Commit Graph

68 Commits

Author SHA1 Message Date
Anna Welker a6d3bec83f [TTI][ARM][MVE] Refine gather/scatter cost model
Refines the gather/scatter cost model, but also changes the TTI
function getIntrinsicInstrCost to accept an additional parameter
which is needed for the gather/scatter cost evaluation.
This did require trivial changes in some non-ARM backends to
adopt the new parameter.
Extending gathers and truncating scatters are now priced cheaper.

Differential Revision: https://reviews.llvm.org/D75525
2020-03-11 10:23:41 +00:00
David Green 362d00e051 [ARM][VecReduce] Force expand vector_reduce_fmin
Under MVE, we do not have any lowering for fminimum, which a
vector_reduce_fmin without NoNan will be expanded into. As with the
other recent patches, force this to expand in the pre-isel pass. Note
that Neon lowering would be OK because the scalar fminimum uses the
vector VMIN instruction, but is probably better to just rely on the
scalar operations, which is what is done here.

Also fixes what appears to be the reversal of INF vs -INF in the
vector_reduce_fmin widening code.
2020-02-04 09:36:59 +00:00
Nikita Popov 1cc4f8d172 [ARM] Expand vector reduction intrinsics on soft float
Followup to D73135. If the target doesn't have hard float (default
for ARM), then we assert when trying to soften the result of vector
reduction intrinsics. This patch marks these for expansion as well.
(A bit odd to use vectors on a target without hard float ... but
that's where you end up if you expose target-independent vector types.)

Differential Revision: https://reviews.llvm.org/D73854
2020-02-03 18:49:12 +01:00
Nikita Popov 70d345e687 [AArch64][ARM] Always expand ordered vector reductions (PR44600)
fadd/fmul reductions without reassoc are lowered to
VECREDUCE_STRICT_FADD/FMUL nodes, which don't have legalization
support. Until that is in place, expand these intrinsics on
ARM and AArch64. Other targets always expand the vector reduction
intrinsics.

Additionally expand fmax/fmin reductions without nonan flag on
AArch64, as the backend asserts that the flag is present when
lowering VECREDUCE_FMIN/FMAX.

This fixes https://bugs.llvm.org/show_bug.cgi?id=44600.

Differential Revision: https://reviews.llvm.org/D73135
2020-01-30 18:40:24 +01:00
David Green e9c198278e [ARM] Basic gather scatter cost model
This is a very basic MVE gather/scatter cost model, based roughly on the
code that we will currently produce. It does not handle truncating
scatters or extending gathers correctly yet, as it is difficult to tell
that they are going to be correctly extended/truncated from the limited
information in the cost function.

This can be improved as we extend support for these in the future.

Based on code originally written by David Sherwood.

Differential Revision: https://reviews.llvm.org/D73021
2020-01-22 14:41:38 +00:00
Anna Welker ff9877ce34 [ARM][MVE] Enable masked scatter
Extends the gather/scatter pass in MVEGatherScatterLowering.cpp to
enable the transformation of masked scatters into calls to MVE's masked
scatter intrinsic.

Differential Revision: https://reviews.llvm.org/D72856
2020-01-21 09:46:26 +00:00
David Green 5e51f75542 [ARM] Favour post inc for MVE loops
We were previously not necessarily favouring postinc for the MVE loads
and stores, leading to extra code prior to the loop to set up the
preinc. MVE in general can benefit from postinc (as we don't have
unrolled loops), and certain instructions like the VLD2's only post-inc
versions are available.

Differential Revision: https://reviews.llvm.org/D70790
2020-01-20 06:57:07 +00:00
Anna Welker 346f6b54bd [ARM][MVE] Enable masked gathers from vector of pointers
Adds a pass to the ARM backend that takes a v4i32
gather and transforms it into a call to MVE's
masked gather intrinsics.

