Commit Graph

9987 Commits

Author SHA1 Message Date
Philip Reames aaea24802b Broaden the definition of a "widenable branch"
As a reminder, a "widenable branch" is the pattern "br i1 (and i1 X, WC()), label %taken, label %untaken" where "WC" is the widenable condition intrinsics. The semantics of such a branch (derived from the semantics of WC) is that a new condition can be added into the condition arbitrarily without violating legality.

Broaden the definition in two ways:
    Allow swapped operands to the br (and X, WC()) form
    Allow widenable branch w/trivial condition (i.e. true) which takes form of br i1 WC()

The former is just general robustness (e.g. for X = non-instruction this is what instcombine produces). The later is specifically important as partial unswitching of a widenable range check produces exactly this form above the loop.

Differential Revision: https://reviews.llvm.org/D70502
2019-11-21 10:46:16 -08:00
James Y Knight e47d6da8a5 D'oh. Fix assert after a84922916e.
(Which was attempting to fix unused variable warning in NDEBUG mode after 8ba56f322a)
2019-11-20 22:22:51 -05:00
James Y Knight a84922916e Fix unused variable warning in NDEBUG mode after 8ba56f322a 2019-11-20 22:05:05 -05:00
Alina Sbirlea 5c5cf899ef [MemorySSA] Moving at the end often means before terminator.
Moving accesses in MemorySSA at InsertionPlace::End, when an instruction is
moved into a block, almost always means insert at the end of the block, but
before the block terminator. This matters when the block terminator is a
MemoryAccess itself (an invoke), and the insertion must be done before
the terminator for the update to be correct.

Insert an additional position: InsertionPlace:BeforeTerminator and update
current usages where this applies.

Resolves PR44027.
2019-11-20 17:11:00 -08:00
Alina Sbirlea da4baa2a6c [MemorySSA] Update analysis when the terminator is a memory instruction.
Update MemorySSA when moving the terminator instruction, as that may be a memory touching instruction.
Resolves PR44029.
2019-11-20 16:36:52 -08:00
Philip Reames 8ba56f322a Move widenable branch formation into makeGuardControlFlowExplicit helper
This is mostly NFC, but I removed the setting of the guard's calling convention onto the WC call.  Why?  Because it was untested, and was producing an ill defined output as the declaration's convention wasn't been changed leaving a mismatch which is UB.
2019-11-20 12:54:05 -08:00
Philip Reames 28a91473e3 [GuardWidening] Remove WidenFrequentBranches transform
This code has never been enabled.  While it is tested, it's complicating some refactoring.  If we decide to re-implement this, doing it in SimplifyCFG would probably make more sense anyways.
2019-11-19 15:15:52 -08:00
Philip Reames 70c68a6b0e [NFC] Factor out utilities for manipulating widenable branches
With the widenable condition construct, we have the ability to reason about branches which can be 'widened' (i.e. made to fail more often).  We've got a couple o transforms which leverage this.  This patch just cleans up the API a bit.

This is prep work for generalizing our definition of a widenable branch slightly.  At the moment "br i1 (and A, wc()), ..." is considered widenable, but oddly, neither "br i1 (and wc(), B), ..." or "br i1 wc(), ..." is.  That clearly needs addressed, so first, let's centralize the code in one place.
2019-11-19 14:43:13 -08:00
Philip Reames f3eb5dee57 [LoopPred] Generalize profitability check to handle unswitch output
Unswitch (and other loop transforms) like to generate loop exit blocks with unconditional successors, and phi nodes (LCSSA, or simple multiple exiting blocks sharing an exit).  Generalize the "likely very rare exit" check slightly to handle this form.
2019-11-19 14:06:36 -08:00
Philip Reames ad5a84c883 [LoopPred/WC] Use a dominating widenable condition to remove analyze loop exits
This implements a version of the predicateLoopExits transform from IndVarSimplify extended to exploit widenable conditions - and thus be much wider in scope of legality. The code structure ends up being almost entirely different, so I chose to duplicate this into the LoopPredication pass instead of trying to reuse the code in the IndVars.

The core notions of the transform are as follows:

    If we have a widenable condition which controls entry into the loop, we're allowed to widen it arbitrarily. Given that, it's simply a *profitability* question as to what conditions to fold into the widenable branch.
    To avoid pass ordering issues, we want to avoid widening cases that would otherwise be dischargeable. Or... widen in a form which can still be discharged. Thus, we phrase the transform as selecting one analyzeable exit from the set of analyzeable exits to keep. This avoids creating pass ordering complexities.
    Since none of the above proves that we actually exit through our analyzeable exits - we might exit through something else entirely - we limit ourselves to cases where a) the latch is analyzeable and b) the latch is predicted taken, and c) the exit being removed is statically cold.

Differential Revision: https://reviews.llvm.org/D69830
2019-11-18 11:23:29 -08:00
Reid Kleckner 631be5c0d4 Remove Support/Options.h, it is unused
It was added in 2014 in 732e0aa9fb with one use in Scalarizer.cpp.
That one use was then removed when porting to the new pass manager in
2018 in b6f76002d9.

While the RFC and the desire to get off of static initializers for
cl::opt all still stand, this code is now dead, and I think we should
delete this code until someone is ready to do the migration.

There were many clients of CommandLine.h that were it transitively
through LLVMContext.h, so I cleaned that up in 4c1a1d3cf9.

Reviewers: beanz

Differential Revision: https://reviews.llvm.org/D70280
2019-11-15 13:32:52 -08:00
Mikael Holmen 1587c7e86f [Scalarizer] Treat values from unreachable blocks as undef
Summary:
When scalarizing PHI nodes we might try to examine/rewrite
InsertElement nodes in predecessors. If those predecessors
are unreachable from entry, then the IR in those blocks could
have unexpected properties resulting in infinite loops in
Scatterer::operator[].
By simply treating values originating from instructions in
unreachable blocks as undef we do not need to analyse them
further.

