugVariables. Tests
can be upgraded by for example swapping the following IsIndirect=True
DBG_VALUE:
DBG_VALUE $somereg, 0, !123, !DIExpression(DW_OP_foo)
With one where the indirection is in the DIExpression, by _appending_
a deref:
DBG_VALUE $somereg, $noreg, !123, !DIExpression(DW_OP_foo, DW_OP_deref)
Which both mean the same thing.
Most of the test changes in this patch are updates of that form; also some
changes in how the textual assembly printer handles these insts.
Differential Revision: https://reviews.llvm.org/D68945
llvm-svn: 374877
Add a pass to lower is.constant and objectsize intrinsics
This pass lowers is.constant and objectsize intrinsics not simplified by
earlier constant folding, i.e. if the object given is not constant or if
not using the optimized pass chain. The result is recursively simplified
and constant conditionals are pruned, so that dead blocks are removed
even for -O0. This allows inline asm blocks with operand constraints to
work all the time.
The new pass replaces the existing lowering in the codegen-prepare pass
and fallbacks in SDAG/GlobalISEL and FastISel. The latter now assert
on the intrinsics.
Differential Revision: https://reviews.llvm.org/D65280
llvm-svn: 374784
This pass lowers is.constant and objectsize intrinsics not simplified by
earlier constant folding, i.e. if the object given is not constant or if
not using the optimized pass chain. The result is recursively simplified
and constant conditionals are pruned, so that dead blocks are removed
even for -O0. This allows inline asm blocks with operand constraints to
work all the time.
The new pass replaces the existing lowering in the codegen-prepare pass
and fallbacks in SDAG/GlobalISEL and FastISel. The latter now assert
on the intrinsics.
Differential Revision: https://reviews.llvm.org/D65280
llvm-svn: 374743
The diffs suggest that we are missing some more basic
analysis/transforms, but this keeps the vector path in
sync with the scalar (rL374397). This is again a
preliminary step for introducing the reverse transform
in IR as proposed in D63382.
llvm-svn: 374555
This reverses the scalar canonicalization proposed in D63382.
Pre: isPowerOf2(C1)
%r = select i1 %cond, i32 C1, i32 0
=>
%z = zext i1 %cond to i32
%r = shl i32 %z, log2(C1)
https://rise4fun.com/Alive/Z50
x86 already tries to fold this pattern, but it isn't done
uniformly, so we still see a diff. AArch64 probably should
enable the TLI hook to benefit too, but that's a follow-on.
llvm-svn: 374397
The default promotion for the add_sat/sub_sat nodes currently does:
1. ANY_EXTEND iN to iM
2. SHL by M-N
3. [US][ADD|SUB]SAT
4. L/ASHR by M-N
If the promoted add_sat or sub_sat node is not legal, this can produce code
that effectively does a lot of shifting (and requiring large constants to be
materialised) just to use the overflow flag. It is simpler to just do the
saturation manually, using the higher bitwidth addition and a min/max against
the saturating bounds. That is what this patch attempts to do.
Differential Revision: https://reviews.llvm.org/D68643
llvm-svn: 374373
Summary: It ensures that the bswap is generated even when a part of the subtree already matches a bswap transform.
Reviewers: craig.topper, efriedma, RKSimon, lebedev.ri
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68250
llvm-svn: 374340
As background, starting in D66309, I'm working on support unordered atomics analogous to volatile flags on normal LoadSDNode/StoreSDNodes for X86.
As part of that, I spent some time going through usages of LoadSDNode and StoreSDNode looking for cases where we might have missed a volatility check or need an atomic check. I couldn't find any cases that clearly miscompile - i.e. no test cases - but a couple of pieces in code loop suspicious though I can't figure out how to exercise them.
This patch adds defensive checks and asserts in the places my manual audit found. If anyone has any ideas on how to either a) disprove any of the checks, or b) hit the bug they might be fixing, I welcome suggestions.
Differential Revision: https://reviews.llvm.org/D68419
llvm-svn: 374261
Add own version of the mathematical constants from the upcoming C++20 `std::numbers`.
Differential revision: https://reviews.llvm.org/D68257
llvm-svn: 374207
Earlier in the year intrinsics for lrint, llrint, lround and llround were
added to llvm. The constrained versions are now implemented here.