Differential Revision: https://reviews.llvm.org/D71743
2020-01-08 13:43:12 +00:00
David Green fb8c9a339a [ARM] Use isFMAFasterThanFMulAndFAdd for scalars as well as MVE vectors
This adds extra scalar handling to isFMAFasterThanFMulAndFAdd, allowing
the target independent code to handle more folds in more situations (for
example if the fast math flags are present, but the global
AllowFPOpFusion option isnt). It also splits apart the HasSlowFPVMLx
into HasSlowFPVFMx, to allow VFMA and VMLA to be controlled separately
if needed.

Differential Revision: https://reviews.llvm.org/D72139
2020-01-05 11:24:04 +00:00
Anna Welker 7cd1cfdd6b [NFC][TTI] Add Alignment for isLegalMasked[Gather/Scatter]
Add an extra parameter so alignment can be taken under
consideration in gather/scatter legalization.

Differential Revision: https://reviews.llvm.org/D71610
2019-12-18 09:14:39 +00:00
Reid Kleckner 85ba5f637a Rename TTI::getIntImmCost for instructions and intrinsics
Soon Intrinsic::ID will be a plain integer, so this overload will not be
possible.

Rename both overloads to ensure that downstream targets observe this as
a build failure instead of a runtime failure.

Split off from D71320

Reviewers: efriedma

Differential Revision: https://reviews.llvm.org/D71381
2019-12-11 18:00:20 -08:00
David Green be7a107070 [ARM] Teach the Arm cost model that a Shift can be folded into other instructions
This attempts to teach the cost model in Arm that code such as:
  %s = shl i32 %a, 3
  %a = and i32 %s, %b
Can under Arm or Thumb2 become:
  and r0, r1, r2, lsl #3

So the cost of the shift can essentially be free. To do this without
trying to artificially adjust the cost of the "and" instruction, it
needs to get the users of the shl and check if they are a type of
instruction that the shift can be folded into. And so it needs to have
access to the actual instruction in getArithmeticInstrCost, which if
available is added as an extra parameter much like getCastInstrCost.

We otherwise limit it to shifts with a single user, which should
hopefully handle most of the cases. The list of instruction that the
shift can be folded into include ADC, ADD, AND, BIC, CMP, EOR, MVN, ORR,
ORN, RSB, SBC and SUB. This translates to Add, Sub, And, Or, Xor and
ICmp.

Differential Revision: https://reviews.llvm.org/D70966
2019-12-09 10:24:33 +00:00
Carey Williams 76fd58d0fe Revert "[ARM] Allocatable Global Register Variables for ARM"
This reverts commit 2d739f98d8.
2019-11-29 17:01:05 +00:00
Anna Welker 2d739f98d8 [ARM] Allocatable Global Register Variables for ARM
Provides support for using r6-r11 as globally scoped
      register variables. This requires a -ffixed-rN flag
      in order to reserve rN against general allocation.

      If for a given GRV declaration the corresponding flag
      is not found, or the the register in question is the
      target's FP, we fail with a diagnostic.

      Differential Revision: https://reviews.llvm.org/D68862
2019-11-18 10:07:37 +00:00
Sjoerd Meijer 6c2a4f5ff9 [TTI][LV] preferPredicateOverEpilogue
We have two ways to steer creating a predicated vector body over creating a
scalar epilogue. To force this, we have 1) a command line option and 2) a
pragma available. This adds a third: a target hook to TargetTransformInfo that
can be queried whether predication is preferred or not, which allows the
vectoriser to make the decision without forcing it.

While this change behaves as a non-functional change for now, it shows the
required TTI plumbing, usage of this new hook in the vectoriser, and the
beginning of an ARM MVE implementation. I will follow up on this with:
- a complete MVE implementation, see D69845.
- a patch to disable this, i.e. we should respect "vector_predicate(disable)"
  and its corresponding loophint.