This fixes PR41723.

Reviewers: bjope

Reviewed By: bjope

Subscribers: bjope, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D70171
2019-11-15 11:13:37 +01:00
Reid Kleckner 4c1a1d3cf9 Add missing includes needed to prune LLVMContext.h include, NFC
These are a pre-requisite to removing #include "llvm/Support/Options.h"
from LLVMContext.h: https://reviews.llvm.org/D70280
2019-11-14 15:23:15 -08:00
Simon Pilgrim 8c09e472d5 Fix uninitialized variable warning. NFCI. 2019-11-14 14:21:17 +00:00
Simon Pilgrim ba229113a9 SROA - fix uninitialized variable warnings. NFCI. 2019-11-14 14:21:17 +00:00
Reid Kleckner 05da2fe521 Sink all InitializePasses.h includes
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.

I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
  recompiles    touches affected_files  header
  342380        95      3604    llvm/include/llvm/ADT/STLExtras.h
  314730        234     1345    llvm/include/llvm/InitializePasses.h
  307036        118     2602    llvm/include/llvm/ADT/APInt.h
  213049        59      3611    llvm/include/llvm/Support/MathExtras.h
  170422        47      3626    llvm/include/llvm/Support/Compiler.h
  162225        45      3605    llvm/include/llvm/ADT/Optional.h
  158319        63      2513    llvm/include/llvm/ADT/Triple.h
  140322        39      3598    llvm/include/llvm/ADT/StringRef.h
  137647        59      2333    llvm/include/llvm/Support/Error.h
  131619        73      1803    llvm/include/llvm/Support/FileSystem.h

Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.

Reviewers: bkramer, asbirlea, bollu, jdoerfert

Differential Revision: https://reviews.llvm.org/D70211
2019-11-13 16:34:37 -08:00
Alina Sbirlea 4ae74cc99f [GVNHoist] Preserve AAResults.
Resolves PR38906, PR40898.
2019-11-12 14:10:04 -08:00
Tom Weaver 41c3f76dcd [DBG][OPT] Attempt to salvage or undef debug info when removing trivially deletable instructions in the Reassociate Expression pass.
Reviewed By: aprantl, vsk

Differential revision: https://reviews.llvm.org/D69943
2019-11-12 15:17:04 +00:00
Florian Hahn 1ee93240c0 [LoopInterchange] Only skip PHIs with incoming values from the inner loop.
Currently we have limited support for outer loops with multiple basic
blocks after the inner loop exit. But the current checks for creating
PHIs for loop exit values only assumes the header and latches of the
outer loop. It is better to just skip incoming values defined in the
original inner loops. Those are handled earlier.

Reviewers: efriedma, mcrosier

Reviewed By: efriedma

Differential Revision: https://reviews.llvm.org/D70059
2019-11-12 10:30:51 +00:00
Tom Weaver 9f48a160dd Revert "[DBG][OPT] Attempt to salvage or undef debug info when removing trivially deletable instructions in the Reassociate Expression pass."
This reverts commit 1984a27db5.
2019-11-11 14:13:33 +00:00
Tom Weaver 1984a27db5 [DBG][OPT] Attempt to salvage or undef debug info when removing trivially deletable instructions in the Reassociate Expression pass.
Reviewed By: aprantl, vsk

Differential revision: https://reviews.llvm.org/D69943
2019-11-11 13:47:13 +00:00
Tom Weaver 75af15d81e [NFC][TEST_COMMIT] Add fullstop to comment. 2019-11-11 13:38:34 +00:00
Kazu Hirata 9aff5e1c18 [JumpThreading] Fix a comment typo (NFC)
Reviewers: kazu

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D70013
2019-11-08 09:29:46 -08:00
Philip Reames 8d22100f66 [LICM] Support hosting of dynamic allocas out of loops
This patch implements a correct, but not terribly useful, transform. In particular, if we have a dynamic alloca in a loop which is guaranteed to execute, and provably not captured, we hoist the alloca out of the loop. The capture tracking is needed so that we can prove that each previous stack region dies before the next one is allocated. The transform decreases the amount of stack allocation needed by a linear factor (e.g. the iteration count of the loop).

Now, I really hope no one is actually using dynamic allocas. As such, why this patch?

Well, the actual problem I'm hoping to make progress on is allocation hoisting. There's a large draft patch out for review (https://reviews.llvm.org/D60056), and this patch was the smallest chunk of testable functionality I could come up with which takes a step vaguely in that direction.

Once this is in, it makes motivating the changes to capture tracking mentioned in TODOs testable. After that, I hope to extend this to trivial malloc free regions (i.e. free dominating all loop exits) and allocation functions for GCed languages.

Differential Revision: https://reviews.llvm.org/D69227
2019-11-08 08:19:48 -08:00
Philip Reames 787dba7aae [LICM] Hoisting of widenable conditions out of loops
The change itself is straight forward and obvious, but ... there's an existing test checking for exactly the opposite. Both I and Artur think this is simply conservatism in the initial implementation.  If anyone bisects a problem to this, a counter example will be very interesting.

Differential Revision: https://reviews.llvm.org/D69907
2019-11-08 08:19:48 -08:00
Daniil Suchkov 7b9f5401a6 [NFC][IndVarS] Adjust a comment
(test commit)
2019-11-08 14:51:36 +07:00
Philip Reames 8748be7750 [LoopPred] Enable new transformation by default
The basic idea of the transform is to convert variant loop exit conditions into invariant exit conditions by changing the iteration on which the exit is taken when we know that the trip count is unobservable.  See the original patch which introduced the code for a more complete explanation.

