This patch adds
- New arguments to getMinPrefetchStride() to let the target decide on a
per-loop basis if software prefetching should be done even with a stride
within the limit of the hw prefetcher.
- New TTI hook enableWritePrefetching() to let a target do write prefetching
by default (defaults to false).
- In LoopDataPrefetch:
- A search through the whole loop to gather information before emitting any
prefetches. This way the target can get information via new arguments to
getMinPrefetchStride() and emit prefetches more selectively. Collected
information includes: Does the loop have a call, how many memory
accesses, how many of them are strided, how many prefetches will cover
them. This is NFC to before as long as the target does not change its
definition of getMinPrefetchStride().
- If a previous access to the same exact address was 'read', and the
current one is 'write', make it a 'write' prefetch.
- If two accesses that are covered by the same prefetch do not dominate
each other, put the prefetch in a block that dominates both of them.
- If a ConstantMaxTripCount is less than ItersAhead, then skip the loop.
- A SystemZ implementation of getMinPrefetchStride().
Review: Ulrich Weigand, Michael Kruse
Differential Revision: https://reviews.llvm.org/D70228
As pointed out by @thakis, currently CallSiteSplitting bails out after
checking the first PHI node. We should check all PHI nodes, until we
find one where call site splitting is beneficial.
This patch also slightly simplifies the code using BasicBlock::phis().
Reviewers: davidxl, junbuml, thakis
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D77089
find() was altering the UserChain, even in cases where it subsequently
discovered that the resulting constant was a 0. This confuses
rebuildWithoutConstOffset() when it attempts to walk the chain later, since it
is expected that the chain itself be a path down the use-def edges of an
expression.
Summary:
Aggregate types containing scalable vectors aren't supported and as far
as I can tell this pass is mostly concerned with optimisations on
aggregate types, so the majority of this pass isn't very useful for
scalable vectors.
This patch modifies SROA such that mem2reg is run on allocas with
scalable types that are promotable, but nothing else such as slicing is
done.
The use of TypeSize in this pass has also been updated to be explicitly
fixed size. When invoking the following methods in DataLayout:
* getTypeSizeInBits
* getTypeStoreSize
* getTypeStoreSizeInBits
* getTypeAllocSize
we now called getFixedSize on the resultant TypeSize. This is quite an
extensive change with around 50 calls to these functions, and also the
first change of this kind (being explicit about fixed vs scalable
size) as far as I'm aware, so feedback welcome.
A test is included containing IR with scalable vectors that this pass is
able to optimise.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D76720
Summary:
Select folding in JumpThreading can create a conditional branch on a
code patch that did not have one in the original program. This is not a
valid transformation in sanitize_memory functions.
Note that JumpThreading does select folding in 3 different places. Two
of them seem safe - they apply to a select instruction in a BB that ends
with an unconditional branch to another BB, which (in turn) ends with a
conditional branch or a switch with the same condition.
Fixes PR45220.
Reviewers: glider, dvyukov, efriedma
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76332
Instead, represent the mask as out-of-line data in the instruction. This
should be more efficient in the places that currently use
getShuffleVector(), and paves the way for further changes to add new
shuffles for scalable vectors.
This doesn't change the syntax in textual IR. And I don't currently plan
to change the bitcode encoding in this patch, although we'll probably
need to do something once we extend shufflevector for scalable types.
I expect that once this is finished, we can then replace the raw "mask"
with something more appropriate for scalable vectors. Not sure exactly
what this looks like at the moment, but there are a few different ways
we could handle it. Maybe we could try to describe specific shuffles.
Or maybe we could define it in terms of a function to convert a fixed-length
array into an appropriate scalable vector, using a "step", or something
like that.
Differential Revision: https://reviews.llvm.org/D72467
Summary: this patch preserve information from various places in EarlyCSE into assume bundles.
Reviewers: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76769
This patch updates ValueLattice to distinguish between ranges that are
guaranteed to not include undef and ranges that may include undef.
A constant range guaranteed to not contain undef can be used to simplify
instructions to arbitrary values. A constant range that may contain
undef can only be used to simplify to a constant. If the value can be
undef, it might take a value outside the range. For example, consider
the snipped below
define i32 @f(i32 %a, i1 %c) {
br i1 %c, label %true, label %false
true:
%a.255 = and i32 %a, 255
br label %exit
false:
br label %exit
exit:
%p = phi i32 [ %a.255, %true ], [ undef, %false ]
%f.1 = icmp eq i32 %p, 300
call void @use(i1 %f.1)
%res = and i32 %p, 255
ret i32 %res
}
In the exit block, %p would be a constant range [0, 256) including undef as
%p could be undef. We can use the range information to replace %f.1 with
false because we remove the compare, effectively forcing the use of the
constant to be != 300. We cannot replace %res with %p however, because
if %a would be undef %cond may be true but the second use might not be
< 256.
