Sometimes LegalizeTypes knows about common subexpressions before SelectionDAG
does, leading to accidental SDValue removal before its reference count was
truly zero.
Differential Revision: https://reviews.llvm.org/D76994
Reviewed-By: bjope
Fixes: https://bugs.llvm.org/show_bug.cgi?id=45049
Reverted in 3ce77142a6 because the previous patch
broke the expensive-checks bots. The new patch removes the broken check.
Summary: A count profile may affect tail duplication's heuristic causing a block to be duplicated in only a part of its predecessors. This is not allowed in the Machine Block Placement pass where an assert will go off. I'm removing the assert and making the optimization bail out when such case happens.
Reviewers: wenlei, davidxl, Carrot
Reviewed By: Carrot
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77748
As proposed in D77881, we'll have the related widening operation,
so this name becomes too vague.
While here, change the function signature to take an 'int' rather
than 'size_t' for the scaling factor, add an assert for overflow of
32-bits, and improve the documentation comments.
This is the same as what was done to the CallLoweringInfo in
TargetLowering.h in r309159.
This is just a step on the way to replacing this with CallBase.
I only left it at the interface to ParseConstraints since that
needs updates to other callers in different files. I'll do that
as a follow up.
Differential Revision: https://reviews.llvm.org/D77892
Summary:
This allows us to test each backend pass under the presence
of debug info using pre-existing tests. The tests should not
fail as a result of this so long as it's true that debug info
does not affect CodeGen.
In practice, a few tests are sensitive to this:
* Tests that check the pass structure (e.g. O0-pipeline.ll)
* Tests that check --debug output. Specifically instruction
dumps containing MMO's (e.g. prelegalizercombiner-extends.ll)
* Tests that contain debugify metadata as mir-strip-debug will
remove it (e.g. fastisel-debugvalue-undef.ll)
* Tests with partial debug info (e.g.
patchable-function-entry-empty.mir had debug info but no
!llvm.dbg.cu)
* Tests that check optimization remarks overly strictly (e.g.
prologue-epilogue-remarks.mir)
* Tests that would inject the pass in an unsafe region (e.g.
seqpairspill.mir would inject between register alloc and
virt reg rewriter)
In all cases, the checks can either be updated or
--debugify-and-strip-all-safe=0 can be used to avoid being
affected by something like llvm-lit -Dllc='llc --debugify-and-strip-all-safe'
I tested this without the lost debug locations verifier to
confirm that AArch64 behaviour is unaffected (with the fixes
in this patch) and with it to confirm it finds the problems
without the additional RUN lines we had before.
Depends on D77886, D77887, D77747
Reviewers: aprantl, vsk, bogner
Subscribers: qcolombet, kristof.beyls, hiraditya, danielkiss, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77888
Summary:
A few tests start out with debug info and expect it to reach
the output. For these tests we shouldn't strip the debug info
Reviewers: aprantl, vsk, bogner
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77886
Summary:
Remove usages of asserting vector getters in Type in preparation for the
VectorType refactor. The existence of these functions complicates the
refactor while adding little value.
Reviewers: stoklund, sdesmalen, efriedma
Reviewed By: sdesmalen
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77272
Summary:
At the moment, any changes we make to the passes that can be
injected before/after others (e.g. -verify-machineinstrs and
-print-after-all) have to be duplicated in both
TargetPassConfig (for normal execution, -start-before/
-stop-before/etc) and llc (for -run-pass). Unify this pass
injection into addMachinePrePass/addMachinePostPass that both
TargetPassConfig and llc can use.
Reviewers: vsk, aprantl, bogner
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77887
Summary:
Refactor LiveRangeCalc such that it is now split into two classes
The objective is to split all the "register specific" logic away
from LiveRangeCalc.
The two new classes created are:
- LiveRangeCalc - is meant as a generic class to compute and modify
live ranges in a generic way. This class should deal only with
SlotIndices and VNInfo objects.
- LiveIntervalCals - is meant to be equivalent to the old LiveRangeCalc.
It computes the liveness virtual registers tracked by a LiveInterval
object.
With this refactoring LiveRangeCalc can be used to implement tracking of
liveness of LiveRanges that represent other things than just registers.
