The MVE VADC instruction reads and writes the carry bit at bit 29 of
the FPSCR register. The corresponding ACLE intrinsic is specified to
work with an integer in which the carry bit is stored at bit 0. So if
a user writes a code sequence in C that passes the carry from one VADC
to the next, like this,
s0 = vadcq_u32(a0, b0, &carry);
s1 = vadcq_u32(a1, b1, &carry);
then clang will generate IR for each of those operations that shifts
the carry bit up into bit 29 before the VADC, and after it, shifts it
back down and masks off all but the low bit. But in this situation
what you really wanted was two consecutive VADC instructions, so that
the second one directly reads the value left in FPSCR by the first,
without wasting several instructions on pointlessly clearing the other
flag bits in between.
This commit explains to InstCombine that the other bits of the flags
operand don't matter, and adds a test that demonstrates that all the
code between the two VADC instructions can be optimized away as a
result.
Reviewers: dmgreen, miyuki, ostannard
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67162
As @reames pointed out post-commit, rL371518 adds additional rounding
in some cases, when doing constant folding of the multiplication.
This breaks a guarantee llvm.fma makes and must be avoided.
This patch reapplies rL371518, but splits off the simplifications not
requiring rounding from SimplifFMulInst as SimplifyFMAFMul.
Reviewers: spatel, lebedev.ri, reames, scanon
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D67434
llvm-svn: 372899
If we generate the gc.relocate, and then later prove two arguments to the statepoint are equivalent, we should canonicalize the gc.relocate to the form we would have produced if this had been known before rewriting.
llvm-svn: 372771
"Implementations are free to malloc() a buffer containing either (size + 1) bytes or (strnlen(s, size) + 1) bytes. Applications should not assume that strndup() will allocate (size + 1) bytes when strlen(s) is smaller than size."
llvm-svn: 372647
Summary:
Motivation:
- If we can fold it to strdup, we should (strndup does more things than strdup).
- Annotation mechanism. (Works for strdup well).
strdup and strndup are part of C 20 (currently posix fns), so we should optimize them.
Reviewers: efriedma, jdoerfert
Reviewed By: jdoerfert
Subscribers: lebedev.ri, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67679
llvm-svn: 372636
This allows us to fold fma's that multiply with 0.0. Also, the
multiply by 1.0 case is handled there as well. The fneg/fabs cases
are not handled by SimplifyFMulInst, so we need to keep them.
Reviewers: spatel, anemet, lebedev.ri
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D67351
llvm-svn: 371518
This makes the functions in Loads.h require a type to be specified
independently of the pointer Value so that when pointers have no structure
other than address-space, it can still do its job.
Most callers had an obvious memory operation handy to provide this type, but a
SROA and ArgumentPromotion were doing more complicated analysis. They get
updated to merge the properties of the various instructions they were
considering.
llvm-svn: 365468
Prefer the more exact intrinsic to remove a use of the input value
and possibly make further transforms easier (we will still need
to match patterns with funnel-shift of wider types as pieces of
bswap, especially if we want to canonicalize to funnel-shift with
constant shift amount). Discussed in D46760.
llvm-svn: 364187
I'm not 100% sure about this, since I'm worried about IR transforms
that might end up introducing divergence downstream once replaced with
a constant, but I haven't come up with an example yet.
llvm-svn: 363406
When the byval attribute has a type, it must match the pointee type of
any parameter; but InstCombine was not updating the attribute when
folding casts of various kinds away.
llvm-svn: 362643
Based on the overflow direction information added in D62463, we can
now fold always overflowing signed saturating add/sub to signed min/max.
Differential Revision: https://reviews.llvm.org/D62544
llvm-svn: 362006
In order to fold an always overflowing signed saturating add/sub,
we need to know in which direction the always overflow occurs.
This patch splits up AlwaysOverflows into AlwaysOverflowsLow and
AlwaysOverflowsHigh to pass through this information (but it is
not used yet).
Differential Revision: https://reviews.llvm.org/D62463
llvm-svn: 361858
We were turning roundss/sd/ps/pd intrinsics with immediates of 1 or 2 into
llvm.floor/ceil. The llvm.ceil/floor intrinsics are supposed to correspond
to the libm functions. For the libm functions we need to disable the
precision exception so the llvm.floor/ceil functions should always map to
encodings 0x9 and 0xA.
We had a mix of isel patterns where some used 0x9 and 0xA and others used
0x1 and 0x2. We need to be consistent and always use 0x9 and 0xA.
Since we have no way in isel of knowing where the llvm.ceil/floor came
from, we can't map X86 specific intrinsics with encodings 1 or 2 to it.