Currently LazyValueInfo uses the new behavior just when simplifying AND
instructions and does not distinguish between constant ranges with and
without undef otherwise. I think we should address the remaining issues
in LVI incrementally.
Reviewers: efriedma, reames, aqjune, jdoerfert, sstefan1
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D76931
For casts with constant range operands, we can use
ConstantRange::castOp.
Reviewers: davide, efriedma, mssimpso
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D71938
For each natural loop with multiple exit blocks, this pass creates a
new block N such that all exiting blocks now branch to N, and then
control flow is redistributed to all the original exit blocks.
The bulk of the tranformation is a new function introduced in
BasicBlockUtils that an redirect control flow from a set of incoming
blocks to a set of outgoing blocks via a common "hub".
This is a useful workaround for a limitation in the structurizer which
incorrectly orders blocks when processing a nest of loops. This pass
bypasses that issue by ensuring that each natural loop is recognized
as a separate region. Since the structurizer is a region pass, it no
longer sees a nest of loops in a single region, and instead processes
each "level" in the nesting as a separate region.
The AMDGPU backend provides a new option to enable this pass before
the structurizer, which may eventually be enabled by default.
Reviewers: madhur13490, arsenm, nhaehnle
Reviewed By: nhaehnle
Differential Revision: https://reviews.llvm.org/D75865
Summary:
On targets with different pointer sizes, -alignment-from-assumptions could attempt to create SCEV expressions which use different effective SCEV types. The provided test illustrates the issue.
In `getNewAlignment`, AASCEV would be the (only) alloca, which would have an effective SCEV type of i32. But PtrSCEV, the GEP in this case, due to being in the flat/default address space, will have an effective SCEV of i64.
This patch resolves the issue by truncating PtrSCEV to AASCEV's effective type.
Reviewers: hfinkel, jdoerfert
Reviewed By: jdoerfert
Subscribers: jvesely, nhaehnle, hiraditya, javed.absar, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75471
The LatticeVal alias was introduced to reduce the diff size for the
transition to ValueLatticeElement, which is done now.
This patch removes the unnecessary alias and updates some very verbose
type uses with auto.
Summary:
DivRemPairs is unsound with respect to undef values.
```
// bb1:
// %rem = srem %x, %y
// bb2:
// %div = sdiv %x, %y
// -->
// bb1:
// %div = sdiv %x, %y
// %mul = mul %div, %y
// %rem = sub %x, %mul
```
If X can be undef, X should be frozen first.
For example, let's assume that Y = 1 & X = undef:
```
%div = sdiv undef, 1 // %div = undef
%rem = srem undef, 1 // %rem = 0
=>
%div = sdiv undef, 1 // %div = undef
%mul = mul %div, 1 // %mul = undef
%rem = sub %x, %mul // %rem = undef - undef = undef
```
http://volta.cs.utah.edu:8080/z/m7Xrx5
Same for Y. If X = 1 and Y = (undef | 1), %rem in src is either 1 or 0,
but %rem in tgt can be one of many integer values.
This resolves https://bugs.llvm.org/show_bug.cgi?id=42619 .
This miscompilation disappears if undef value is removed, but it may take a while.
DivRemPair happens pretty late during the optimization pipeline, so this optimization seemed as a good candidate to fix without major regression using freeze than other broken optimizations.
Reviewers: spatel, lebedev.ri, george.burgess.iv
Reviewed By: spatel
Subscribers: wuzish, regehr, nlopes, nemanjai, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76483
Since intrinsics can now specify when an argument is required to be
constant, it is now OK to replace arguments with variables if they
aren't. This means intrinsics must now be accurately marked with
immarg.
This patch sets the stage for supporting both row and column major
layouts for matrixes. It renames ColumnMatrixTy to MatrixTy, adds
booleans indicating the underlying layout to both MatrixTy and ShapeInfo
and generalizes the methods of MatrixTy to support both row and column
major layouts.
Reviewers: Gerolf, anemet, andrew.w.kaylor, LuoYuanke
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D76324
For MemoryPhis, we have to avoid that the MemoryPhi may be executed
before before the access we are currently looking at.
To do this we do a post-order numbering of the basic blocks in the
function and bail out once we reach a MemoryPhi with a larger (or equal)
post-order block number than the current MemoryAccess.
This changes the order in which we visit stores for elimination.
This patch also adds support for exploring multiple paths. We keep a worklist (ToCheck) of memory accesses that might be eliminated by our starting MemoryDef or MemoryPhis for further exploration. For MemoryPhis, we add the incoming values to the worklist, for MemoryDefs we add the defining access.