Subscribers: MatzeB, qcolombet, mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76584
Remove a number of includes that aren't necessary (nor are we relying on the remaining includes to provide the declarations), we just needed a llvm::Instruction forward declaration.
This exposed a couple of source files that were implicitly replying on the includes for their use of llvm::SmallSet or std::set, requiring local includes to be added there instead.
The change introduces the usage of physical registers for non-gc deopt values.
This require runtime support to know how to take a value from register.
By default usage is off and can be switched on by option.
The change also introduces additional fix-up patch which forces the spilling
of caller saved registers (clobbered after the call) and re-writes statepoint
to use spill slots instead of caller saved registers.
Reviewers: reames, danstrushin
Reviewed By: dantrushin
Subscribers: mgorny, hiraditya, mgrang, llvm-commits
Differential Revision: https://reviews.llvm.org/D77797
Summary:
Removes:
* All LLVM-IR level debug info using StripDebugInfo()
* All debugify metadata
* 'Debug Info Version' module flag
* All (valid*) DEBUG_VALUE MachineInstrs
* All DebugLocs from MachineInstrs
This is a more complete solution than the previous MIRPrinter
option that just causes it to neglect to print debug-locations.
* The qualifier 'valid' is used here because AArch64 emits
an invalid one and tests depend on it
Reviewers: vsk, aprantl, bogner
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77747
The change introduces the usage of physical registers for non-gc deopt values.
This require runtime support to know how to take a value from register.
By default usage is off and can be switched on by option.
The change also introduces additional fix-up patch which forces the spilling
of caller saved registers (clobbered after the call) and re-writes statepoint
to use spill slots instead of caller saved registers.
Reviewers: reames, dantrushin
Reviewed By: reames, dantrushin
Subscribers: mgorny, hiraditya, mgrang, llvm-commits
Differential Revision: https://reviews.llvm.org/D77371
Summary:
There are at least three clients for KnownBits calculations:
ValueTracking, SelectionDAG and GlobalISel. To reduce duplication the
common logic should be moved out of these clients and into KnownBits
itself.
This patch does this for AND, OR and XOR calculations by implementing
and using appropriate operator overloads KnownBits::operator& etc.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74060
Summary:
Preserve call site info for duplicated instructions. We copy over the
call site info in CloneMachineInstrBundle to avoid repeated calls to
copyCallSiteInfo in CloneMachineInstr.
(Alternatively, we could copy call site info higher up the stack, e.g.
into TargetInstrInfo::duplicate, or even into individual backend passes.
However, I don't see how that would be safer or more general than the
current approach.)
Reviewers: aprantl, djtodoro, dstenb
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77685
This is a performance patch that hoists two conditions in DwarfDebug's
validThroughout to avoid a linear-scan of all instructions in a block. We
now exit early if validThrougout will never return true for the variable
location.
The first added clause filters for the two circumstances where
validThroughout will return true. The second added clause should be
identical to the one that's deleted from after the linear-scan.
Differential Revision: https://reviews.llvm.org/D77639
Summary:
This fixes PR45302.
Previously the case
BB1
/ \
| |
TBB FBB
| |
\ /
BB2
was treated as a valid diamond also when TBB and FBB was the same basic
block. This then lead to a failed assertion in IfConvertDiamond.
Since TBB == FBB is quite a degenerated case of a diamond, we now
don't treat it as a valid diamond anymore, and thus we will avoid the
trouble of making IfConvertDiamond handle it correctly.
Reviewers: efriedma, kparzysz
Reviewed By: efriedma
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D77651
Summary:
When narrowing G_IMPLICIT_DEF where the original size is not a multiple
of the narrow size, emit a smaller G_IMPLICIT_DEF and use G_ANYEXT.
To prevent a potential endless loop in the legalizer, the condition
to combine G_ANYEXT(G_IMPLICIT_DEF) is changed from isInstUnsupported
to !isInstLegal, since in this case the combine is only valid if
consequent legalization of the newly combined G_IMPLICIT_DEF does not
introduce G_ANYEXT due to narrowing.