We could map 0x9 and 0xA to llvm.ceil/floor instead, but I'd really like
to see a use case and optimization advantage first.
I've left the backend test cases to show the blend we now emit without
the extra isel patterns. But I've removed the InstCombine tests completely.
llvm-svn: 361425
This patch rewrites the existing PACKSS/PACKUS constant folding code to expand as a generic expansion.
This is a first NFCI step toward expanding PACKSS/PACKUS intrinsics which are acting as non-saturating truncations (although technically the expansion could be used in all cases - but we'll probably want to be conservative).
llvm-svn: 359111
If we have a masked.load from a location we know to be dereferenceable, we can simply issue a speculative unconditional load against that address. The key advantage is that it produces IR which is well understood by the optimizer. The select (cnd, load, passthrough) form produced should be pattern matchable back to hardware predication if profitable.
Differential Revision: https://reviews.llvm.org/D59703
llvm-svn: 359000
If we have a store to a piece of memory which is known constant, then we know the store must be storing back the same value. As a result, the store (or memset, or memmove) must either be down a dead path, or a noop. In either case, it is valid to simply remove the store.
The motivating case for this involves a memmove to a buffer which is constant down a path which is dynamically dead.
Note that I'm choosing to implement the less aggressive of two possible semantics here. We could simply say that the store *is undefined*, and prune the path. Consensus in the review was that the more aggressive form might be a good follow on change at a later date.
Differential Revision: https://reviews.llvm.org/D60659
llvm-svn: 358919
In the process, use the existing masked.load combine which is slightly stronger, and handles a mix of zero and undef elements in the mask.
llvm-svn: 358913
In InstCombine, we use an idiom of "store i1 true, i1 undef" to indicate we've found a path which we've proven unreachable. We can't actually insert the unreachable instruction since that would require changing the CFG. We leave that to simplifycfg later.
This just factors out that idiom creation so we don't duplicate the same mostly undocument idiom creation in multiple places.
llvm-svn: 358600
If a constant shift amount is used, then only some of the LHS/RHS
operand bits are demanded and we may be able to simplify based on
that. InstCombineSimplifyDemanded already had the necessary support
for that, we just weren't calling it with fshl/fshr as root.
In particular, this allows us to relax some masked funnel shifts
into simple shifts, as shown in the tests.
Patch by Shawn Landden.
Differential Revision: https://reviews.llvm.org/D60660
llvm-svn: 358515
Summary:
Enable some of the existing size optimizations for cold code under PGO.
A ~5% code size saving in big internal app under PGO.
The way it gets BFI/PSI is discussed in the RFC thread
http://lists.llvm.org/pipermail/llvm-dev/2019-March/130894.html
Note it doesn't currently touch loop passes.
Reviewers: davidxl, eraman
Reviewed By: eraman
Subscribers: mgorny, javed.absar, smeenai, mehdi_amini, eraman, zzheng, steven_wu, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59514
llvm-svn: 358422
ssubo X, C is equivalent to saddo X, -C. Make the transformation in
InstCombine and allow the logic implemented for saddo to fold prior
usages of add nsw or sub nsw with constants.
Patch by Dan Robertson.
Differential Revision: https://reviews.llvm.org/D60061
llvm-svn: 358099
First step towards removing the MOVMSK intrinsics completely - this patch expands MOVMSK to the pattern:
e.g. PMOVMSKB(v16i8 x):
%cmp = icmp slt <16 x i8> %x, zeroinitializer
%int = bitcast <16 x i8> %cmp to i16
%res = zext i16 %int to i32
Which is correctly handled by ISel and FastIsel (give or take an annoying movzx move....): https://godbolt.org/z/rkrSFW
Differential Revision: https://reviews.llvm.org/D60256
llvm-svn: 357909
If we know we're not storing a lane, we don't need to compute the lane. This could be improved by using the undef element result to further prune the mask, but I want to separate that into its own change since it's relatively likely to expose other problems.
Differential Revision: https://reviews.llvm.org/D57247
llvm-svn: 356590
Follow-up to:
rL356338
rL356369
We can calculate an arbitrary vector constant minus the bitwidth, so there's
no need to limit this transform to scalars and splats.
llvm-svn: 356372
Follow-up to:
rL356338
Rotates are a special case of funnel shift where the 2 input operands
are the same value, but that does not need to be a restriction for the
canonicalization when the shift amount is a constant.
llvm-svn: 356369
This was noted as a backend problem:
https://bugs.llvm.org/show_bug.cgi?id=41057
...and subsequently fixed for x86:
rL356121
But we should canonicalize these in IR for the benefit of all targets
and improve IR analysis such as CSE.
llvm-svn: 356338
A change of two parts:
1) A generic enhancement for all callers of SDVE to exploit the fact that if all lanes are undef, the result is undef.