Reviewers: dmgreen, rnk, efriedma, bryant, asbirlea
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D72148
This logic can be shared with the tiled code generation.
Reviewers: anemet, Gerolf, hfinkel, andrew.w.kaylor, LuoYuanke
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D75565
Summary:
This patch fixes https://bugs.llvm.org/show_bug.cgi?id=44611 by
preventing an infinite loop in the jump threading pass when
-jump-threading-across-loop-headers is on. Specifically, without this
patch, jump threading through two basic blocks would trigger on the
same area of the CFG over and over, resulting in an infinite loop.
Consider testcase PR44611-across-header-hang.ll in this patch. The
first opportunity to thread through two basic blocks is:
from bb_body2 through bb_header and bb_body1 to bb_body2.
The pass duplicates bb_header and bb_body1 as, say, bb_header.thread1
and bb_body1.thread1. Since bb_header contains a successor edge back
to itself, bb_header.thread1 also contains a successor edge to
bb_header, immediately giving rise to the next jump threading
opportunity:
from bb_header.thread1 through bb_header and bb_body1 to bb_body2.
After that, we repeatedly thread an incoming edge into bb_header
through bb_header and bb_body1 to bb_body2. In other words, we keep
peeling one iteration from bb_header's self loop.
The patch fixes the problem by preventing the pass from duplicating a
basic block containing a self loop.
Reviewers: wmi, junparser, efriedma
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76390
This patch slightly generalizes the code to emit loads and stores of a
matrix and adds helpers to load/store a tile of a larger matrix.
This will be used in a follow-up patch introducing initial tiling.
Reviewers: anemet, Gerolf, hfinkel, andrew.w.kaylor, LuoYuanke
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D75564
For PHIs with multiple incoming values, we can improve precision by
using constant ranges for integers. We can over-approximate phis
by merging the incoming values.
Reviewers: davide, efriedma, mssimpso
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D71933
If one of the operands of a binary operator is a constant range, we can
use ConstantRange::binaryOp to approximate the result.
We still handle single element constant ranges as we did previously,
with ConstantExpr::get(), because ConstantRange::binaryOp still gives
worse results in a few cases for single element ranges.
Also note that we bail out early if any of the operands is still unknown.
Reviewers: davide, efriedma, mssimpso
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D71936
For selects with an unknown condition, we can approximate the result by
merging the state of both options. This automatically takes care of
the case where on operand is undef.
Reviewers: davide, efriedma, mssimpso
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D71935
Functions include their arguments in the use-list. Changed function
values mean that the result of the function changed. We only need
to update the call sites with the new function result and do not
have to propagate the call arguments.
To do so, this patch splits up the visitCallSite into handleCallResult
and handleCallArguments and updates markUsersAsChanged to only update
call results for functions.
Reviewers: efriedma, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D75846
This patch adds a new undef lattice state, which is used to represent
UndefValue constants or instructions producing undef.
The main difference to the unknown state is that merging undef values
with constants (or single element constant ranges) produces the
constant/constant range, assuming all uses of the merge result will be
replaced by the found constant.
Contrary, merging non-single element ranges with undef needs to go to
overdefined. Using unknown for UndefValues currently causes mis-compiles
in CVP/LVI (PR44949) and will become problematic once we use
ValueLatticeElement for SCCP.
Reviewers: efriedma, reames, davide, nikic
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D75120
This patch switches SCCP to use ValueLatticeElement for lattice values,
instead of the local LatticeVal, as first step to enable integer range support.
This patch does not make use of constant ranges for additional operations
and the only difference for now is that integer constants are represented by
single element ranges. To preserve the existing behavior, the following helpers
are used
* isConstant(LV): returns true when LV is either a constant or a constant range with a single element. This should return true in the same cases where LV.isConstant() returned true previously.
* getConstant(LV): returns a constant if LV is either a constant or a constant range with a single element. This should return a constant in the same cases as LV.getConstant() previously.
* getConstantInt(LV): same as getConstant, but additionally casted to ConstantInt.
Reviewers: davide, efriedma, mssimpso
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D60582
This patch adds support for propagating matrix expressions along the
inlined-at chain and emitting remarks at the traversed function scopes.
To motivate this new behavior, consider the example below. Without the
remark 'up-leveling', we would only get remarks in load.h and store.h,
but we cannot generate a remark describing the full expression in
toplevel.cpp, which is the place where the user has the best chance of
spotting/fixing potential problems.