Reviewed by: andrew.w.kaylor, craig.topper, cameron.mcinally
Approved by: craig.topper
Differential Revision: https://reviews.llvm.org/D64746
llvm-svn: 373900
If a fp scalar is loaded and then used as both a scalar and a vector broadcast, perform the load as a broadcast and then extract the scalar for 'free' from the 0th element.
This involved switching the order of the X86ISD::BROADCAST combines so we only convert to X86ISD::BROADCAST_LOAD once all other canonicalizations have been attempted.
Adds a DAGCombinerInfo::recursivelyDeleteUnusedNodes wrapper.
Fixes PR43217
Differential Revision: https://reviews.llvm.org/D68544
llvm-svn: 373871
Summary: The VSELECT splitting code tries to split a setcc input as well. But on avx512 where mask registers are well supported it should be better to just split the mask and use a single compare.
Reviewers: RKSimon, spatel, efriedma
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68359
llvm-svn: 373863
Summary: It ensures that the bswap is generated even when a part of the subtree already matches a bswap transform.
Reviewers: craig.topper, efriedma, RKSimon, lebedev.ri
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68250
llvm-svn: 373850
This is an omission in rL371441. Loads which happened to be unordered weren't being added to the PendingLoad set, and thus weren't be ordered w/respect to side effects which followed before the end of the block.
Included test case is how I spotted this. We had an atomic load being folded into a using instruction after a fence that load was supposed to be ordered with. I'm sure it showed up a bunch of other ways as well.
Spotted via manual inspecting of assembly differences in a corpus w/and w/o the new experimental mode. Finding this with testing would have been "unpleasant".
llvm-svn: 373814
InstrEmitter's virtual register handling assumes that clones are emitted
after the cloned node. Make sure this assumption actually holds.
Fixes a "Node emitted out of order - early" assertion on the testcase.
This is probably a very rare case to actually hit in practice; even
without the explicit edge, the scheduler will usually end up scheduling
the nodes in the expected order due to other constraints.
Differential Revision: https://reviews.llvm.org/D68068
llvm-svn: 373782
As discussed on llvm-dev and:
https://bugs.llvm.org/show_bug.cgi?id=43542
...we have transforms that assume shift operations are legal and transforms to
use them are profitable, but that may not hold for simple targets.
In this case, the MSP430 target custom lowers shifts by repeating (many)
simpler/fixed ops. That can be avoided by keeping this code as setcc/select.
Differential Revision: https://reviews.llvm.org/D68397
llvm-svn: 373666
This was reverted in r373454 due to breaking the expensive-checks bot.
This version addresses that by omitting the addSuccessorWithProb() call
when omitting the range check.
> Switch lowering: omit range check for bit tests when default is unreachable (PR43129)
>
> This is modeled after the same functionality for jump tables, which was
> added in r357067.
>
> Differential revision: https://reviews.llvm.org/D68131
llvm-svn: 373477
This is modeled after the same functionality for jump tables, which was
added in r357067.
Differential revision: https://reviews.llvm.org/D68131
llvm-svn: 373431
This patch converts the DAGCombine isNegatibleForFree/GetNegatedExpression into overridable TLI hooks.
The intention is to let us extend existing FNEG combines to work more generally with negatible float ops, allowing it work with target specific combines and opcodes (e.g. X86's FMA variants).
Unlike the SimplifyDemandedBits, we can't just handle target nodes through a Target callback, we need to do this as an override to allow targets to handle generic opcodes as well. This does mean that the target implementations has to duplicate some checks (recursion depth etc.).
Partial reversion of rL372756 - I've identified the infinite loop issue inside the X86 override but haven't fixed it yet so I've only (re)committed the common TargetLowering refactoring part of the patch.
Differential Revision: https://reviews.llvm.org/D67557
llvm-svn: 373343
Replace with the MachineFunction. X86 is the only user, and only uses
it for the function. This removes one obstacle from using this in
GlobalISel. The other is the more tolerable EVT argument.
The X86 use of the function seems questionable to me. It checks hasFP,
before frame lowering.
llvm-svn: 373292
Summary:
It seems we missed that the target hook can't query the known-bits for the
inputs to a target instruction. Fix that oversight
Reviewers: aditya_nandakumar
Subscribers: rovka, hiraditya, volkan, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67380
llvm-svn: 373264
Summary:
Previously IntrinsicInfo::size was an unsigned what can't represent the
64 bit value used by MemoryLocation::UnknownSize.