2) A GEP specific piece to strengthen/fix the vector index undef element handling, and call into the generic infrastructure when visiting the GEP.
The result is that we replace a vector gep with at least one undef in each lane with a undef. We can also do the same for vector intrinsics. Once the masked.load patch (D57372) has landed, I'll update to include call tests as well.
Differential Revision: https://reviews.llvm.org/D57468
llvm-svn: 356293
The shift argument is defined to be modulo the bitwidth, so if that argument
is a constant, we can always reduce the constant to its minimal form to allow
better CSE and other follow-on transforms.
We need to be careful to ignore constant expressions here, or we will likely
infinite loop. I'm adding a general vector constant query for that case.
Differential Revision: https://reviews.llvm.org/D59374
llvm-svn: 356192
This indicates an intrinsic parameter is required to be a constant,
and should not be replaced with a non-constant value.
Add the attribute to all AMDGPU and generic intrinsics that comments
indicate it should apply to. I scanned other target intrinsics, but I
don't see any obvious comments indicating which arguments are intended
to be only immediates.
This breaks one questionable testcase for the autoupgrade. I'm unclear
on whether the autoupgrade is supposed to really handle declarations
which were never valid. The verifier fails because the attributes now
refer to a parameter past the end of the argument list.
llvm-svn: 355981
This patch accompanies the RFC posted here:
http://lists.llvm.org/pipermail/llvm-dev/2018-October/127239.html
This patch adds a new CallBr IR instruction to support asm-goto
inline assembly like gcc as used by the linux kernel. This
instruction is both a call instruction and a terminator
instruction with multiple successors. Only inline assembly
usage is supported today.
This also adds a new INLINEASM_BR opcode to SelectionDAG and
MachineIR to represent an INLINEASM block that is also
considered a terminator instruction.
There will likely be more bug fixes and optimizations to follow
this, but we felt it had reached a point where we would like to
switch to an incremental development model.
Patch by Craig Topper, Alexander Ivchenko, Mikhail Dvoretckii
Differential Revision: https://reviews.llvm.org/D53765
llvm-svn: 353563
This cleans up all LoadInst creation in LLVM to explicitly pass the
value type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57172
llvm-svn: 352911
This cleans up all CallInst creation in LLVM to explicitly pass a
function type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57170
llvm-svn: 352909
An unused variable problem was introduced with rL352870
and stubbed out with rL352871, but we can make a better
fix by actually using the local variable in code rather
than just the assert.
llvm-svn: 352873
If we can reduce the x86-specific intrinsic to the generic op, it allows existing
simplifications and value tracking folds. AFAICT, this always results in identical
x86 codegen in the non-reduced case...which should be true because we semi-generically
(too aggressively IMO) convert to llvm.uadd.with.overflow in CGP, so the DAG/isel must
already combine/lower this intrinsic as expected.
This isn't quite what was requested in:
https://bugs.llvm.org/show_bug.cgi?id=40486
...but we want to have these kinds of folds early for efficiency and to enable greater
simplifications. For the case in the bug report where we have:
_addcarry_u64(0, ahi, 0, &ahi)
...this gets completely simplified away in IR.
Differential Revision: https://reviews.llvm.org/D57453
llvm-svn: 352870
This is meant to be used with clang's __builtin_dynamic_object_size.
When 'true' is passed to this parameter, the intrinsic has the
potential to be folded into instructions that will be evaluated
at run time. When 'false', the objectsize intrinsic behaviour is
unchanged.
rdar://32212419
Differential revision: https://reviews.llvm.org/D56761
llvm-svn: 352664
The point is that this simplifies integration of new intrinsics into SimplifiedDemandedVectorElts, and ensures we don't miss any existing ones.
This is intended to be NFC-ish, but as seen from the diffs, can produce slightly different output. This is due to order of transforms w/in instcombine resulting in two slightly different fixed points. That's something we should fix, but isn't a problem w/this patch per se.
Differential Revision: https://reviews.llvm.org/D57398
llvm-svn: 352653
This causes a couple of changes in the upgrade tests as signed/unsigned eq/ne are equivalent and we constant fold true/false codes, these changes are the same as what we already do for avx512 cmp/ucmp.
Noticed while cleaning up vector integer comparison costs for PR40376.
llvm-svn: 351697
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
InstCombine is able to transform mem transfer instrinsic to alone store or store/load pair.