With this patch, we generate a remark for the load in load.h, one for
the store in store.h and one for the complete expression in
toplevel.cpp. For a bigger example, please see remarks-inlining.ll.
load.h:
template <typename Ty, unsigned R, unsigned C> Matrix<Ty, R, C> load(Ty *Ptr) {
Matrix<Ty, R, C> Result;
Result.value = *reinterpret_cast <typename Matrix<Ty, R, C>::matrix_t *>(Ptr);
return Result;
}
store.h:
template <typename Ty, unsigned R, unsigned C> void store(Matrix<Ty, R, C> M1, Ty *Ptr) {
*reinterpret_cast<typename decltype(M1)::matrix_t *>(Ptr) = M1.value;
}
toplevel.cpp
void test(double *A, double *B, double *C) {
store(add(load<double, 3, 5>(A), load<double, 3, 5>(B)), C);
}
For a given function, we traverse the inlined-at chain for each
matrix instruction (= instructions with shape information). We collect
the matrix instructions in each DISubprogram we visit. This produces a
mapping of DISubprogram -> (List of matrix instructions visible in the
subpogram). We then generate remarks using the list of instructions for
each subprogram in the inlined-at chain. Note that the list of instructions
for a subprogram includes the instructions from its own subprograms
recursively. For example using the example above, for the subprogram
'test' this includes inline functions 'load' and 'store'. This allows
surfacing the remarks at a level useful to users.
Please note that the current approach may create a lot of extra remarks.
Additional heuristics to cut-off the traversal can be implemented in the
future. For example, it might make sense to stop 'up-leveling' once all
matrix instructions are at the same debug location.
Reviewers: anemet, Gerolf, thegameg, hfinkel, andrew.w.kaylor, LuoYuanke
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D73600
SimplifyCFG should not merge empty return blocks and leave a CallBr behind
with a duplicated destination since the verifier will then trigger an
assert. This patch checks for this case and avoids the transformation.
CodeGenPrepare has a similar check which also has a FIXME comment about why
this is needed. It seems perhaps better if these two passes would eventually
instead update the CallBr instruction instead of just checking and avoiding.
This fixes https://bugs.llvm.org/show_bug.cgi?id=45062.
Review: Craig Topper
Differential Revision: https://reviews.llvm.org/D75620
With the addition of the LLD time tracing it made sense to include coverage
for LLVM's various passes. Doing so ensures that ThinLTO is also covered
with a time trace.
Before:
{F11333974}
After:
{F11333928}
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D74516
As mentioned in the comments, extractelement is special
since we actually want a scalar base for that element we extracted from
the vector (i.e. not a vector base).
This same logic should apply to uses of the extractelement such as phis
and selects which have the same BDV as the extractelement.
Howeber, for these uses we conservatively mark the BDV state as
conflict, since setting the EE's new base BDV does not always dominate
these uses.
Added testcase showcases the problem where the BDV identification chokes
on the incorrect cast from vector to scalar for the phi use of
extractelement.
Tests-Run: make check, internal fuzzer testing
Reviewers: reames, skatkov, dantrushin
Reviewed-By: dantrushin
Differential Revision: https://reviews.llvm.org/D75704
Summary:
The widenIVUse avoids generating trunc by evaluating the use as AddRec, this
will not work when:
1) SCEV traces back to an instruction inside the loop that SCEV can not
expand, eg. add %indvar, (load %addr)
2) SCEV finds a loop variant, eg. add %indvar, %loopvariant
While SCEV fails to avoid trunc, we can still try to use instruction
combining approach to prove trunc is not required. This can be further
extended with other instruction combining checks, but for now we handle the
following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext")
```
Src:
%c = sub nsw %b, %indvar
%d = sext %c to i64
Dst:
%indvar.ext1 = sext %indvar to i64
%m = sext %b to i64
%d = sub nsw i64 %m, %indvar.ext1
```
Therefore, as long as the result of add/sub/mul is extended to wide type with
right extension and overflow wrap combination, no
trunc is required regardless of how %b is generated. This pattern is common
when calculating address in 64 bit architecture.
Note that this patch reuse almost all the code from D49151 by @az:
https://reviews.llvm.org/D49151
It extends it by providing proof of why trunc is unnecessary in more general case,
it should also resolve some of the concerns from the following discussion with @reames.
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20180910/585945.html
Reviewers: sanjoy, efriedma, sebpop, reames, az, javed.absar, amehsan
Reviewed By: az, amehsan
Subscribers: hiraditya, llvm-commits, amehsan, reames, az
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73059
After structurization, some phi nodes can have a single incoming edge
and can be simplified away. This change runs a simplify query on all
phis that are either modified or added by the structurizer. This also
moves some phis closer to their use as a side benefit.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D75500
This teaches Loop Strength Reduction the details about masked load and
store address operands, so that it can have a better time optimising
them as it would for normal loads and stores.