Differential Revision: https://reviews.llvm.org/D69040
2019-11-06 10:14:20 +00:00
Guillaume Chatelet a4783ef58d [Alignment][NFC] getMemoryOpCost uses MaybeAlign
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Reviewers: courbet

Subscribers: nemanjai, hiraditya, kbarton, MaskRay, jsji, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D69307
2019-10-25 21:26:59 +02:00
Sam Parker 8e6a638c74 [ARM][MVE] Enable truncating masked stores
Allow us to generate truncating masked store which take v4i32 and
v8i16 vectors and can store to v4i8, v4i16 and v8i8 and memory.
Removed support for unaligned masked stores.

Differential Revision: https://reviews.llvm.org/D68461

llvm-svn: 375108
2019-10-17 12:11:18 +00:00
Sam Parker 527a35e155 [NFC][TTI] Add Alignment for isLegalMasked[Load/Store]
Add an extra parameter so the backend can take the alignment into
consideration.

Differential Revision: https://reviews.llvm.org/D68400

llvm-svn: 374763
2019-10-14 10:00:21 +00:00
Zi Xuan Wu 9802268ad3 recommit: [LoopVectorize][PowerPC] Estimate int and float register pressure separately in loop-vectorize
In loop-vectorize, interleave count and vector factor depend on target register number. Currently, it does not
estimate different register pressure for different register class separately(especially for scalar type,
float type should not be on the same position with int type), so it's not accurate. Specifically,
it causes too many times interleaving/unrolling, result in too many register spills in loop body and hurting performance.

So we need classify the register classes in IR level, and importantly these are abstract register classes,
and are not the target register class of backend provided in td file. It's used to establish the mapping between
the types of IR values and the number of simultaneous live ranges to which we'd like to limit for some set of those types.

For example, POWER target, register num is special when VSX is enabled. When VSX is enabled, the number of int scalar register is 32(GPR),
float is 64(VSR), but for int and float vector register both are 64(VSR). So there should be 2 kinds of register class when vsx is enabled,
and 3 kinds of register class when VSX is NOT enabled.

It runs on POWER target, it makes big(+~30%) performance improvement in one specific bmk(503.bwaves_r) of spec2017 and no other obvious degressions.

Differential revision: https://reviews.llvm.org/D67148

llvm-svn: 374634
2019-10-12 02:53:04 +00:00
Jinsong Ji 9912232b46 Revert "[LoopVectorize][PowerPC] Estimate int and float register pressure separately in loop-vectorize"
Also Revert "[LoopVectorize] Fix non-debug builds after rL374017"

This reverts commit 9f41deccc0.
This reverts commit 18b6fe07bc.

The patch is breaking PowerPC internal build, checked with author, reverting
on behalf of him for now due to timezone.

llvm-svn: 374091
2019-10-08 17:32:56 +00:00
Zi Xuan Wu 9f41deccc0 [LoopVectorize][PowerPC] Estimate int and float register pressure separately in loop-vectorize
In loop-vectorize, interleave count and vector factor depend on target register number. Currently, it does not
estimate different register pressure for different register class separately(especially for scalar type,
float type should not be on the same position with int type), so it's not accurate. Specifically,
it causes too many times interleaving/unrolling, result in too many register spills in loop body and hurting performance.

So we need classify the register classes in IR level, and importantly these are abstract register classes,
and are not the target register class of backend provided in td file. It's used to establish the mapping between
the types of IR values and the number of simultaneous live ranges to which we'd like to limit for some set of those types.

For example, POWER target, register num is special when VSX is enabled. When VSX is enabled, the number of int scalar register is 32(GPR),
float is 64(VSR), but for int and float vector register both are 64(VSR). So there should be 2 kinds of register class when vsx is enabled,
and 3 kinds of register class when VSX is NOT enabled.

It runs on POWER target, it makes big(+~30%) performance improvement in one specific bmk(503.bwaves_r) of spec2017 and no other obvious degressions.