The individual parts of this have been reviewed, the result has been fuzzed, and then further analyzed by hand, but despite all of that, I will not be suprised to see breakage here.  If you see problems, please don't hesitate to revert - though please do provide a test case.  The most likely class of issues are latent SCEV bugs and without a reduced test case, I'll be essentially stuck on reducing them.

(Note: A bunch of tests were opted out of the new transform to preserve coverage.  That landed in a previous commit to simplify revert cycles if they turn out to be needed.)
2019-11-06 15:41:57 -08:00
Kazu Hirata f0f73ed8b0 [JumpThreading] Factor out code to clone instructions (NFC)
Summary:
This patch factors out code to clone instructions -- partly for
readability and partly to facilitate an upcoming patch of my own.

Reviewers: wmi

Subscribers: hiraditya, jfb, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D69861
2019-11-06 14:16:48 -08:00
Philip Reames 686f449e3d [WC] Fix a subtle bug in our definition of widenable branch
We had a subtle, but nasty bug in our definition of a widenable branch, and thus in the transforms which used that utility. Specifically, we returned true for any branch which included a widenable condition within it's condition, regardless of whether that widenable condition also had other uses.

The problem is that the result of the WC() call is defined to be one particular value. As such, all users must agree as to what that value is. If we widen a branch without also updating *all other users* of the WC in the same way, we have broken the required semantics.

Most of the textual diff is updating existing transforms not to leave dead uses hanging around. They're largely NFC as the dead instructions would be immediately deleted by other passes. The reason to make these changes is so that the transforms preserve the widenable branch form.

In practice, we don't get bitten by this only because it isn't profitable to CSE WC() calls and the lowering pass from guards uses distinct WC calls per branch.

Differential Revision: https://reviews.llvm.org/D69916
2019-11-06 14:16:34 -08:00
Philip Reames 9bfa5ab3d1 [LoopPred] Fix two subtle issues found by inspection
This patch fixes two issues noticed by inspection when going to enable the loop predication code in IndVarSimplify.

Issue 1 - Both the LoopPredication transform, and the already on by default optimizeLoopExits transform, modify the exit count of the exits they modify. (either to 0 or Infinity) Looking at the code more closely, this was not reflected into SCEV and we were instead running later transforms with incorrect SCEVs. Fixing this requires forgetting the loop, weakening a too strong assert, and updating SCEV to not pessimize results when a loop is provable untaken. I haven't been able to find a test case to demonstrate the miscompile.

Issue 2 - For modules without a data layout, we can end up with unsized pointer typed exit counts. Just bail out of this case.

I think these are the last two issues which need addressed before we enable this by default. The code has already survived a decent amount of fuzzing without revealing either of the above.

Differential Revision: https://reviews.llvm.org/D69695
2019-11-06 14:04:45 -08:00
Kazu Hirata 893afb9ca1 [JumpThreading] Factor out code to merge basic blocks (NFC)
Summary:
This patch factors out code to merge a basic block with its sole
successor -- partly for readability and partly to facilitate an
upcoming patch of my own.

Reviewers: wmi

Subscribers: hiraditya, jfb, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D69852
2019-11-05 09:46:57 -08:00
Kazu Hirata 0016c1f400 [JumpThreading] Factor out common code to update the SSA form (NFC)
Summary:
This patch factors out common code to update the SSA form in
JumpThreading.cpp -- partly for readability and partly to facilitate
an coming patch of my own.

Reviewers: wmi

Subscribers: hiraditya, jfb, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D69811
2019-11-05 06:15:44 -08:00
Simon Pilgrim 77debf51ab [GVN] Fix uninitialized variable warnings. NFCI. 2019-11-05 14:10:32 +00:00
Simon Pilgrim 1842fe6be3 Add missing GVN =operator. NFCI.
Fixes PVS Studio warning that the 'ValueTable' class implements a copy constructor, but lacks the '=' operator.
2019-11-05 13:41:50 +00:00
Roman Lebedev c4b757be02
Revert BCmp Loop Idiom recognition transform (PR43870)
As discussed in https://bugs.llvm.org/show_bug.cgi?id=43870,
this transform is missing a crucial legality check:
the old (non-countable) loop would early-return upon first mismatch,
but there is no such guarantee for bcmp/memcmp.

We'd need to ensure that [PtrA, PtrA+NBytes) and [PtrB, PtrB+NBytes)
are fully dereferenceable memory regions. But that would limit
the transform to constant loop trip counts and would further
cripple it because dereferenceability analysis is *very* partial.

Furthermore, even if all that is done, every single test
would need to be rewritten from scratch.

So let's just give up.
2019-11-02 12:48:03 +03:00
Serguei Katkov 1eb04d289a [LICM] Invalidate SCEV upon instruction hoisting
Since SCEV can cache information about location of an instruction, it should be invalidated when the instruction is moved.
There should be similar bug in code sinking part of LICM, it will be fixed in a follow-up change.

Patch Author: Daniil Suchkov
Reviewers: asbirlea, mkazantsev, reames
Reviewed By: asbirlea
Subscribers: hiraditya, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D69370
2019-10-31 17:37:53 +07:00
Sanjay Patel f2e93d10fe [CVP] prevent propagating poison when substituting edge values into a phi (PR43802)
This phi simplification transform was added with:
D45448

However as shown in PR43802:
https://bugs.llvm.org/show_bug.cgi?id=43802

...we must be careful not to propagate poison when we do the substitution.
There might be some more complicated analysis possible to retain the overflow flag,
but it should always be safe and easy to drop flags (we have similar behavior in
instcombine and other passes).