Although this legalization for G_IMPLICIT_DEF would also be valid for
the general case, it actually caused a lot of code regressions when
tried due to superfluous COPYs and combines not getting hit anymore.
Reviewers: dsanders, aemerson, volkan, arsenm, aditya_nandakumar
Reviewed By: arsenm
Subscribers: jvesely, nhaehnle, kerbowa, wdng, rovka, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76598
Summary:
Re-used the IR-level debugify for the most part. The MIR-level code then
adds locations to the MachineInstrs afterwards based on the LLVM-IR debug
info.
It's worth mentioning that the resulting locations make little sense as
the range of line numbers used in a Function at the MIR level exceeds that
of the equivelent IR level function. As such, MachineInstrs can appear to
originate from outside the subprogram scope (and from other subprogram
scopes). However, it doesn't seem worth worrying about as the source is
imaginary anyway.
There's a few high level goals this pass works towards:
* We should be able to debugify our .ll/.mir in the lit tests without
changing the checks and still pass them. I.e. Debug info should not change
codegen. Combining this with a strip-debug pass should enable this. The
main issue I ran into without the strip-debug pass was instructions with MMO's and
checks on both the instruction and the MMO as the debug-location is
between them. I currently have a simple hack in the MIRPrinter to
resolve that but the more general solution is a proper strip-debug pass.
* We should be able to test that GlobalISel does not lose debug info. I
recently found that the legalizer can be unexpectedly lossy in seemingly
simple cases (e.g. expanding one instr into many). I have a verifier
(will be posted separately) that can be integrated with passes that use
the observer interface and will catch location loss (it does not verify
correctness, just that there's zero lossage). It is a little conservative
as the line-0 locations that arise from conflicts do not track the
conflicting locations but it can still catch a fair bit.
Depends on D77439, D77438
Reviewers: aprantl, bogner, vsk
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77446
This removes a call to getScalarType from a bunch of call sites.
It also makes the behavior consistent with SIGN_EXTEND_INREG.
Differential Revision: https://reviews.llvm.org/D77631
These should not be assuming address space 0. Calling getPointerTy is
generally the wrong thing to do, since you should already know the
type from the incoming IR.
RDA sometimes needs to visit blocks twice, to take into account
reaching defs coming in along loop back edges. Currently it handles
repeated visitation the same way as usual, which means that it will
scan through all instructions and their reg unit defs again. Not
only is this very inefficient, it also means that all reaching defs
in loops are going to be inserted twice.
We can do much better than this. The only thing we need to handle
is a new reaching def from a predecessor, which either needs to be
prepended to the reaching definitions (if there was no reaching def
from a predecessor), or needs to replace an existing predecessor
reaching def, if it is more recent. Since D77508 we only store the
most recent predecessor reaching def, so that's the only one that
may need updating.
This also has the nice side-effect that reaching definitions are
now automatically sorted and unique, so drop the llvm::sort() call
in favor of an assertion.
Differential Revision: https://reviews.llvm.org/D77511
An instruction may define the same reg unit multiple times,
avoid inserting the same reaching def multiple times in that case.
Also print the reg unit, rather than the super-register, in the
debug code.
Move the logic whether lowering of deopt value requires a spill slot in
a separate lambda.
Reviewers: reames, dantrushin
Reviewed By: dantrushin
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D77629
Now that we have scalable vectors, there's a distinction that isn't
getting captured in the original SequentialType: some vectors don't have
a known element count, so counting the number of elements doesn't make
sense.
In some cases, there's a better way to express the commonality using
other methods. If we're dealing with GEPs, there's GEP methods; if we're
dealing with a ConstantDataSequential, we can query its element type
directly.
In the relatively few remaining cases, I just decided to write out
the type checks. We're talking about relatively few places, and I think
the abstraction doesn't really carry its weight. (See thread "[RFC]
Refactor class hierarchy of VectorType in the IR" on llvmdev.)
Differential Revision: https://reviews.llvm.org/D75661
Summary:
In lieu of a proper pass that strips debug info, add a way
to omit debug-locations from the MIR output so that
instructions with MMO's continue to match CHECK's when
mir-debugify is used
Reviewers: aprantl, bogner, vsk
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77575
Summary:
To debugify MIR, we need to be able to create metadata and to do that, we
need a non-const Module. However, MachineFunction only had a const reference
to the Function preventing this.