Differential revision: https://reviews.llvm.org/D67148

llvm-svn: 374017
2019-10-08 03:28:33 +00:00
David Green b325c05732 [ARM] Masked loads and stores
Masked loads and store fit naturally with MVE, the instructions being easily
predicated. This adds lowering for the simple cases of masked loads and stores.
It does not yet deal with widening/narrowing or pre/post inc, and so is
currently behind an option.

The llvm masked load intrinsic will accept a "passthru" value, dictating the
values used for the zero masked lanes. In MVE the instructions write 0 to the
zero predicated lanes, so we need to match a passthru that isn't 0 (or undef)
with a select instruction to pull in the correct data after the load.

Differential Revision: https://reviews.llvm.org/D67186

llvm-svn: 371932
2019-09-15 14:14:47 +00:00
David Green 8469a39af3 [ARM] Remove MVE masked loads/stores
These were never enabled correctly and are causing other problems. Taking them
out for the moment, whilst we work on the issues.

This reverts r370329.

llvm-svn: 370607
2019-09-01 10:11:40 +00:00
David Green 942c2e3795 [ARM] MVE Masked loads and stores
Masked loads and store fit naturally with MVE, the instructions being easily
predicated. This adds lowering for the simple cases of masked loads and stores.
It does not yet deal with widening/narrowing or pre/post inc.

The llvm masked load intrinsic will accept a "passthru" value, dictating the
values used for the zero masked lanes. In MVE the instructions write 0 to the
zero predicated lanes, so we need to match a passthru that isn't 0 (or undef)
with a select instruction to pull in the correct data after the load.

We also need to do something with unaligned loads/stores. Currently this uses a
similar method used in big endian, using an VLDRB.8 (and potentially a VREV in
BE). This does mean that the predicate mask is converted from, for example, a
v4i1 to a v16i1. The VLDR instructions are defined as using the first bit of
the relevant mask lane, so this could potentially load different results if the
predicate is little odd. As the input is a v4i1 however, I believe this is OK
and all the bits required should be set in the predicate, making the VLDRB.8
load the same data.

Differential Revision: https://reviews.llvm.org/D66534

llvm-svn: 370329
2019-08-29 10:54:35 +00:00
Sam Tebbs f312c1ecf4 [ARM] Add support for MVE vaddv
This patch adds vecreduce_add and the relevant instruction selection for
vaddv.

Differential revision: https://reviews.llvm.org/D66085

llvm-svn: 369245
2019-08-19 09:38:28 +00:00
David Green 44f8d635e2 [ARM] Permit auto-vectorization using MVE
With enough codegen complete, we can now correctly report the number and size
of vector registers for MVE, allowing auto vectorisation. This also allows FP
auto-vectorization for MVE without -Ofast/-ffast-math, due to support for IEEE
FP arithmetic and parity between scalar and vector FP behaviour.

Patch by David Sherwood.

Differential Revision: https://reviews.llvm.org/D63728

llvm-svn: 368529
2019-08-11 08:42:57 +00:00
Chen Zheng c5b918de58 [NFC] move some hardware loop checking code to a common place for other using.
Differential Revision: https://reviews.llvm.org/D63478

llvm-svn: 363758
2019-06-19 01:26:31 +00:00
Sam Parker 757ac02dc8 [ARM] Implement TTI::isHardwareLoopProfitable
Implement the backend target hook to drive the HardwareLoops pass.
The low-overhead branch extension for Arm M-class cores is flexible
enough that we don't have to ensure correctness at this point, except
checking that the loop counter variable can be stored in LR - a
32-bit register. For it to be profitable, we want to avoid loops that
contain function calls, or any other instruction that alters the PC.
    
This implementation uses TargetLoweringInfo, to query type and
operation actions, looks at intrinsic calls and also performs some
manual checks for remainder/division and FP operations.
    
I think this should be a good base to start and extra details can be
filled out later.