Differential Revision: https://reviews.llvm.org/D69442
2019-10-28 08:58:28 -04:00
Matt Arsenault 9b0b626d2c Use isConvergent helper instead of directly checking attribute 2019-10-27 19:39:14 -07:00
Guillaume Chatelet e8a0a0904b [Alignment][NFC] Convert AllocaInst to MaybeAlign
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Reviewers: courbet

Reviewed By: courbet

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D69301
2019-10-25 22:41:34 +02:00
Philip Reames 34f68253ca [SCEV] Expose and use maximum constant exit counts for individual loop exits
We were already going to all of the trouble of computing maximum constant exit counts for each loop exit, we might as well expose them through the API.  The change in IndVars is mostly to demonstrate that the wired up code works, but it als very slightly strengthens the transform.  The strengthened case is rather narrow though: it requires one exactly analyzeable exit, one imprecisely analyzeable exit (with the upper bound less than the precise one), and one unanalyzeable exit.  I coudn't construct a reasonably stable test case.

This does increase the memory usage of the BackedgeTakenCount by a factor of 2 in the worst case.

I also noticed the loop in IndVars is O(#Exits ^ 2).  This doesn't change with this patch.  A future patch will cache this result inside of SCEV to avoid requering.
2019-10-24 19:07:33 -07:00
Philip Reames 9b8dd00403 Test commit access via git 2019-10-24 15:10:17 -07:00
Guillaume Chatelet 5b99c189b3 [Alignment][NFC] Convert StoreInst to MaybeAlign
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Reviewers: courbet

Subscribers: hiraditya, jfb, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D69303

llvm-svn: 375499
2019-10-22 12:55:32 +00:00
Guillaume Chatelet 734c74ba14 [Alignment][NFC] Convert LoadInst to MaybeAlign
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Reviewers: courbet

Subscribers: hiraditya, jfb, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D69302

llvm-svn: 375498
2019-10-22 12:35:55 +00:00
Roman Lebedev 7cd7f4a83b [CVP] No-wrap deduction for `shl`
Summary:
This is the last `OverflowingBinaryOperator` for which we don't deduce flags.
D69217 taught `ConstantRange::makeGuaranteedNoWrapRegion()` about it.

The effect is better than of the `mul` patch (D69203):

| statistic                              |     old |     new | delta | % change |
| correlated-value-propagation.NumAddNUW |    7145 |    7144 |    -1 | -0.0140% |
| correlated-value-propagation.NumAddNW  |   12126 |   12125 |    -1 | -0.0082% |
| correlated-value-propagation.NumAnd    |     443 |     446 |     3 |  0.6772% |
| correlated-value-propagation.NumNSW    |    5986 |    7158 |  1172 | 19.5790% |
| correlated-value-propagation.NumNUW    |   10512 |   13304 |  2792 | 26.5601% |
| correlated-value-propagation.NumNW     |   16498 |   20462 |  3964 | 24.0272% |
| correlated-value-propagation.NumShlNSW |       0 |    1172 |  1172 |          |
| correlated-value-propagation.NumShlNUW |       0 |    2793 |  2793 |          |
| correlated-value-propagation.NumShlNW  |       0 |    3965 |  3965 |          |
| instcount.NumAShrInst                  |   13824 |   13790 |   -34 | -0.2459% |
| instcount.NumAddInst                   |  277584 |  277586 |     2 |  0.0007% |
| instcount.NumAndInst                   |   66061 |   66056 |    -5 | -0.0076% |
| instcount.NumBrInst                    |  709153 |  709147 |    -6 | -0.0008% |
| instcount.NumICmpInst                  |  483709 |  483708 |    -1 | -0.0002% |
| instcount.NumSExtInst                  |   79497 |   79496 |    -1 | -0.0013% |
| instcount.NumShlInst                   |   40691 |   40654 |   -37 | -0.0909% |
| instcount.NumSubInst                   |   61997 |   61996 |    -1 | -0.0016% |
| instcount.NumZExtInst                  |   68208 |   68211 |     3 |  0.0044% |
| instcount.TotalBlocks                  |  843916 |  843910 |    -6 | -0.0007% |
| instcount.TotalInsts                   | 7387528 | 7387448 |   -80 | -0.0011% |

Reviewers: nikic, reames, sanjoy, timshen

Reviewed By: nikic

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D69277

llvm-svn: 375455
2019-10-21 21:31:19 +00:00
Simon Pilgrim 57e8f0b055 GVNHoist - silence static analyzer dyn_cast<> null dereference warning in hasEHOrLoadsOnPath call. NFCI.
The static analyzer is warning about a potential null dereference, but we should be able to use cast<> directly and if not assert will fire for us.

llvm-svn: 375429
2019-10-21 17:15:49 +00:00
Simon Pilgrim 783d3c4f0a GuardWidening - silence static analyzer null dereference warning with assertion. NFCI.
llvm-svn: 375428
2019-10-21 17:15:37 +00:00
Simon Pilgrim 0c5df8dbe5 IndVarSimplify - silence static analyzer dyn_cast<> null dereference warning. NFCI.
The static analyzer is warning about a potential null dereference, but we should be able to use cast<> directly and if not assert will fire for us.

llvm-svn: 375426
2019-10-21 17:15:05 +00:00
Guillaume Chatelet 301b4128ac [Alignment][NFC] Finish transition for `Loads`
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Reviewers: courbet

Subscribers: hiraditya, asbirlea, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D69253

llvm-svn: 375419
2019-10-21 15:10:26 +00:00
Sam Elliott d6e6aa8a42 [MemCpyOpt] Fixing Incorrect Code Motion while Handling Aggregate Type Values
Summary:
When MemCpyOpt is handling aggregate type values, if an instruction (let's call it P) between the targeting load (L) and store (S) clobbers the source pointer of L, it will try to hoist S before P. This process will also hoist S's data dependency instructions.