It might result in generation of unaligned atomic load/store which later in backend
will be transformed to libcall. It is not an evident gain and it is better to keep intrinsic as is
and handle it at backend.
Reviewers: reames, anna, apilipenko, mkazantsev
Reviewed By: reames
Subscribers: t.p.northover, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D56582
llvm-svn: 351295
Summary:
This allows moving the condition from the intrinsic to the standard ICmp
opcode, so that LLVM can do simplifications on it. The icmp.i1 intrinsic
is an identity for retrieving the SGPR mask.
And we can also get the mask from and i1, or i1, xor i1.
Reviewers: arsenm, nhaehnle
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D52060
llvm-svn: 351150
The current llvm.mem.parallel_loop_access metadata has a problem in that
it uses LoopIDs. LoopID unfortunately is not loop identifier. It is
neither unique (there's even a regression test assigning the some LoopID
to multiple loops; can otherwise happen if passes such as LoopVersioning
make copies of entire loops) nor persistent (every time a property is
removed/added from a LoopID's MDNode, it will also receive a new LoopID;
this happens e.g. when calling Loop::setLoopAlreadyUnrolled()).
Since most loop transformation passes change the loop attributes (even
if it just to mark that a loop should not be processed again as
llvm.loop.isvectorized does, for the versioned and unversioned loop),
the parallel access information is lost for any subsequent pass.
This patch unlinks LoopIDs and parallel accesses.
llvm.mem.parallel_loop_access metadata on instruction is replaced by
llvm.access.group metadata. llvm.access.group points to a distinct
MDNode with no operands (avoiding the problem to ever need to add/remove
operands), called "access group". Alternatively, it can point to a list
of access groups. The LoopID then has an attribute
llvm.loop.parallel_accesses with all the access groups that are parallel
(no dependencies carries by this loop).
This intentionally avoid any kind of "ID". Loops that are clones/have
their attributes modifies retain the llvm.loop.parallel_accesses
attribute. Access instructions that a cloned point to the same access
group. It is not necessary for each access to have it's own "ID" MDNode,
but those memory access instructions with the same behavior can be
grouped together.
The behavior of llvm.mem.parallel_loop_access is not changed by this
patch, but should be considered deprecated.
Differential Revision: https://reviews.llvm.org/D52116
llvm-svn: 349725
call iM movmsk(sext <N x i1> X) --> zext (bitcast <N x i1> X to iN) to iM
This has the potential to create less-than-8-bit scalar types as shown in
some of the test diffs, but it looks like the backend knows how to deal
with that in these patterns. This is the simple part of the fix suggested in:
https://bugs.llvm.org/show_bug.cgi?id=39927
Differential Revision: https://reviews.llvm.org/D55529
llvm-svn: 348862
Extend ssub.sat(X, C) -> sadd.sat(X, -C) canonicalization to also
support non-splat vector constants. This is done by generalizing
the implementation of the isNotMinSignedValue() helper to return
true for constants that are non-splat, but don't contain any
signed min elements.
Differential Revision: https://reviews.llvm.org/D55011
llvm-svn: 348072
Combine
sat(sat(X + C1) + C2) -> sat(X + (C1+C2))
and
sat(sat(X - C1) - C2) -> sat(X - (C1+C2))
if the sign of C1 and C2 matches.
In the unsigned case we can compute C1+C2 with saturating arithmetic,
and InstSimplify will reduce this just to the saturation value. For
the signed case, we cannot perform the simplification if the result
of the addition overflows.
This change is part of https://reviews.llvm.org/D54534.
llvm-svn: 347773
Canonicalize ssub.sat(X, C) to ssub.sat(X, -C) if C is constant and
not signed minimum. This will help further optimizations to apply.
This change is part of https://reviews.llvm.org/D54534.
llvm-svn: 347772
If ValueTracking can determine that the add/sub can newer overflow,
replace it with the corresponding nuw/nsw add/sub.
Additionally, for the unsigned case, if ValueTracking determines
that the add/sub always overflows, replace the result with the
saturation value.
This change is part of https://reviews.llvm.org/D54534.
llvm-svn: 347770
If a saturating add intrinsic has one constant argument, make sure
it is on the RHS. This will simplify further transformations.