Reviewers: aprantl, bogner
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77439
A global symbol that is defined in a comdat should not generate an alias since
call sites that would've referred to that symbol will refer to their own
independent local aliases rather than the surviving global comdat one. This
could result in something that looks like:
```
ld.lld: error: relocation refers to a discarded section: .text._ZN3fbl8internal18NullFunctionTargetIvJjjPjEED1Ev.stub
>>> defined in user-x64-clang/obj/system/ulib/minfs/libminfs.a(minfs._sources.file.cc.o)
>>> section group signature: _ZN3fbl8internal18NullFunctionTargetIvJjjPjEED1Ev.stub
>>> prevailing definition is in user-x64-clang/obj/system/ulib/minfs/libminfs.a(minfs._sources.vnode.cc.o)
>>> referenced by function.h:169 (../../zircon/system/ulib/fbl/include/fbl/function.h:169)
>>> minfs._sources.file.cc.o:(minfs::File::AllocateAndCommitData(std::__2::unique_ptr<minfs::Transaction, std::__2::default_delete<minfs::Transaction> >)) in archive user-x64-clang/obj/system/ulib/minfs/libminfs.a
```
We ran into this when experimenting with a new C++ ABI for fuchsia
(refer to D72959) which takes relative offsets between comdat'd functions
which is why the normal C++ user wouldn't run into this.
Differential Revision: https://reviews.llvm.org/D77429
Summary:
A bug report mentioned that LLVM was producing jumps off the end of a
function when using "asm goto with outputs". Further digging pointed to
MachineBasicBlocks that had their address taken and were indirect
targets of INLINEASM_BR being removed by BranchFolder, because their
predecessor list was empty, so they appeared to have no entry.
This was a cascading failure caused earlier, during Pre-RA instruction
scheduling. We have a few special cases in Pre-RA instruction scheduling
where we split a MachineBasicBlock in two. This requires careful
handing of predecessor and successor lists for a MachineBasicBlock that
was split, and careful handing of PHI MachineInstrs that referred to the
MachineBasicBlock before it was split.
The clue that led to this fix was the observation that many callers of
MachineBasicBlock::splice() frequently call
MachineBasicBlock::transferSuccessorsAndUpdatePHIs() to update their PHI
nodes after a splice. We don't want to reuse that method, as we have
custom successor transferring logic for this block split.
This patch fixes 2 pre-existing bugs, and adds tests.
The first bug was that MachineBasicBlock::splice() correctly handles
updating most successors and predecessors; we don't need to do anything
more than removing the previous fallthrough block from the first half of
the split block post splice. Previously, we were updating the successor
list incorrectly (updating successors updates predecessors).
The second bug was that PHI nodes that needed registers from the first
half of the split block were not having entries populated. The register
live out information was correct, and the FuncInfo->PHINodesToUpdate was
correct. Specifically, the check in SelectionDAGISel::FinishBasicBlock:
for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
continue;
PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
was `continue`ing because FuncInfo->MBB tracks the second half of
the post-split block; no one was updating PHI entries for the first half
of the post-split block.
SelectionDAGBuilder::UpdateSplitBlock() already expects to perform
special handling for MachineBasicBlocks that were split post calls to
ScheduleDAGSDNodes::EmitSchedule(), so I'm confident that it's both
correct for ScheduleDAGSDNodes::EmitSchedule() to return the second half
of the split block `CopyBB` which updates `FuncInfo->MBB` (ie. the
current MachineBasicBlock being processed), and perform special handling
for this in SelectionDAGBuilder::UpdateSplitBlock().
Reviewers: void, craig.topper, efriedma
Reviewed By: void, efriedma
Subscribers: hfinkel, fhahn, MatzeB, efriedma, hiraditya, llvm-commits, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76961
The previous code used the type of the first field for the VT
passed to getNode for every field.
I've based the implementation here off what is done in visitSelect
as it removes the need to special case aggregates.