Reviewers: jmolloy
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68219
llvm-svn: 373214
ISD::SADDO uses the suggested sequence described in the section §2.4 of
the RISCV Spec v2.2. ISD::SSUBO uses the dual approach but checking for
(non-zero) positive.
Differential Revision: https://reviews.llvm.org/D47927
llvm-svn: 373187
Rename old function to explicitly show that it cares only about alignment.
The new allowsMemoryAccess call the function related to alignment by default
and can be overridden by target to inform whether the memory access is legal or
not.
Differential Revision: https://reviews.llvm.org/D67121
llvm-svn: 372935
We might be able to do better on the example in the test,
but in general, we should not scalarize a splatted vector
binop if there are other uses of the binop. Otherwise, we
can end up with code as we had - a scalar op that is
redundant with a vector op.
llvm-svn: 372886
This intrinsics should be shift by immediate, but gcc allows any
i32 scalar and clang needs to match that. So we try to detect the
non-constant case and move the data from an integer register to an
MMX register.
Previously this was done by creating a v2i32 build_vector and
bitcast in SelectionDAGBuilder. This had to be done early since
v2i32 isn't a legal type. The bitcast+build_vector would be DAG
combined to X86ISD::MMX_MOVW2D which isel will turn into a
GPR->MMX MOVD.
This commit just moves the whole thing to lowering and emits
the X86ISD::MMX_MOVW2D directly to avoid the illegal type. The
test changes just seem to be due to nodes being linearized in a
different order.
llvm-svn: 372535
Summary:
After the switch in SimplifyDemandedBits, it tries to create a
constant when possible. If the original node is a TargetConstant
the default in the switch will call computeKnownBits on the
TargetConstant which will succeed. This results in the
TargetConstant becoming a Constant. But TargetConstant exists to
avoid being changed.
I've fixed the two cases that relied on this in tree by explicitly
making the nodes constant instead of target constant. The Sparc
case is an old bug. The Mips case was recently introduced now that
ImmArg on intrinsics gets turned into a TargetConstant when the
SelectionDAG is created. I've removed the ImmArg since it lowers
to generic code.
Reviewers: arsenm, RKSimon, spatel
Subscribers: jyknight, sdardis, wdng, arichardson, hiraditya, fedor.sergeev, jrtc27, atanasyan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67802
llvm-svn: 372409
The insertion of an unconditional branch during FastISel can differ depending on
building with or without debug information. This happens because FastISel::fastEmitBranch
emits an unconditional branch depending on the size of the current basic block
without distinguishing between debug and non-debug instructions.
This patch fixes this issue by ignoring debug instructions when getting the size
of the basic block.
Reviewers: aprantl
Reviewed By: aprantl
Subscribers: ormris, aprantl, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67703
llvm-svn: 372389
This reverts r372314, reapplying r372285 and the commits which depend
on it (r372286-r372293, and r372296-r372297)
This was missing one switch to getTargetConstant in an untested case.
llvm-svn: 372338
This patch converts the DAGCombine isNegatibleForFree/GetNegatedExpression into overridable TLI hooks and includes a demonstration X86 implementation.
The intention is to let us extend existing FNEG combines to work more generally with negatible float ops, allowing it work with target specific combines and opcodes (e.g. X86's FMA variants).
Unlike the SimplifyDemandedBits, we can't just handle target nodes through a Target callback, we need to do this as an override to allow targets to handle generic opcodes as well. This does mean that the target implementations has to duplicate some checks (recursion depth etc.).
I've only begun to replace X86's FNEG handling here, handling FMADDSUB/FMSUBADD negation and some low impact codegen changes (some FMA negatation propagation). We can build on this in future patches.
Differential Revision: https://reviews.llvm.org/D67557
llvm-svn: 372333
As commented on D67557 we have a lot of uses of depth checks all using magic numbers.
This patch adds the SelectionDAG::MaxRecursionDepth constant and moves over some general cases to use this explicitly.
Differential Revision: https://reviews.llvm.org/D67711
llvm-svn: 372315
This broke the Chromium build, causing it to fail with e.g.
fatal error: error in backend: Cannot select: t362: v4i32 = X86ISD::VSHLI t392, Constant:i8<15>
See llvm-commits thread of r372285 for details.
This also reverts r372286, r372287, r372288, r372289, r372290, r372291,
r372292, r372293, r372296, and r372297, which seemed to depend on the
main commit.
> Encode them directly as an imm argument to G_INTRINSIC*.