Differential Revision: https://reviews.llvm.org/D75371
One of the checks has been removed as it seem invalid.
The LoopStep size is always almost a 32-bit.
Differential Revision: https://reviews.llvm.org/D75079
Summary:
Current peeling implementation bails out in case of loop nests.
The patch introduces a field in TargetTransformInfo structure that
certain targets can use to relax the constraints if it's
profitable (disabled by default).
Also additional option is added to enable peeling manually for
experimenting and testing purposes.
Reviewers: fhahn, lebedev.ri, xbolva00
Reviewed By: xbolva00
Subscribers: RKSimon, xbolva00, hiraditya, zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D70304
Summary:
This patch defines two freeze instructions to have the same value number if they are equivalent.
This is allowed because GVN replaces all uses of a duplicated instruction with another.
If it partially rewrites use, it is not allowed. e.g)
```
a = freeze(x)
b = freeze(x)
use(a)
use(a)
use(b)
=>
use(a)
use(b) // This is not allowed!
use(b)
```
Reviewers: fhahn, reames, spatel, efriedma
Reviewed By: fhahn
Subscribers: lebedev.ri, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75398
Summary:
This patch makes EarlyCSE fold equivalent freeze instructions.
Another optimization that I think will be useful is to remove freeze if its operand is used as a branch condition or at llvm.assume:
```
%c = ...
br i1 %c, label %A, ..
A:
%d = freeze %c ; %d can be optimized to %c because %c cannot be poison or undef (or 'br %c' would be UB otherwise)
```
If it make sense for EarlyCSE to support this as well, I will make a patch for this.
Reviewers: spatel, reames, lebedev.ri
Reviewed By: lebedev.ri
Subscribers: lebedev.ri, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75334
SROA will drop the explicit alignment on allocas when the ABI guarantees
enough alignment. Because the alignment on new load/store instructions
are set based on the alloca's alignment, that means SROA would end up
dropping the alignment from atomic loads and stores, which is not
allowed (see bug). For those, make sure to always carry over the
alignment from the previous instruction.
Differential revision: https://reviews.llvm.org/D75266
DSE would mistakenly remove store (2):
a = calloc(n+1)
for (int i = 0; i < n; i++) {
store 1, a[i+1] // (1)
store 0, a[i] // (2)
}
The fix is to do PHI transaltion while looking for clobbering
instructions between the store and the calloc.
Reviewed By: efriedma, bjope
Differential Revision: https://reviews.llvm.org/D68006
Use UnaryOperator::CreateFNeg instead.
Summary:
With the introduction of the native fneg instruction, the
fsub -0.0, %x idiom is obsolete. This patch makes LLVM
emit fneg instead of the idiom in all places.
Reviewed By: cameron.mcinally
Differential Revision: https://reviews.llvm.org/D75130
CVP currently does not simplify cmps with instructions in the same
block, because LVI getPredicateAt() currently does not provide
much useful information for that case (D69686 would change that,
but is stuck.) However, if the instruction is a Phi node, then
LVI can compute the result of the predicate by threading it into
the predecessor blocks, which allows it simplify some conditions
that nothing else can handle. Relevant code:
6d6a4590c5/llvm/lib/Analysis/LazyValueInfo.cpp (L1904-L1927)
Differential Revision: https://reviews.llvm.org/D72169
Summary:
Loop unswitch hoists branches on loop-invariant conditions. However, if this
condition is poison/undef and the branch wasn't originally reachable, loop
unswitch introduces UB (since the optimized code will branch on poison/undef and
the original one didn't)).
We fix this problem by freezing the condition to ensure we don't introduce UB.
We will now transform the following:
while (...) {
if (C) { A }
else { B }
}
Into:
C' = freeze(C)
if (C') {
while (...) { A }
} else {
while (...) { B }
}
This patch fixes the root cause of the following bug reports (which use the old loop unswitch, but can be reproduced with minor changes in the code and -enable-nontrivial-unswitch):
- https://llvm.org/bugs/show_bug.cgi?id=27506
- https://llvm.org/bugs/show_bug.cgi?id=31652
Reviewers: reames, majnemer, chenli, sanjoy, hfinkel
Reviewed By: reames
Subscribers: hiraditya, jvesely, nhaehnle, filcab, regehr, trentxintong, nlopes, llvm-commits, mzolotukhin
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D29015
Summary:
In future patches`SCEVExpander::isHighCostExpansionHelper()` will respect the budget allocated by performing TTI cost modelling.
This is a fully NFC patch to make things reviewable.