However, the current implementation has a bug that if one of S's dependency instructions is //also// a user of P, MemCpyOpt will not prevent it from being hoisted above P and cause a use-before-define error. For example, in the newly added test file (i.e. `aggregate-type-crash.ll`), it will try to hoist both `store %my_struct %1, %my_struct* %3` and its dependent, `%3 = bitcast i8* %2 to %my_struct*`, above `%2 = call i8* @my_malloc(%my_struct* %0)`. Creating the following BB:
```
entry:
  %1 = bitcast i8* %4 to %my_struct*
  %2 = bitcast %my_struct* %1 to i8*
  %3 = bitcast %my_struct* %0 to i8*
  call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 4 %2, i8* align 4 %3, i64 8, i1 false)
  %4 = call i8* @my_malloc(%my_struct* %0)
  ret void
```
Where there is a use-before-define error between `%1` and `%4`.

Update: The compiler for the Pony Programming Language [also encounter the same bug](https://github.com/ponylang/ponyc/issues/3140)

Patch by Min-Yih Hsu (myhsu)

Reviewers: eugenis, pcc, dblaikie, dneilson, t.p.northover, lattner

Reviewed By: eugenis

Subscribers: lenary, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D66060

llvm-svn: 375403
2019-10-21 10:00:34 +00:00
Roman Lebedev 2927716277 [CVP] Deduce no-wrap on `mul`
Summary:
`ConstantRange::makeGuaranteedNoWrapRegion()` knows how to deal with `mul`
since rL335646, there is exhaustive test coverage.
This is already used by CVP's `processOverflowIntrinsic()`,
and by SCEV's `StrengthenNoWrapFlags()`

That being said, currently, this doesn't help much in the end:
| statistic                              |     old |     new | delta | percentage |
| correlated-value-propagation.NumMulNSW |       4 |     275 |   271 |   6775.00% |
| correlated-value-propagation.NumMulNUW |       4 |    1323 |  1319 |  32975.00% |
| correlated-value-propagation.NumMulNW  |       8 |    1598 |  1590 |  19875.00% |
| correlated-value-propagation.NumNSW    |    5715 |    5986 |   271 |      4.74% |
| correlated-value-propagation.NumNUW    |    9193 |   10512 |  1319 |     14.35% |
| correlated-value-propagation.NumNW     |   14908 |   16498 |  1590 |     10.67% |
| instcount.NumAddInst                   |  275871 |  275869 |    -2 |      0.00% |
| instcount.NumBrInst                    |  708234 |  708232 |    -2 |      0.00% |
| instcount.NumMulInst                   |   43812 |   43810 |    -2 |      0.00% |
| instcount.NumPHIInst                   |  316786 |  316784 |    -2 |      0.00% |
| instcount.NumTruncInst                 |   62165 |   62167 |     2 |      0.00% |
| instcount.NumUDivInst                  |    2528 |    2526 |    -2 |     -0.08% |
| instcount.TotalBlocks                  |  842995 |  842993 |    -2 |      0.00% |
| instcount.TotalInsts                   | 7376486 | 7376478 |    -8 |      0.00% |
(^ test-suite plain, tests still pass)

Reviewers: nikic, reames, luqmana, sanjoy, timshen

Reviewed By: reames

Subscribers: hiraditya, javed.absar, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D69203

llvm-svn: 375396
2019-10-21 08:21:44 +00:00
Philip Reames e884843d78 [IndVars] Add a todo to reflect a further oppurtunity identified in D69009
Nikita pointed out an oppurtunity, might as well document it in the code.

llvm-svn: 375380
2019-10-20 23:44:01 +00:00
Philip Reames 8cbcd2f484 [IndVars] Eliminate loop exits with equivalent exit counts
We can end up with two loop exits whose exit counts are equivalent, but whose textual representation is different and non-obvious. For the sub-case where we have a series of exits which dominate one another (common), eliminate any exits which would iterate *after* a previous exit on the exiting iteration.

As noted in the TODO being removed, I'd always thought this was a good idea, but I've now seen this in a real workload as well.

Interestingly, in review, Nikita pointed out there's let another oppurtunity to leverage SCEV's reasoning.  If we kept track of the min of dominanting exits so far, we could discharge exits with EC >= MDE.  This is less powerful than the existing transform (since later exits aren't considered), but potentially more powerful for any case where SCEV can prove a >= b, but neither a == b or a > b.  I don't have an example to illustrate that oppurtunity, but won't be suprised if we find one and return to handle that case as well.  

Differential Revision: https://reviews.llvm.org/D69009

llvm-svn: 375379
2019-10-20 23:38:02 +00:00
Roman Lebedev e695f4c851 [CVP] setDeducedOverflowingFlags(): actually inc per-opcode stats
This is really embarrassing. Those are pointers, so that offsets the
pointers, not the statistics pointed-by the pointer...

llvm-svn: 375290
2019-10-18 21:19:26 +00:00
Roman Lebedev 284b6d7f4d [CVP] After proving that @llvm.with.overflow()/@llvm.sat() don't overflow, also try to prove other no-wrap
Summary:
CVP, unlike InstCombine, does not run till exaustion.
It only does a single pass.

When dealing with those special binops, if we prove that they can
safely be demoted into their usual binop form,
we do set the no-wrap we deduced. But when dealing with usual binops,
we try to deduce both no-wraps.

So if we convert e.g. @llvm.uadd.with.overflow() to `add nuw`,
we won't attempt to check whether it can be `add nuw nsw`.

This patch proposes to call `processBinOp()` on newly-created binop,
which is identical to what we do for div/rem already.