Differential Revision: https://reviews.llvm.org/D62907

llvm-svn: 363149
2019-06-12 12:00:42 +00:00
Simon Tatham 760df47b77 [ARM] Replace fp-only-sp and d16 with fp64 and d32.
Those two subtarget features were awkward because their semantics are
reversed: each one indicates the _lack_ of support for something in
the architecture, rather than the presence. As a consequence, you
don't get the behavior you want if you combine two sets of feature
bits.

Each SubtargetFeature for an FP architecture version now comes in four
versions, one for each combination of those options. So you can still
say (for example) '+vfp2' in a feature string and it will mean what
it's always meant, but there's a new string '+vfp2d16sp' meaning the
version without those extra options.

A lot of this change is just mechanically replacing positive checks
for the old features with negative checks for the new ones. But one
more interesting change is that I've rearranged getFPUFeatures() so
that the main FPU feature is appended to the output list *before*
rather than after the features derived from the Restriction field, so
that -fp64 and -d32 can override defaults added by the main feature.

Reviewers: dmgreen, samparker, SjoerdMeijer

Subscribers: srhines, javed.absar, eraman, kristof.beyls, hiraditya, zzheng, Petar.Avramovic, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D60691

llvm-svn: 361845
2019-05-28 16:13:20 +00:00
Sjoerd Meijer ea31ddb36f [ARM] Implement TTI::getMemcpyCost
This implements TargetTransformInfo method getMemcpyCost, which estimates the
number of instructions to which a memcpy instruction expands to.

Differential Revision: https://reviews.llvm.org/D59787

llvm-svn: 359547
2019-04-30 10:28:50 +00:00
Evandro Menezes 85bd3978ae [IR] Refactor attribute methods in Function class (NFC)
Rename the functions that query the optimization kind attributes.

Differential revision: https://reviews.llvm.org/D60287

llvm-svn: 357731
2019-04-04 22:40:06 +00:00
Sam Parker 67756c09f2 [LSR] Generate cross iteration indexes
Modify GenerateConstantOffsetsImpl to create offsets that can be used
by indexed addressing modes. If formulae can be generated which
result in the constant offset being the same size as the recurrence,
we can generate a pre-indexed access. This allows the pointer to be
updated via the single pre-indexed access so that (hopefully) no
add/subs are required to update it for the next iteration. For small
cores, this can significantly improve performance DSP-like loops.

Differential Revision: https://reviews.llvm.org/D55373

llvm-svn: 353403
2019-02-07 13:32:54 +00:00
Chandler Carruth 2946cd7010 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00
Dorit Nuzman 34da6dd696 [LV] Support vectorization of interleave-groups that require an epilog under
optsize using masked wide loads 

Under Opt for Size, the vectorizer does not vectorize interleave-groups that
have gaps at the end of the group (such as a loop that reads only the even
elements: a[2*i]) because that implies that we'll require a scalar epilogue
(which is not allowed under Opt for Size). This patch extends the support for
masked-interleave-groups (introduced by D53011 for conditional accesses) to
also cover the case of gaps in a group of loads; Targets that enable the
masked-interleave-group feature don't have to invalidate interleave-groups of
loads with gaps; they could now use masked wide-loads and shuffles (if that's
what the cost model selects).

Reviewers: Ayal, hsaito, dcaballe, fhahn

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D53668

llvm-svn: 345705
2018-10-31 09:57:56 +00:00
Dorit Nuzman 38bbf81ade recommit 344472 after fixing build failure on ARM and PPC.
llvm-svn: 344475
2018-10-14 08:50:06 +00:00
Dorit Nuzman 5118c68cde revert 344472 due to failures.
llvm-svn: 344473
2018-10-14 07:21:20 +00:00
Dorit Nuzman 8174368955 [IAI,LV] Add support for vectorizing predicated strided accesses using masked
interleave-group