Reviewers: reames, mkazantsev, wmi, sanjoy
Reviewed By: mkazantsev
Subscribers: hiraditya, zzheng, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73705
Summary:
Future patches will make use of TTI to perform cost-model-driven `SCEVExpander::isHighCostExpansionHelper()`
This is a fully NFC patch to make things reviewable.
Reviewers: reames, mkazantsev, wmi, sanjoy
Reviewed By: mkazantsev
Subscribers: hiraditya, zzheng, javed.absar, dmgreen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73704
This reverts commit 8d22100f66.
There was a functional regression reported (https://bugs.llvm.org/show_bug.cgi?id=44996). I'm not actually sure the patch is wrong, but I don't have time to investigate currently, and this line of work isn't something I'm likely to get back to quickly.
Add a map from BasicBlocks to overlap intervals. For partial writes, we
can keep track of those in IOLs. We only add candidates that are valid
for eliminations.
Reviewers: dmgreen, bryant, asbirlea, Tyker
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D73757
Can be used like
-debug-counter=dse-memoryssa-skip=10,dse-memoryssa-counter-count=20
Reviewers: dmgreen, rnk, efriedma, bryant, asbirlea
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D72147
For tracked globals that are unknown after solving, we expect all
non-store uses to be replaced.
This is a follow-up to f8045b250d, which removed forcedconstant.
We should not mark unknown loads as overdefined, as they either load
from an unknown pointer or an undef global. Restore the original logic
for loads.
Summary:
After updating cost model in AMDGPU target (47a5c36b37) the pass started to
ignore some BBs since they got all instructions estimated as free.
Reviewers: arsenm, chandlerc, nhaehnle
Reviewed By: nhaehnle
Subscribers: jvesely, wdng, nhaehnle, tpr, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74825
In builds with assertions enabled (!NDEBUG), IndVarSimplify does an
additional query to ScalarEvolution which may change future SCEV queries
since it fills the internal cache differently. The result is actually
only used with the -verify-indvars command line option. We fix the issue
by only calling SE->getBackedgeTakenCount(L) if -verify-indvars is
enabled such that only -verify-indvars shows the behavior, but not debug
builds themselves. Also add a remark to the description of
-verify-indvars about this behavior.
Fixes llvm.org/PR44815
Differential Revision: https://reviews.llvm.org/D74810
Essentially, fold OrderedBasicBlock into BasicBlock, and make it
auto-invalidate the instruction ordering when new instructions are
added. Notably, we don't need to invalidate it when removing
instructions, which is helpful when a pass mostly delete dead
instructions rather than transforming them.
The downside is that Instruction grows from 56 bytes to 64 bytes. The
resulting LLVM code is substantially simpler and automatically handles
invalidation, which makes me think that this is the right speed and size
tradeoff.
The important change is in SymbolTableTraitsImpl.h, where the numbering
is invalidated. Everything else should be straightforward.
We probably want to implement a fancier re-numbering scheme so that
local updates don't invalidate the ordering, but I plan for that to be
future work, maybe for someone else.
Reviewed By: lattner, vsk, fhahn, dexonsmith
Differential Revision: https://reviews.llvm.org/D51664
Fixes https://bugs.llvm.org/show_bug.cgi?id=44922 (caused by 4698bf145d)
ThreadThroughTwoBasicBlocks assumes PredBBBranch is conditional. The following code can segfault.
AddPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
ValueMapping);
We can also allow unconditional PredBB, but the produced code is not
better.
Reviewed By: kazu
Differential Revision: https://reviews.llvm.org/D74747
Relative to the original commit, this fixes some warnings,
and is based on the deletion of the IRBuilder copy constructor
in D74693. The automatic copy constructor would no longer be
safe.
-----
Related llvm-dev thread:
http://lists.llvm.org/pipermail/llvm-dev/2020-February/138951.html
This patch moves the IRBuilder from templating over the constant
folder and inserter towards making both of these virtual.
There are a couple of motivations for this:
1. It's not possible to share code between use-sites that use
different IRBuilder folders/inserters (short of templating the code
and moving it into headers).
2. Methods currently defined on IRBuilderBase (which is not templated)
do not use the custom inserter, resulting in subtle bugs (e.g.
incorrect InstCombine worklist management). It would be possible to
move those into the templated IRBuilder, but...
3. The vast majority of the IRBuilder implementation has to live
in the header, because it depends on the template arguments.
4. We have many unnecessary dependencies on IRBuilder.h,
because it is not easy to forward-declare. (Significant parts of
the backend depend on it via TargetLowering.h, for example.)
This patch addresses the issue by making the following changes:
* IRBuilderDefaultInserter::InsertHelper becomes virtual.
IRBuilderBase accepts a reference to it.
* IRBuilderFolder is introduced as a virtual base class. It is
implemented by ConstantFolder (default), NoFolder and TargetFolder.