>
> Since now intrinsics can now define what parameters are required to be
> immediates, avoid using registers for them. Intrinsics could
> potentially want a constant that isn't a legal register type. Also,
> since G_CONSTANT is subject to CSE and legalization, transforms could
> potentially obscure the value (and create extra work for the
> selector). The register bank of a G_CONSTANT is also meaningful, so
> this could throw off future folding and legalization logic for AMDGPU.
>
> This will be much more convenient to work with than needing to call
> getConstantVRegVal and checking if it may have failed for every
> constant intrinsic parameter. AMDGPU has quite a lot of intrinsics wth
> immarg operands, many of which need inspection during lowering. Having
> to find the value in a register is going to add a lot of boilerplate
> and waste compile time.
>
> SelectionDAG has always provided TargetConstant for constants which
> should not be legalized or materialized in a register. The distinction
> between Constant and TargetConstant was somewhat fuzzy, and there was
> no automatic way to force usage of TargetConstant for certain
> intrinsic parameters. They were both ultimately ConstantSDNode, and it
> was inconsistently used. It was quite easy to mis-select an
> instruction requiring an immediate. For SelectionDAG, start emitting
> TargetConstant for these arguments, and using timm to match them.
>
> Most of the work here is to cleanup target handling of constants. Some
> targets process intrinsics through intermediate custom nodes, which
> need to preserve TargetConstant usage to match the intrinsic
> expectation. Pattern inputs now need to distinguish whether a constant
> is merely compatible with an operand or whether it is mandatory.
>
> The GlobalISelEmitter needs to treat timm as a special case of a leaf
> node, simlar to MachineBasicBlock operands. This should also enable
> handling of patterns for some G_* instructions with immediates, like
> G_FENCE or G_EXTRACT.
>
> This does include a workaround for a crash in GlobalISelEmitter when
> ARM tries to uses "imm" in an output with a "timm" pattern source.
llvm-svn: 372314
Encode them directly as an imm argument to G_INTRINSIC*.
Since now intrinsics can now define what parameters are required to be
immediates, avoid using registers for them. Intrinsics could
potentially want a constant that isn't a legal register type. Also,
since G_CONSTANT is subject to CSE and legalization, transforms could
potentially obscure the value (and create extra work for the
selector). The register bank of a G_CONSTANT is also meaningful, so
this could throw off future folding and legalization logic for AMDGPU.
This will be much more convenient to work with than needing to call
getConstantVRegVal and checking if it may have failed for every
constant intrinsic parameter. AMDGPU has quite a lot of intrinsics wth
immarg operands, many of which need inspection during lowering. Having
to find the value in a register is going to add a lot of boilerplate
and waste compile time.
SelectionDAG has always provided TargetConstant for constants which
should not be legalized or materialized in a register. The distinction
between Constant and TargetConstant was somewhat fuzzy, and there was
no automatic way to force usage of TargetConstant for certain
intrinsic parameters. They were both ultimately ConstantSDNode, and it
was inconsistently used. It was quite easy to mis-select an
instruction requiring an immediate. For SelectionDAG, start emitting
TargetConstant for these arguments, and using timm to match them.
Most of the work here is to cleanup target handling of constants. Some
targets process intrinsics through intermediate custom nodes, which
need to preserve TargetConstant usage to match the intrinsic
expectation. Pattern inputs now need to distinguish whether a constant
is merely compatible with an operand or whether it is mandatory.
The GlobalISelEmitter needs to treat timm as a special case of a leaf
node, simlar to MachineBasicBlock operands. This should also enable
handling of patterns for some G_* instructions with immediates, like
G_FENCE or G_EXTRACT.
This does include a workaround for a crash in GlobalISelEmitter when
ARM tries to uses "imm" in an output with a "timm" pattern source.
llvm-svn: 372285
Summary:
`DAGCombiner::visitADDLikeCommutative()` already has a sibling fold:
`(add X, Carry) -> (addcarry X, 0, Carry)`
This fold, as suggested by @efriedma, helps recover from //some//
of the regressions of D62266
Reviewers: efriedma, deadalnix
Subscribers: javed.absar, kristof.beyls, llvm-commits, efriedma
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62392
llvm-svn: 372259
This was added to support fp128 on x86-64, but appears to be
unneeded now. This may be because the FR128 register class
added back then was merged with the VR128 register class later.
llvm-svn: 371815
This is the first sweep of generic code to add isAtomic bailouts where appropriate. The intention here is to have the switch from AtomicSDNode to LoadSDNode/StoreSDNode be close to NFC; that is, I'm not looking to allow additional optimizations at this time. That will come later. See D66309 for context.