Differential Revision: https://reviews.llvm.org/D77093
When entering a basic block, RDA inserts reaching definitions coming
from predecessor blocks (which will be negative numbers) in a rather
peculiar way. If you have incoming reaching definitions -4, -3, -2, -1,
it will insert those. If you have incoming reaching definitions
-1, -2, -3, -4, it will insert -1, -1, -1, -1, as the max is taken
at each step. That's probably not what was intended...
However, RDA only actually cares about the most recent reaching
definition from a predecessor (to calculate clearance), so this
ends up working fine as far as behavior is concerned. It does
waste memory on unnecessary reaching definitions though.
This patch changes the implementation to first compute the most
recent reaching definition in one loop, and then insert only that
one in a separate loop.
Differential Revision: https://reviews.llvm.org/D77508
At the end of a basic block, RDA adjusts all the reaching defs it
found to be relative to the end of the basic block, rather than the
start of it. However, it also does this to registers which don't
have a reaching def, indicated by ReachingDefDefaultVal. This means
that code checking against ReachingDefDefaultVal will not skip them,
and may insert them into the reaching definition list. This is
ultimately harmless, but causes unnecessary work and is logically
not right.
Differential Revision: https://reviews.llvm.org/D77506
Summary:
This patch adds support for emission of following DWARFv5 macro forms
in .debug_macro section.
1. DW_MACRO_start_file
2. DW_MACRO_end_file
3. DW_MACRO_define_strp
4. DW_MACRO_undef_strp.
Reviewed By: dblaikie, ikudrin
Differential Revision: https://reviews.llvm.org/D72828
Summary:
This is a roll forward of D77394 minus AlignmentFromAssumptions (which needs to be addressed separately)
Differences from D77394:
- DebugStr() now prints the alignment value or `None` and no more `Align(x)` or `MaybeAlign(x)`
- This is to keep Warning message consistent (CodeGen/SystemZ/alloca-04.ll)
- Removed a few unneeded headers from Alignment (since it's included everywhere it's better to keep the dependencies to a minimum)
Reviewers: courbet
Subscribers: sdardis, hiraditya, jrtc27, atanasyan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77537
We're ANDing with 1 right after which will cause the SIGN_EXTEND to
be combined to ANY_EXTEND later. Might as well just start with an
ANY_EXTEND.
While there replace create the AND using the getZeroExtendInReg
helper to remove the need to explicitly create the VecOnes constant.
This code is replacing a shift with a new shift on an extended type.
If the shift amount type can't represent the maximum shift amount
for the new type, the amount needs to be extended to a type that
can.
Previously, the code just hardcoded a check for 256 bits which
seems to have been an assumption that the original shift amount
was MVT::i8. But that seems more catered to a specific target
like X86 that uses i8 as its legal shift amount type. Other
targets may use different types.
This commit changes the code to look at the real type of the shift
amount and makes sure it has enough bits for the Log2 of the
new type. There are similar checks to this in SelectionDAGBuilder
and LegalizeIntegerTypes.
Previously line table symbol was represented as `DIE::value_iterator`
inside `DwarfCompileUnit` and subsequent function `intStmtList`
was used to create a local `MCSymbol` to initialize it.
This patch removes `DIE::value_iterator` from `DwarfCompileUnit`
and intoduce `MCSymbol` for representing this units symbol for
`debug_line` section. As a result `applyStmtList` is also modified
to utilize this. Further more a helper function `getLineTableStartSym`
is also introduced to get this symbol, this would be used by clients
which need to access this line table, i.e `debug_macro`.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D77489
The newly-created constant zero will need an extra register to hold it
in the current statepoint lowering implementation. Remove it if there
exists one.
Summary:
D77423 started using a dominator tree in WasmEHPrepare, but we deleted
BBs in `prepareThrows` before we used the domtree in `prepareEHPads`,
and those CFG changes were not reflected in the domtree. This uses
`DomTreeUpdater` to make sure we update the domtree every time we delete
BBs from the CFG. This fixes ubsan/msan/expensive_check errors caught in
LLVM buildbots.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77465
Summary:
When we insert a call to the personality function wrapper
(`_Unwind_CallPersonality`) for a catch pad, we store some necessary
info in `__wasm_lpad_context` struct and pass it. One of the info is the
LSDA address for the function. For this, we insert a call to
`wasm.lsda()`, which will be lowered down to the address of LSDA, and
store it in a field in `__wasm_lpad_context`.