IRBuilderBase has a reference to this as well.
* All the logic is moved from IRBuilder to IRBuilderBase. This means
that methods can in the future replace their IRBuilder<> & uses
(or other specific IRBuilder types) with IRBuilderBase & and thus
be usable with different IRBuilders.
* The IRBuilder class is now a thin wrapper around IRBuilderBase.
Essentially it only stores the folder and inserter and takes care
of constructing the base builder.
What this patch doesn't do, but should be simple followups after this change:
* Fixing use of the inserter for creation methods originally defined
on IRBuilderBase.
* Replacing IRBuilder<> uses in arguments with IRBuilderBase, where useful.
* Moving code from the IRBuilder header to the source file.
From the user perspective, these changes should be mostly transparent:
The only thing that consumers using a custom inserted may need to do is
inherit from IRBuilderDefaultInserter publicly and mark their InsertHelper
as public.
Differential Revision: https://reviews.llvm.org/D73835
Related llvm-dev thread:
http://lists.llvm.org/pipermail/llvm-dev/2020-February/138951.html
This patch moves the IRBuilder from templating over the constant
folder and inserter towards making both of these virtual.
There are a couple of motivations for this:
1. It's not possible to share code between use-sites that use
different IRBuilder folders/inserters (short of templating the code
and moving it into headers).
2. Methods currently defined on IRBuilderBase (which is not templated)
do not use the custom inserter, resulting in subtle bugs (e.g.
incorrect InstCombine worklist management). It would be possible to
move those into the templated IRBuilder, but...
3. The vast majority of the IRBuilder implementation has to live
in the header, because it depends on the template arguments.
4. We have many unnecessary dependencies on IRBuilder.h,
because it is not easy to forward-declare. (Significant parts of
the backend depend on it via TargetLowering.h, for example.)
This patch addresses the issue by making the following changes:
* IRBuilderDefaultInserter::InsertHelper becomes virtual.
IRBuilderBase accepts a reference to it.
* IRBuilderFolder is introduced as a virtual base class. It is
implemented by ConstantFolder (default), NoFolder and TargetFolder.
IRBuilderBase has a reference to this as well.
* All the logic is moved from IRBuilder to IRBuilderBase. This means
that methods can in the future replace their IRBuilder<> & uses
(or other specific IRBuilder types) with IRBuilderBase & and thus
be usable with different IRBuilders.
* The IRBuilder class is now a thin wrapper around IRBuilderBase.
Essentially it only stores the folder and inserter and takes care
of constructing the base builder.
What this patch doesn't do, but should be simple followups after this change:
* Fixing use of the inserter for creation methods originally defined
on IRBuilderBase.
* Replacing IRBuilder<> uses in arguments with IRBuilderBase, where useful.
* Moving code from the IRBuilder header to the source file.
From the user perspective, these changes should be mostly transparent:
The only thing that consumers using a custom inserted may need to do is
inherit from IRBuilderDefaultInserter publicly and mark their InsertHelper
as public.
Differential Revision: https://reviews.llvm.org/D73835
This includes a fix for cases where things get marked as overdefined in
ResolvedUndefsIn, but we later discover a constant. To avoid crashing,
we consistently bail out on overdefined values in the visitors. This is
similar to the previous behavior with forcedconstant.
This reverts the revert commit 02b72f564c.
Summary:
Potential fix for: https://bugs.llvm.org/show_bug.cgi?id=44889 and https://bugs.llvm.org/show_bug.cgi?id=44408
In the legacy pass manager, loop rotate need not compute MemorySSA when not being in the same loop pass manager with other loop passes.
There isn't currently a way to differentiate between the two cases, so this attempts to limit the usage in LoopRotate to only update MemorySSA when the analysis is already available.
The side-effect of this is that it will split the Loop pipeline.
This issue does not apply to the new pass manager, where we have a flag specifying if all loop passes in that loop pass manager preserve MemorySSA.
Reviewers: dmgreen, fedor.sergeev, nikic
Subscribers: Prazek, hiraditya, george.burgess.iv, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74574
This version includes a fix for a set of crashes caused by marking
values depending on a yet unknown & tracked call as overdefined.
In some cases, we would later discover that the call has a constant
result and try to mark a user of it as constant, although it was already
marked as overdefined. Most instruction handlers bail out early if the
instruction is already overdefined. But that is not necessary for
CastInsts for example. By skipping values that depend on skipped
calls, we resolve the crashes and also improve the precision in some
cases (see resolvedundefsin-tracked-fn.ll).
Note that we may not skip PHI nodes that may depend on a skipped call,
but they can be safely marked as overdefined, as we bail out early if
the PHI node is overdefined.