The vectorizer currently does not attempt to create interleave-groups that
contain predicated loads/stores; predicated strided accesses can currently be
vectorized only using masked gather/scatter or scalarization. This patch makes
predicated loads/stores candidates for forming interleave-groups during the
Loop-Vectorizer's analysis, and adds the proper support for masked-interleave-
groups to the Loop-Vectorizer's planning and transformation stages. The patch
also extends the TTI API to allow querying the cost of masked interleave groups
(which each target can control); Targets that support masked vector loads/
stores may choose to enable this feature and allow vectorizing predicated
strided loads/stores using masked wide loads/stores and shuffles.

Reviewers: Ayal, hsaito, dcaballe, fhahn, javed.absar

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D53011

llvm-svn: 344472
2018-10-14 07:06:16 +00:00
Bernard Ogden b828bb2a15 [ARM/AArch64] Support FP16 +fp16fml instructions
Add +fp16fml feature for new FP16 instructions, which are a
mandatory part of FP16 from v8.4-A and an optional part of FP16
from v8.2-A. It doesn't seem to be possible to model this in
LLVM, but the relationship between the options is handled by
the related clang patch.

In keeping with what I think is the usual practice, the fp16fml
extension is accepted regardless of base architecture version.

Builds on/replaces Sjoerd Meijer's patch to add these instructions at
https://reviews.llvm.org/D49839.

Differential Revision: https://reviews.llvm.org/D50228

llvm-svn: 340013
2018-08-17 11:29:49 +00:00
Fangrui Song f78650a8de Remove trailing space
sed -Ei 's/[[:space:]]+$//' include/**/*.{def,h,td} lib/**/*.{cpp,h}

llvm-svn: 338293
2018-07-30 19:41:25 +00:00
Eli Friedman 39ed9a602b [Inliner] Restrict soft-float inlining penalty.
The penalty is currently getting applied in a bunch of places where it
doesn't make sense, like bitcasts (which are free) and calls (which
were getting the call penalty applied twice). Instead, just apply the
penalty to binary operators and floating-point casts.

While I'm here, also fix getFPOpCost() to do the right thing in more
cases, so we don't have to dig into function attributes.

Differential Revision: https://reviews.llvm.org/D41522

llvm-svn: 321332
2017-12-22 02:08:08 +00:00
Eugene Zelenko 076468c0d0 [ARM] Fix some Clang-tidy modernize-use-using and Include What You Use warnings; other minor fixes (NFC).
llvm-svn: 313823
2017-09-20 21:35:51 +00:00
Sam Parker 19a08e42a8 [ARM] Enable partial and runtime unrolling
Enable runtime and partial loop unrolling of simple loops without
calls on M-class cores. The thresholds are calculated based on
whether the target is Thumb or Thumb-2.

Differential Revision: https://reviews.llvm.org/D34619

llvm-svn: 308956
2017-07-25 08:51:30 +00:00
Florian Hahn 4adcfcf1d6 [ARM] Inline callee if its target-features are a subset of the caller
Summary:
Similar to X86, it should be safe to inline callees if their
target-features are a subset of the caller. As some subtarget features
provide different instructions depending on whether they are set or
unset (e.g. ThumbMode and ModeSoftFloat), we use a whitelist of
target-features describing hardware capabilities only.

Reviewers: kristof.beyls, rengolin, t.p.northover, SjoerdMeijer, peter.smith, silviu.baranga, efriedma

Reviewed By: SjoerdMeijer, efriedma

Subscribers: dschuff, efriedma, aemerson, sdardis, javed.absar, arichardson, eraman, llvm-commits

Differential Revision: https://reviews.llvm.org/D34697

llvm-svn: 307889
2017-07-13 08:26:17 +00:00
Daniel Neilson c0112ae8da Const correctness for TTI::getRegisterBitWidth
Summary: The method TargetTransformInfo::getRegisterBitWidth() is declared const, but the type erasing implementation classes (TargetTransformInfo::Concept & TargetTransformInfo::Model) that were introduced by Chandler in https://reviews.llvm.org/D7293 do not have the method declared const. This is an NFC to tidy up the const consistency between TTI and its implementation.