There are exceptions to this personality call insertion: catchpads for
`catch (...)` and cleanuppads (for destructors) don't need personality
function calls, because we don't need to figure out whether the current
exception should be caught or not. (They always should.)
There was a little optimization to `wasm.lsda()` call insertion. Because
the LSDA address is the same throughout a function, we don't need to
insert a store of `wasm.lsda()` return value in every catchpad. For
example:
```
try {
foo();
} catch (int) {
// wasm.lsda() call and a store are inserted here, like, in
// pseudocode,
// %lsda = wasm.lsda();
// store %lsda to a field in __wasm_lpad_context
try {
foo();
} catch (int) {
// We don't need to insert the wasm.lsda() and store again, because
// to arrive here, we have already stored the LSDA address to
// __wasm_lpad_context in the outer catch.
}
}
```
So the previous algorithm checked if the current catch has a parent EH
pad, we didn't insert a call to `wasm.lsda()` and its store.
But this was incorrect, because what if the outer catch is `catch (...)`
or a cleanuppad?
```
try {
foo();
} catch (...) {
// wasm.lsda() call and a store are NOT inserted here
try {
foo();
} catch (int) {
// We need wasm.lsda() here!
}
}
```
In this case we need to insert `wasm.lsda()` in the inner catchpad,
because the outer catchpad does not have one.
To minimize the number of inserted `wasm.lsda()` calls and stores, we
need a way to figure out whether we have encountered `wasm.lsda()` call
in any of EH pads that dominates the current EH pad. To figure that
out, we now visit EH pads in BFS order in the dominator tree so that we
visit parent BBs first before visiting its child BBs in the domtree.
We keep a set named `ExecutedLSDA`, which basically means "Do we have
`wasm.lsda()` either in the current EH pad or any of its parent EH
pads in the dominator tree?". This is to prevent scanning the domtree up
to the root in the worst case every time we examine an EH pad: each EH
pad only needs to examine its immediate parent EH pad.
- If any of its parent EH pads in the domtree has `wasm.lsda()`, this
means we don't need `wasm.lsda()` in the current EH pad. We also insert
the current EH pad in `ExecutedLSDA` set.
- If none of its parent EH pad has `wasm.lsda()`
- If the current EH pad is a `catch (...)` or a cleanuppad, done.
- If the current EH pad is neither a `catch (...)` nor a cleanuppad,
add `wasm.lsda()` and the store in the current EH pad, and add the
current EH pad to `ExecutedLSDA` set.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77423
Summary:
For current architect, we always require setContainingCsect to be
called on every MCSymbol got used in XCOFF context.
This is very hard to achieve because symbols gets created everywhere
and other MCSymbol types(ELF, COFF) do not have similar rules.
It's very easy to miss setting the containing csect, and we would
need to add a lot of XCOFF specialized code around some common code area.
This patch intendeds to do
1. Rely on getFragment().getParent() to get csect from labels.
2. Only use get/setRepresentedCsect (was get/setContainingCsect)
if symbol itself represents a csect.
Reviewers: DiggerLin, hubert.reinterpretcast, daltenty
Differential Revision: https://reviews.llvm.org/D77080
Summary: I think it would be better to require the alignment to be >= 1. It is currently confusing to allow both values.
Reviewers: courbet
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77372
isGCValue should detect whether the deopt value is a GC pointer.
Currently it checks by finding the value in SI.Bases and SI.Ptrs.
However these data structures contain only those values which
have corresponding gc.relocate call. So we can miss GC value if it
does not have gc.relocate call (dead after the call).
Check GC strategy whether pointer is GC one or consider any pointer
to be GC one conservatively.
Reviewers: reames, dantrushin
Reviewed By: reames
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D77130
When compiling AMDGPUDisassembler.cpp in a stage 1 trunk build with
CMAKE_BUILD_TYPE=RelWithDebInfo LLVM_USE_SANITIZER=Address LiveDebugVariables
accounts for 21.5% wall clock time. This fix reduces that to 1.2% by switching
out a linked list lookup with a map lookup.