This change is part of https://reviews.llvm.org/D54534.
llvm-svn: 347769
The following simplifications are implemented:
* `fshl(X, 0, C) -> shl X, C%BW`
* `fshl(X, undef, C) -> shl X, C%BW` (assuming undef = 0)
* `fshl(0, X, C) -> lshr X, BW-C%BW`
* `fshl(undef, X, C) -> lshr X, BW-C%BW` (assuming undef = 0)
* `fshr(X, 0, C) -> shl X, (BW-C%BW)`
* `fshr(X, undef, C) -> shl X, BW-C%BW` (assuming undef = 0)
* `fshr(0, X, C) -> lshr X, C%BW`
* `fshr(undef, X, C) -> lshr, X, C%BW` (assuming undef = 0)
The simplification is only performed if the shift amount C is constant,
because we can explicitly compute C%BW and BW-C%BW in this case.
Differential Revision: https://reviews.llvm.org/D54778
llvm-svn: 347505
The shift amount of a funnel shift is modulo the scalar bitwidth:
http://llvm.org/docs/LangRef.html#llvm-fshl-intrinsic
...so we can use demanded bits analysis on that operand to simplify it
when we have a power-of-2 bitwidth.
This is another step towards canonicalizing {shift/shift/or} to the
intrinsics in IR.
Differential Revision: https://reviews.llvm.org/D54478
llvm-svn: 346814
Noticed via inspection. Appears to be largely innocious in practice, but slight code change could have resulted in either visit order dependent missed optimizations or infinite loops. May be a minor compile time problem today.
llvm-svn: 346698
Summary:
When the 3rd argument to these intrinsics is zero, lowering them
to shift instructions produces poison values, since we end up with
shift amounts equal to the number of bits in the shifted value. This
means we can only lower these intrinsics if we can prove that the
3rd argument is not zero.
Reviewers: arsenm
Reviewed By: arsenm
Subscribers: bnieuwenhuizen, jvesely, wdng, nhaehnle, llvm-commits
Differential Revision: https://reviews.llvm.org/D53739
llvm-svn: 346422
by `getTerminator()` calls instead be declared as `Instruction`.
This is the biggest remaining chunk of the usage of `getTerminator()`
that insists on the narrow type and so is an easy batch of updates.
Several files saw more extensive updates where this would cascade to
requiring API updates within the file to use `Instruction` instead of
`TerminatorInst`. All of these were trivial in nature (pervasively using
`Instruction` instead just worked).
llvm-svn: 344502
InstCombine keeps a worklist and assumes that optimizations don't
eraseFromParent() the instruction, which SimplifyLibCalls violates. This change
adds a new callback to SimplifyLibCalls to let clients specify their own hander
for erasing actions.
Differential Revision: https://reviews.llvm.org/D52729
llvm-svn: 344251
The IRBuilder CreateIntrinsic method wouldn't allow you to specify the
types that you wanted the intrinsic to be mangled with. To fix this
I've:
- Added an ArrayRef<Type *> member to both CreateIntrinsic overloads.
- Used that array to pass into the Intrinsic::getDeclaration call.
- Added a CreateUnaryIntrinsic to replace the most common use of
CreateIntrinsic where the type was auto-deduced from operand 0.
- Added a bunch more unit tests to test Create*Intrinsic calls that
weren't being tested (including the FMF flag that wasn't checked).
This was suggested as part of the AMDGPU specific atomic optimizer
review (https://reviews.llvm.org/D51969).
Differential Revision: https://reviews.llvm.org/D52087
llvm-svn: 343962
Follow-up to rL342324 (D52059):
Missing optimizations with blendv are shown in:
https://bugs.llvm.org/show_bug.cgi?id=38814
This is an easier and more powerful solution than adding pattern matching for a few
special cases in the backend. The potential danger with this transform in IR is that
the condition value can get separated from the select, and the backend might not be
able to make a blendv out of it again.
llvm-svn: 342806
Missing optimizations with blendv are shown in:
https://bugs.llvm.org/show_bug.cgi?id=38814
If this works, it's an easier and more powerful solution than adding pattern matching
for a few special cases in the backend. The potential danger with this transform in IR
is that the condition value can get separated from the select, and the backend might
not be able to make a blendv out of it again. I don't think that's too likely, but
I've kept this patch minimal with a 'TODO', so we can test that theory in the wild
before expanding the transform.
Differential Revision: https://reviews.llvm.org/D52059
llvm-svn: 342324
This is a follow-up to rL339604 which did the same transform
for a sin libcall. The handling of intrinsics vs. libcalls
is unfortunately scattered, so I'm just adding this next to
the existing transform for llvm.cos for now.
This should resolve PR38458:
https://bugs.llvm.org/show_bug.cgi?id=38458
If the call was already negated, the negates will cancel
each other out.
llvm-svn: 340952