Differential Revision: https://reviews.llvm.org/D66318
llvm-svn: 371786
The X86 decision assumes the compare will produce a result in an XMM
register, but that can't happen for an fp128 compare since those
go to a libcall the returns an i32. Pass the VT so X86 can check
the type.
llvm-svn: 371775
This code was changed to accomodate fp128 being softened to itself
during type legalization on x86-64. This was done in order to create
libcalls while having fp128 as a legal type. We're now doing the
libcall creation during LegalizeDAG and the type legalization changes
to enable the old behavior have been removed. So this change to
SelectionDAGBuilder is no longer needed.
llvm-svn: 371771
This is the main CodeGen patch to support the arm64_32 watchOS ABI in LLVM.
FastISel is mostly disabled for now since it would generate incorrect code for
ILP32.
llvm-svn: 371722
Current implementation of estimating divisions loses precision since it
estimates reciprocal first and does multiplication. This patch is to re-order
arithmetic operations in the last iteration in DAGCombiner to improve the
accuracy.
Reviewed By: Sanjay Patel, Jinsong Ji
Differential Revision: https://reviews.llvm.org/D66050
llvm-svn: 371713
This was previously used to turn fp128 operations into libcalls
on X86. This is now done through op legalization after r371672.
This restores much of this code to before r254653.
llvm-svn: 371709
This can only happen on X86 when fp128 is a legal type, but we
go through softening to generate libcalls. This causes fp128 to
be softened to fp128 instead of an integer type. This can be
removed if D67128 lands.
llvm-svn: 371493
This is the first patch in a large sequence. The eventual goal is to have unordered atomic loads and stores - and possibly ordered atomics as well - handled through the normal ISEL codepaths for loads and stores. Today, there handled w/instances of AtomicSDNodes. The result of which is that all transforms need to be duplicated to work for unordered atomics. The benefit of the current design is that it's harder to introduce a silent miscompile by adding an transform which forgets about atomicity. See the thread on llvm-dev titled "FYI: proposed changes to atomic load/store in SelectionDAG" for further context.
Note that this patch is NFC unless the experimental flag is set.
The basic strategy I plan on taking is:
introduce infrastructure and a flag for testing (this patch)
Audit uses of isVolatile, and apply isAtomic conservatively*
piecemeal conservative* update generic code and x86 backedge code in individual reviews w/tests for cases which didn't check volatile, but can be found with inspection
flip the flag at the end (with minimal diffs)
Work through todo list identified in (2) and (3) exposing performance ops
(*) The "conservative" bit here is aimed at minimizing the number of diffs involved in (4). Ideally, there'd be none. In practice, getting it down to something reviewable by a human is the actual goal. Note that there are (currently) no paths which produce LoadSDNode or StoreSDNode with atomic MMOs, so we don't need to worry about preserving any behaviour there.
We've taken a very similar strategy twice before with success - once at IR level, and once at the MI level (post ISEL).
Differential Revision: https://reviews.llvm.org/D66309
llvm-svn: 371441
Loosely based on DAGCombiner version, but this part is slightly simpler in
GlobalIsel because all address calculation is performed by G_GEP. That makes
the inc/dec distinction moot so there's just pre/post to think about.
No targets can handle it yet so testing is via a special flag that overrides
target hooks.
llvm-svn: 371384
Summary:
Normally TargetLowering::expandFixedPointMul would handle
SMULFIXSAT with scale zero by using an SMULO to compute the
product and determine if saturation is needed (if overflow
happened). But if SMULO isn't custom/legal it falls through
and uses the same technique, using MULHS/SMUL_LOHI, as used
for non-zero scales.
Problem was that when checking for overflow (handling saturation)
when not using MULO we did not expect to find a zero scale. So
we ended up in an assertion when doing
APInt::getLowBitsSet(VTSize, Scale - 1)
This patch fixes the problem by adding a new special case for
how saturation is computed when scale is zero.
Reviewers: RKSimon, bevinh, leonardchan, spatel
Reviewed By: RKSimon
Subscribers: wuzish, nemanjai, hiraditya, MaskRay, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67071
llvm-svn: 371309