This isn't really usable, and requires using the
-amdgpu-fixed-function-abi flag to work.
Assumes a uniform call target, and will hit a verifier error if the
call target ends up in a VGPR. Also doesn't attempt to do anything
sensible for the reported register/stack usage.
This patch allows ISD::FSHR(i32) patterns to lower to ALIGNBIT instructions.
This improves test coverage of ISD::FSHR matching - x86 has both FSHL/FSHR instructions and we prefer FSHL by default.
Differential Revision: https://reviews.llvm.org/D76070
This avoids regressions in a future patch. I'm confused by the use of
the gfx9 usage legacy_mad. Was this a pointless instruction rename, or
uses fmul_legacy handling? Why is regular mac avilable in that case?
Summary:
Instruction variants like S_MOV_B32_term should have the same SchedRW
class as the base instruction, S_MOV_B32. This probably doesn't make any
difference in practice because as terminators, they'll always be
scheduled at the end of a basic block, but it's simply more correct than
giving them all the default SchedRW class of Write32Bit, which implies a
VALU operation.
Reviewers: rampitec, arsenm, nhaehnle
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75860
The division expansions in AMDGPUCodeGenPrepare can't be relied on for
correctness, since they punt to later optimization and possibly
legalization in some cases. We still need a way to be able to write
tests for the legalizer versions of the expansion. This is mostly for
GlobalISel, since the expected optimzations is expecting aren't
implemented.
The interaction with the flag to expand 64-bit division in the IR is
pretty confusing, but these flags have different purposes.
Also greatly improve i64 lowering. LegalizeIntegerTypes does the
correct narrowing if i64 isn't legal. Just workaround this for
SelectionDAG by making i64 legal and splitting in the patterns.
Summary:
SIInstrInfo::expandPostRAPseudo converts ENTER_WWM in-place into an
S_OR_SAVEEXEC instruction that needs certain implicit operands. Without
this patch I get errors like this that make it harder to use -stop-after
to bisect the pass pipeline:
$ llc -march=amdgcn test/CodeGen/AMDGPU/wqm.ll -stop-after=postrapseudos -o - | sed -E 's/ (from|into) custom "TargetCustom[0-9]+"//' | llc -march=amdgcn -x=mir
error: <stdin>:1295:70: missing implicit register operand 'implicit-def $scc'
renamable $sgpr2_sgpr3 = S_OR_SAVEEXEC_B64 -1, implicit-def $exec
^
Note that this error is currently only generated by MIParser but it
comes with a FIXME comment:
// FIXME: Move the implicit operand verification to the machine verifier.
Reviewers: critson, arsenm, rampitec, nhaehnle
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74428
Really the intrinsic definition is wrong, but work around this
here. The DAG lowering introduces an MMO. We have to introduce a new
operation to avoid the verifier complaining about the missing mayLoad.
Use cmp ord instead of cmp_class compared to the DAG version for the
nan check, but mostly try to match the existsing pattern.
I think the sign doesn't matter for fract, so we could do a little
better with the source modifier matching.
I think this is also still broken as in D22898, but I'm leaving it
as-is for now while I don't have an SI system to test on.
Try out using combine definition rules.
This really should be a post-legalizer combine, but the combiner pass
is currently pre-legalize. Most of the target combines are really
post-legalize, so we should probably move the pass.
Trivial type predicates should be moved into the tablegen pattern
itself, and not checked inside complex patterns. This eliminates a
redundant complex pattern, and fixes select source modifiers for
GlobalISel.
I have further patches which fully handle select in tablegen and
remove all of the C++ selection, although it requires the ugliness to
support the entire range of legal register types.
Use intermediate instructions, unlike with buffer stores. This is
necessary because of the need to have an internal way to distinguish
between signed and unsigned extloads. This introduces some duplication
and near duplication with the buffer store selection path. The store
handling should maybe be moved into legalization to match and
eliminate the duplication.
I'm mildly worried about potentially reordering exp/exp_done with
IntrWriteMem on the intrinsic.
Requires hacking out the illegal type on SI, so manually select that
case during lowering.
The existing test only covered one case for r600. The use of
mul_legacy also looks suspicious to me, but leave it for now. The
patterns are also not making use of source modifiers.
Custom lower this to a target instruction with the merge operands. I
think it might be better to directly select this and emit a
REG_SEQUENCE, but this would be more work since it would require
splitting the tablegen patterns for these cases from the other
atomics.
We define mov/update dpp intrinsics as overloaded but do not
support i64, which is a practically useful type. Fix the
selection and lowering.
Differential Revision: https://reviews.llvm.org/D68673
llvm-svn: 374910
Allows targets to introduce regbankselectable
pseudo-instructions. Currently the closet feature to this is an
intrinsic. However this requires creating a public intrinsic
declaration. This litters the public intrinsic namespace with
operations we don't necessarily want to expose to IR producers, and
would rather leave as private to the backend.
Use a new instruction bit. A previous attempt tried to keep using enum
value ranges, but it turned into a mess.
llvm-svn: 373937
This reverts r372314, reapplying r372285 and the commits which depend
on it (r372286-r372293, and r372296-r372297)
This was missing one switch to getTargetConstant in an untested case.
llvm-svn: 372338
This broke the Chromium build, causing it to fail with e.g.
fatal error: error in backend: Cannot select: t362: v4i32 = X86ISD::VSHLI t392, Constant:i8<15>
See llvm-commits thread of r372285 for details.
This also reverts r372286, r372287, r372288, r372289, r372290, r372291,
r372292, r372293, r372296, and r372297, which seemed to depend on the
main commit.
> Encode them directly as an imm argument to G_INTRINSIC*.
>
> Since now intrinsics can now define what parameters are required to be
> immediates, avoid using registers for them. Intrinsics could
> potentially want a constant that isn't a legal register type. Also,
> since G_CONSTANT is subject to CSE and legalization, transforms could
> potentially obscure the value (and create extra work for the
> selector). The register bank of a G_CONSTANT is also meaningful, so
> this could throw off future folding and legalization logic for AMDGPU.
>
> This will be much more convenient to work with than needing to call
> getConstantVRegVal and checking if it may have failed for every
> constant intrinsic parameter. AMDGPU has quite a lot of intrinsics wth
> immarg operands, many of which need inspection during lowering. Having
> to find the value in a register is going to add a lot of boilerplate
> and waste compile time.
>
> SelectionDAG has always provided TargetConstant for constants which
> should not be legalized or materialized in a register. The distinction
> between Constant and TargetConstant was somewhat fuzzy, and there was
> no automatic way to force usage of TargetConstant for certain
> intrinsic parameters. They were both ultimately ConstantSDNode, and it
> was inconsistently used. It was quite easy to mis-select an
> instruction requiring an immediate. For SelectionDAG, start emitting
> TargetConstant for these arguments, and using timm to match them.
>
> Most of the work here is to cleanup target handling of constants. Some
> targets process intrinsics through intermediate custom nodes, which
> need to preserve TargetConstant usage to match the intrinsic
> expectation. Pattern inputs now need to distinguish whether a constant
> is merely compatible with an operand or whether it is mandatory.
>
> The GlobalISelEmitter needs to treat timm as a special case of a leaf
> node, simlar to MachineBasicBlock operands. This should also enable
> handling of patterns for some G_* instructions with immediates, like
> G_FENCE or G_EXTRACT.
>
> This does include a workaround for a crash in GlobalISelEmitter when
> ARM tries to uses "imm" in an output with a "timm" pattern source.
llvm-svn: 372314