This reverts the revert commit
a74b31a3e9cd844c7ce2087978568e3f5ec8519.
Summary:
Passes ORE, BPI, BFI are not being preserved by Loop passes, hence it
is incorrect to retrieve these passes as cached.
This patch makes the loop passes in question compute a new instance.
In some of these cases, however, it may be beneficial to change the Loop pass to
a Function pass instead, similar to the change for LoopUnrollAndJam.
Reviewers: chandlerc, dmgreen, jdoerfert, reames
Subscribers: mehdi_amini, hiraditya, zzheng, steven_wu, dexonsmith, Whitney, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72891
This patch is a fix following the revert of 72ce759
(https://reviews.llvm.org/rG72ce759928e6dfee6a9efa310b966c19722352ba)
and fixes the failure that it caused.
The above patch failed on the Thread Sanitizer buildbot with an out of
memory error. After an investigation, the cause was identified as an
explosion in debug intrinsics while running the Jump Threading pass on
ModuleMap.ll. The above patched prevented debug intrinsics from being
dropped when their Basic Block was deleted due to being "empty". In this
case, one of the functions in ModuleMap.ll had (after many optimization
passes) a very large number of debug intrinsics representing a set of
repeatedly inlined variables. Previously the vast majority of these were
silently dropped during Jump Threading when their blocks were deleted,
but as of the above patch they survived for longer, causing a large
increase in the number of debug intrinsics. These intrinsics were then
repeatedly cloned by the Jump Threading pass as edges were threaded,
multiplying the intrinsic count further. The memory consumed by this
process spiralled out of control, crashing the buildbot that uses TSan
(which has an estimated 5-10x memory overhead compared to non-sanitized
builds).
This patch adds RemoveRedundantDbgInstrs to the Jump Threading pass, in
order to reduce the number of debug intrinsics down to a manageable
amount in cases where many intrinsics for the same variable end up
bunched together contiguously, as in this case.
Differential Revision: https://reviews.llvm.org/D73054
This causes a crash for the reproducer below
enum { a };
enum b { c, d };
e;
static _Bool g(struct f *h, enum b i) {
i &&j();
return a;
}
static k(char h, enum b i) {
_Bool l = g(e, i);
l;
}
m(h) {
k(h, c);
g(h, d);
}
This reverts commit aadb635e04.
This patch removes forcedconstant to simplify things for the
move to ValueLattice, which includes constant ranges, but no
forced constants.
This patch removes forcedconstant and changes ResolvedUndefsIn
to mark instructions with unknown operands as overdefined. This
means we do not do simplifications based on undef directly in SCCP
any longer, but this seems to hardly come up in practice (see stats
below), presumably because InstCombine & others take care
of most of the relevant folds already.
It is still beneficial to keep ResolvedUndefIn, as it allows us delaying
going to overdefined until we propagated all known information.
I also built MultiSource, SPEC2000 and SPEC2006 and compared
sccp.IPNumInstRemoved and sccp.NumInstRemoved. It looks like the impact
is quite low:
Tests: 244
Same hash: 238 (filtered out)
Remaining: 6
Metric: sccp.IPNumInstRemoved
Program base patch diff
test-suite...arks/VersaBench/dbms/dbms.test 4.00 3.00 -25.0%
test-suite...TimberWolfMC/timberwolfmc.test 38.00 34.00 -10.5%
test-suite...006/453.povray/453.povray.test 158.00 155.00 -1.9%
test-suite.../CINT2000/176.gcc/176.gcc.test 668.00 668.00 0.0%
test-suite.../CINT2006/403.gcc/403.gcc.test 1209.00 1209.00 0.0%
test-suite...arks/mafft/pairlocalalign.test 76.00 76.00 0.0%
Tests: 244
Same hash: 238 (filtered out)
Remaining: 6
Metric: sccp.NumInstRemoved
Program base patch diff
test-suite...arks/mafft/pairlocalalign.test 185.00 175.00 -5.4%
test-suite.../CINT2006/403.gcc/403.gcc.test 2059.00 2056.00 -0.1%
test-suite.../CINT2000/176.gcc/176.gcc.test 2358.00 2357.00 -0.0%
test-suite...006/453.povray/453.povray.test 317.00 317.00 0.0%
test-suite...TimberWolfMC/timberwolfmc.test 12.00 12.00 0.0%
Reviewers: davide, efriedma, mssimpso
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D61314
This reverts commit d0c4d4fe09.
Revert "[DSE,MSSA] Move more passing test cases from todo to simple.ll."
This reverts commit 02266e64bb.
Revert "[DSE,MSSA] Adjust mda-with-dbg-values.ll to MSSA backed DSE."
This reverts commit 74f03e4ff0.