Note that the linked list is still used to group UserValues by vreg. The vreg
lookups don't cause any problems in this pathological case.
This is the same idea as D68816, which was reverted, except that it is a less
intrusive fix.
Reviewed By: vsk
Differential Revision: https://reviews.llvm.org/D77226
The legalizer has a tendency to lose DebugLoc's when expanding or
combining instructions. The verifier that detected these isn't ready
for upstreaming yet but this patch fixes the cases that came up when
applying it to our out-of-tree backend's CodeGen tests.
This pattern comes up a few more times in this file and probably in
the backends too but I'd prefer to fix the others separately (and
preferably when the lost-location verifier detects them).
Summary:
Currently, the comparison argument used for ATOMIC_CMP_XCHG is legalised
with GetPromotedInteger, which leaves the upper bits of the value
undefind. Since this is used for comparing in an LR/SC loop with a
full-width comparison, we must sign extend it. We introduce a new
getExtendForAtomicCmpSwapArg to complement getExtendForAtomicOps, since
many targets have compare-and-swap instructions (or pseudos) that
correctly handle an any-extend input, and the existing function
determines the extension of the result, whereas we are concerned with
the input.
This is related to https://reviews.llvm.org/D58829, which solved the
issue for ATOMIC_CMP_SWAP_WITH_SUCCESS, but not the simpler
ATOMIC_CMP_SWAP.
Reviewers: asb, lenary, efriedma
Reviewed By: asb
Subscribers: arichardson, hiraditya, rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, jfb, PkmX, jocewei, psnobl, benna, Jim, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, evandro, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74453
Currently, DAG combiner uses (fmul (rsqrt x) x) to estimate square
root of x. However, this method would return NaN if x is +Inf, which
is incorrect.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D76853
Summary: These were templated due to SelectionDAG using int masks for shuffles and IR using unsigned masks for shuffles. But now that D72467 has landed we have an int mask version of IRBuilder::CreateShuffleVector. So just use int instead of a template
Reviewers: spatel, efriedma, RKSimon
Reviewed By: efriedma
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D77183
Instead, represent the mask as out-of-line data in the instruction. This
should be more efficient in the places that currently use
getShuffleVector(), and paves the way for further changes to add new
shuffles for scalable vectors.
This doesn't change the syntax in textual IR. And I don't currently plan
to change the bitcode encoding in this patch, although we'll probably
need to do something once we extend shufflevector for scalable types.
I expect that once this is finished, we can then replace the raw "mask"
with something more appropriate for scalable vectors. Not sure exactly
what this looks like at the moment, but there are a few different ways
we could handle it. Maybe we could try to describe specific shuffles.
Or maybe we could define it in terms of a function to convert a fixed-length
array into an appropriate scalable vector, using a "step", or something
like that.
Differential Revision: https://reviews.llvm.org/D72467
The attached test case is simplified from tcmalloc. Both function calls should be optimized as tailcall. But llvm can only optimize the first call. The second call can't be optimized because function dupRetToEnableTailCallOpts failed to duplicate ret into block case2.
There 2 problems blocked the duplication:
1 Intrinsic call llvm.assume is not handled by dupRetToEnableTailCallOpts.
2 The control flow is more complex than expected, dupRetToEnableTailCallOpts can only duplicate ret into its predecessor, but here we have an intermediate block between call and ret.
The solutions:
1 Since CodeGenPrepare is already at the end of LLVM IR phase, we can simply delete the intrinsic call to llvm.assume.
2 A general solution to the complex control flow is hard, but for this case, after exit2 is duplicated into case1, exit2 is the only successor of exit1 and exit1 is the only predecessor of exit2, so they can be combined through eliminateFallThrough. But this function is called too late, there is no more dupRetToEnableTailCallOpts after it. We can add an earlier call to eliminateFallThrough to solve it.
Differential Revision: https://reviews.llvm.org/D76539
Summary:
In method SelectionDAGBuilder::LowerStatepoint, array SI.GCTransitionArgs
is initialized from wrong part of ImmutableStatepoint class.
We copy gc args instead of transitions args.
Reviewers: reames, skatkov
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77075