Reviewers: chandlerc, rnk, reames

Reviewed By: reames

Subscribers: reames, jfb, arsenm, dschuff, nemanjai, nhaehnle, javed.absar, sbc100, jgravelle-google, llvm-commits

Differential Revision: https://reviews.llvm.org/D33903

llvm-svn: 305189
2017-06-12 14:22:21 +00:00
Jonas Paulsson fccc7d66c3 [SystemZ] TargetTransformInfo cost functions implemented.
getArithmeticInstrCost(), getShuffleCost(), getCastInstrCost(),
getCmpSelInstrCost(), getVectorInstrCost(), getMemoryOpCost(),
getInterleavedMemoryOpCost() implemented.

Interleaved access vectorization enabled.

BasicTTIImpl::getCastInstrCost() improved to check for legal extending loads,
in which case the cost of the z/sext instruction becomes 0.

Review: Ulrich Weigand, Renato Golin.
https://reviews.llvm.org/D29631

llvm-svn: 300052
2017-04-12 11:49:08 +00:00
Jonas Paulsson 8e2f948ef0 [TargetTransformInfo] Refactor and improve getScalarizationOverhead()
Refactoring to remove duplications of this method.

New method getOperandsScalarizationOverhead() that looks at the present unique
operands and add extract costs for them. Old behaviour was to just add extract
costs for one operand of the type always, which still happens in
getArithmeticInstrCost() if no operands are provided by the caller.

This is a good start of improving on this, but there are more places
that can be improved by using getOperandsScalarizationOverhead().

Review: Hal Finkel
https://reviews.llvm.org/D29017

llvm-svn: 293155
2017-01-26 07:03:25 +00:00
Mohammed Agabaria 2c96c43388 [X86] updating TTI costs for arithmetic instructions on X86\SLM arch.
updated instructions:
pmulld, pmullw, pmulhw, mulsd, mulps, mulpd, divss, divps, divsd, divpd, addpd and subpd.

special optimization case which replaces pmulld with pmullw\pmulhw\pshuf seq. 
In case if the real operands bitwidth <= 16.

Differential Revision: https://reviews.llvm.org/D28104 

llvm-svn: 291657
2017-01-11 08:23:37 +00:00
Mohammed Agabaria 23599ba794 Currently isLikelyComplexAddressComputation tries to figure out if the given stride seems to be 'complex' and need some extra cost for address computation handling.
This code seems to be target dependent which may not be the same for all targets.
Passed the decision whether the given stride is complex or not to the target by sending stride information via SCEV to getAddressComputationCost instead of 'IsComplex'.

Specifically at X86 targets we dont see any significant address computation cost in case of the strided access in general.

Differential Revision: https://reviews.llvm.org/D27518

llvm-svn: 291106
2017-01-05 14:03:41 +00:00
Benjamin Kramer 2a8bef8769 Do a sweep over move ctors and remove those that are identical to the default.
All of these existed because MSVC 2013 was unable to synthesize default
move ctors. We recently dropped support for it so all that error-prone
boilerplate can go.

No functionality change intended.

llvm-svn: 284721
2016-10-20 12:20:28 +00:00
Oliver Stannard 4df1cc0b00 [ARM] Don't convert switches to lookup tables of pointers with ROPI/RWPI
With the ROPI and RWPI relocation models we can't always have pointers
to global data or functions in constant data, so don't try to convert switches
into lookup tables if any value in the lookup table would require a relocation.
We can still safely emit lookup tables of other values, such as simple
constants.

Differential Revision: https://reviews.llvm.org/D24462

llvm-svn: 283530
2016-10-07 08:48:24 +00:00