Reviewers: nikic, spatel, reames

Reviewed By: nikic

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D69183

llvm-svn: 375273
2019-10-18 19:32:47 +00:00
Roman Lebedev fa0ac2558e [NFC][CVP] Count all the no-wraps we proved
Summary:
It looks like this is the only missing statistic in the CVP pass.
Since we prove NSW and NUW separately i'd think we should count them separately too.

Reviewers: nikic, spatel, reames

Reviewed By: spatel

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D68740

llvm-svn: 375230
2019-10-18 13:20:16 +00:00
Philip Reames 8eaa5b9aba [IndVars] Factor out some common code into a utility function
As requested in review of D69009

llvm-svn: 375191
2019-10-17 23:49:46 +00:00
Philip Reames e51d57d64a [IndVars] Split loop predication out of optimizeLoopExits [NFC]
In the process of writing D69009, I realized we have two distinct sets of invariants within this single function, and basically no shared logic.  The optimize loop exit transforms (including the new one in D69009) only care about *analyzeable* exits.  Loop predication, on the other hand, has to reason about *all* exits.  At the moment, we have the property (due to the requirement for an exact btc) that all exits are analyzeable, but that will likely change in the future as we add widenable condition support.

llvm-svn: 375138
2019-10-17 17:29:07 +00:00
Philip Reames 918d779d90 [IndVars] Factor out a helper function for readability [NFC]
llvm-svn: 375133
2019-10-17 16:55:34 +00:00
Simon Pilgrim 3ec83e8187 JumpThreadingPass::UnfoldSelectInstr - silence static analyzer dyn_cast<> null dereference warning. NFCI.
The static analyzer is warning about a potential null dereference, but we should be able to use cast<> directly and if not assert will fire for us.

llvm-svn: 375103
2019-10-17 11:19:41 +00:00
Roman Lebedev fda3243fdd [LoopIdiom] BCmp: check, not assert that loop exits exit out of the loop (PR43687)
We can't normally stumble into that assertion because a tautological
*conditional* `br` in loop body is required, one that always
branches to loop latch. But that should have been always folded
to an unconditional branch before we get it.
But that is not guaranteed if the pass is run standalone.
So let's just promote the assertion into a proper check.

Fixes https://bugs.llvm.org/show_bug.cgi?id=43687

llvm-svn: 375100
2019-10-17 11:01:29 +00:00
Jordan Rupprecht a44bc401b5 [NFC] Fix unused var in release builds
llvm-svn: 375053
2019-10-16 23:09:56 +00:00
Alina Sbirlea 4eb1a573fa [Utils] Cleanup similar cases to MergeBlockIntoPredecessor.
Summary:
There are two cases where a block is merged into its predecessor and the
MergeBlockIntoPredecessor API is not used. Update the API so it can be
reused in the other cases, in order to avoid code duplication.

Cleanup motivated by D68659.

Reviewers: chandlerc, sanjoy.google, george.burgess.iv

Subscribers: llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D68670

llvm-svn: 375050
2019-10-16 22:23:20 +00:00
Philip Reames d4346584fa [IndVars] Fix a miscompile in off-by-default loop predication implementation
The problem is that we can have two loop exits, 'a' and 'b', where 'a' and 'b' would exit at the same iteration, 'a' precedes 'b' along some path, and 'b' is predicated while 'a' is not. In this case (see the previously submitted test case), we causing the loop to exit through 'b' whereas it should have exited through 'a'.

This only applies to loop exits where the exit counts are not provably inequal, but that isn't as much of a restriction as it appears. If we could order the exit counts, we'd have already removed one of the two exits. In theory, we might be able to prove inequality w/o ordering, but I didn't really explore that piece. Instead, I went for the obvious restriction and ensured we didn't predicate exits following non-predicateable exits.

Credit goes to Evgeny Brevnov for figuring out the problematic case. Fuzzing probably also found it (failures seen), but due to some silly infrastructure problems I hadn't gotten to the results before Evgeny hand reduced it from a benchmark (he manually enabled the transform). Once this is fixed, I'll try to filter through the fuzzer failures to see if there's anything additional lurking.

Differential Revision https://reviews.llvm.org/D68956

llvm-svn: 375038
2019-10-16 19:58:26 +00:00
Simon Pilgrim c598ef7f24 SimpleLoopUnswitch - fix uninitialized variable and null dereference warnings. NFCI.
llvm-svn: 374986
2019-10-16 10:38:18 +00:00
Alina Sbirlea 3de89f3416 [NewGVN] Check that call has an access.
Check that a call has an attached MemoryAccess before calling
getClobbering on the instruction.
If no access is attached, the instruction does not access memory.

Resolves PR43441.

llvm-svn: 374920
2019-10-15 17:25:36 +00:00
Alina Sbirlea 35c8af1850 [MemorySSA] Update DomTree before applying MSSA updates.
Update on the fix in rL374850.

llvm-svn: 374918
2019-10-15 17:15:19 +00:00
Guillaume Chatelet 0e62011df8 [Alignment][NFC] Remove dependency on GlobalObject::setAlignment(unsigned)
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Reviewers: courbet

Subscribers: arsenm, mehdi_amini, jvesely, nhaehnle, hiraditya, steven_wu, dexonsmith, dang, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D68944

llvm-svn: 374880
2019-10-15 11:24:36 +00:00
David L. Jones 6bfdebb412 Revert [SROA] Reuse existing lifetime markers if possible
This reverts r374692 (git commit 92694eba93)

Reproducer sent to commit thread on llvm-commits.

llvm-svn: 374859
2019-10-15 04:32:07 +00:00
Alina Sbirlea b7a3353061 [MemorySSA] Update for partial unswitch.
Update MSSA for blocks cloned when doing partial unswitching.
Enable additional testing with MSSA.
Resolves PR43641.

llvm-svn: 374850
2019-10-14 23:52:39 +00:00
Roman Lebedev 76e02af704 [LoopIdiom] BCmp: loop exit count must not be wider than size_t that `bcmp` takes
As reported by Joerg Sonnenberger in IRC, for 32-bit systems,
where pointer and size_t are 32-bit, if you use 64-bit-wide variable
in the loop, you could end up with loop exit count being of the type
wider than the size_t. Now, i'm not sure if we can produce `bcmp`
from that (just truncate?), but we certainly should not assert/miscompile.

llvm-svn: 374811
2019-10-14 19:46:34 +00:00
Joerg Sonnenberger 9681ea9560 Reapply r374743 with a fix for the ocaml binding
Add a pass to lower is.constant and objectsize intrinsics

This pass lowers is.constant and objectsize intrinsics not simplified by
earlier constant folding, i.e. if the object given is not constant or if
not using the optimized pass chain. The result is recursively simplified
and constant conditionals are pruned, so that dead blocks are removed
even for -O0. This allows inline asm blocks with operand constraints to
work all the time.

The new pass replaces the existing lowering in the codegen-prepare pass
and fallbacks in SDAG/GlobalISEL and FastISel. The latter now assert
on the intrinsics.

Differential Revision: https://reviews.llvm.org/D65280

llvm-svn: 374784
2019-10-14 16:15:14 +00:00
Dmitri Gribenko 1a21f98ac3 Revert "Add a pass to lower is.constant and objectsize intrinsics"
This reverts commit r374743. It broke the build with Ocaml enabled:
http://lab.llvm.org:8011/builders/clang-x86_64-debian-fast/builds/19218

llvm-svn: 374768
2019-10-14 12:22:48 +00:00
Florian Hahn df4fd31128 [NewGVN] Use m_Br to simplify code a bit. (NFC)
llvm-svn: 374744
2019-10-13 23:34:13 +00:00
Joerg Sonnenberger e4300c392d Add a pass to lower is.constant and objectsize intrinsics
This pass lowers is.constant and objectsize intrinsics not simplified by
earlier constant folding, i.e. if the object given is not constant or if
not using the optimized pass chain. The result is recursively simplified
and constant conditionals are pruned, so that dead blocks are removed
even for -O0. This allows inline asm blocks with operand constraints to
work all the time.

The new pass replaces the existing lowering in the codegen-prepare pass
and fallbacks in SDAG/GlobalISEL and FastISel. The latter now assert
on the intrinsics.

Differential Revision: https://reviews.llvm.org/D65280

llvm-svn: 374743
2019-10-13 23:00:15 +00:00
Johannes Doerfert 92694eba93 [SROA] Reuse existing lifetime markers if possible
Summary:
If the underlying alloca did not change, we do not necessarily need new
lifetime markers. This patch adds a check and reuses the old ones if
possible.

Reviewers: reames, ssarda, t.p.northover, hfinkel

Subscribers: hiraditya, bollu, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D68900

llvm-svn: 374692
2019-10-13 02:21:23 +00:00
Roman Lebedev c8ac97edc8 [NFC][LoopIdiom] Adjust FIXME to be self-explanatory
llvm-svn: 374670
2019-10-12 16:48:16 +00:00
Roman Lebedev 76cdcf25b8 [LoopIdiomRecognize] Recommit: BCmp loop idiom recognition
Summary:
This is a recommit, this originally landed in rL370454 but was
subsequently reverted in  rL370788 due to
https://bugs.llvm.org/show_bug.cgi?id=43206
The reduced testcase was added to bcmp-negative-tests.ll
as @pr43206_different_loops - we must ensure that the SCEV's
we got are both for the same loop we are currently investigating.

Original commit message:

@mclow.lists brought up this issue up in IRC.
It is a reasonably common problem to compare some two values for equality.
Those may be just some integers, strings or arrays of integers.

In C, there is `memcmp()`, `bcmp()` functions.
In C++, there exists `std::equal()` algorithm.
One can also write that function manually.

libstdc++'s `std::equal()` is specialized to directly call `memcmp()` for
various types, but not `std::byte` from C++2a. https://godbolt.org/z/mx2ejJ

libc++ does not do anything like that, it simply relies on simple C++'s
`operator==()`. https://godbolt.org/z/er0Zwf (GOOD!)

So likely, there exists a certain performance opportunities.
Let's compare performance of naive `std::equal()` (no `memcmp()`) with one that
is using `memcmp()` (in this case, compiled with modified compiler). {F8768213}

```
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <iterator>
#include <limits>
#include <random>
#include <type_traits>
#include <utility>
#include <vector>

#include "benchmark/benchmark.h"

template <class T>
bool equal(T* a, T* a_end, T* b) noexcept {
  for (; a != a_end; ++a, ++b) {
    if (*a != *b) return false;
  }
  return true;
}

template <typename T>
std::vector<T> getVectorOfRandomNumbers(size_t count) {
  std::random_device rd;
  std::mt19937 gen(rd());
  std::uniform_int_distribution<T> dis(std::numeric_limits<T>::min(),
                                       std::numeric_limits<T>::max());
  std::vector<T> v;
  v.reserve(count);
  std::generate_n(std::back_inserter(v), count,
                  [&dis, &gen]() { return dis(gen); });
  assert(v.size() == count);
  return v;
}

struct Identical {
  template <typename T>
  static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
    auto Tmp = getVectorOfRandomNumbers<T>(count);
    return std::make_pair(Tmp, std::move(Tmp));
  }
};

struct InequalHalfway {
  template <typename T>
  static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
    auto V0 = getVectorOfRandomNumbers<T>(count);
    auto V1 = V0;
    V1[V1.size() / size_t(2)]++;  // just change the value.
    return std::make_pair(std::move(V0), std::move(V1));
  }
};

template <class T, class Gen>
void BM_bcmp(benchmark::State& state) {
  const size_t Length = state.range(0);

  const std::pair<std::vector<T>, std::vector<T>> Data =
      Gen::template Gen<T>(Length);
  const std::vector<T>& a = Data.first;
  const std::vector<T>& b = Data.second;
  assert(a.size() == Length && b.size() == a.size());

  benchmark::ClobberMemory();
  benchmark::DoNotOptimize(a);
  benchmark::DoNotOptimize(a.data());
  benchmark::DoNotOptimize(b);
  benchmark::DoNotOptimize(b.data());

  for (auto _ : state) {
    const bool is_equal = equal(a.data(), a.data() + a.size(), b.data());
    benchmark::DoNotOptimize(is_equal);
  }
  state.SetComplexityN(Length);
  state.counters["eltcnt"] =
      benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariant);
  state.counters["eltcnt/sec"] =
      benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariantRate);
  const size_t BytesRead = 2 * sizeof(T) * Length;
  state.counters["bytes_read/iteration"] =
      benchmark::Counter(BytesRead, benchmark::Counter::kDefaults,
                         benchmark::Counter::OneK::kIs1024);
  state.counters["bytes_read/sec"] = benchmark::Counter(
      BytesRead, benchmark::Counter::kIsIterationInvariantRate,
      benchmark::Counter::OneK::kIs1024);
}

template <typename T>
static void CustomArguments(benchmark::internal::Benchmark* b) {
  const size_t L2SizeBytes = []() {
    for (const benchmark::CPUInfo::CacheInfo& I :
         benchmark::CPUInfo::Get().caches) {
      if (I.level == 2) return I.size;
    }
    return 0;
  }();
  // What is the largest range we can check to always fit within given L2 cache?
  const size_t MaxLen = L2SizeBytes / /*total bufs*/ 2 /
                        /*maximal elt size*/ sizeof(T) / /*safety margin*/ 2;
  b->RangeMultiplier(2)->Range(1, MaxLen)->Complexity(benchmark::oN);
}

BENCHMARK_TEMPLATE(BM_bcmp, uint8_t, Identical)
    ->Apply(CustomArguments<uint8_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint16_t, Identical)
    ->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint32_t, Identical)
    ->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint64_t, Identical)
    ->Apply(CustomArguments<uint64_t>);

BENCHMARK_TEMPLATE(BM_bcmp, uint8_t, InequalHalfway)
    ->Apply(CustomArguments<uint8_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint16_t, InequalHalfway)
    ->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint32_t, InequalHalfway)
    ->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint64_t, InequalHalfway)
    ->Apply(CustomArguments<uint64_t>);
```
{F8768210}
```
$ ~/src/googlebenchmark/tools/compare.py --no-utest benchmarks build-{old,new}/test/llvm-bcmp-bench
RUNNING: build-old/test/llvm-bcmp-bench --benchmark_out=/tmp/tmpb6PEUx
2019-04-25 21:17:11
Running build-old/test/llvm-bcmp-bench
Run on (8 X 4000 MHz CPU s)
CPU Caches:
  L1 Data 16K (x8)
  L1 Instruction 64K (x4)
  L2 Unified 2048K (x4)
  L3 Unified 8192K (x1)
Load Average: 0.65, 3.90, 4.14
---------------------------------------------------------------------------------------------------
Benchmark                                         Time             CPU   Iterations UserCounters...
---------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000           432131 ns       432101 ns         1613 bytes_read/iteration=1000k bytes_read/sec=2.20706G/s eltcnt=825.856M eltcnt/sec=1.18491G/s
BM_bcmp<uint8_t, Identical>_BigO               0.86 N          0.86 N
BM_bcmp<uint8_t, Identical>_RMS                   8 %             8 %
<...>
BM_bcmp<uint16_t, Identical>/256000          161408 ns       161409 ns         4027 bytes_read/iteration=1000k bytes_read/sec=5.90843G/s eltcnt=1030.91M eltcnt/sec=1.58603G/s
BM_bcmp<uint16_t, Identical>_BigO              0.67 N          0.67 N
BM_bcmp<uint16_t, Identical>_RMS                 25 %            25 %
<...>
BM_bcmp<uint32_t, Identical>/128000           81497 ns        81488 ns         8415 bytes_read/iteration=1000k bytes_read/sec=11.7032G/s eltcnt=1077.12M eltcnt/sec=1.57078G/s
BM_bcmp<uint32_t, Identical>_BigO              0.71 N          0.71 N
BM_bcmp<uint32_t, Identical>_RMS                 42 %            42 %
<...>
BM_bcmp<uint64_t, Identical>/64000            50138 ns        50138 ns        10909 bytes_read/iteration=1000k bytes_read/sec=19.0209G/s eltcnt=698.176M eltcnt/sec=1.27647G/s
BM_bcmp<uint64_t, Identical>_BigO              0.84 N          0.84 N
BM_bcmp<uint64_t, Identical>_RMS                 27 %            27 %
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000      192405 ns       192392 ns         3638 bytes_read/iteration=1000k bytes_read/sec=4.95694G/s eltcnt=1.86266G eltcnt/sec=2.66124G/s
BM_bcmp<uint8_t, InequalHalfway>_BigO          0.38 N          0.38 N
BM_bcmp<uint8_t, InequalHalfway>_RMS              3 %             3 %
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000     127858 ns       127860 ns         5477 bytes_read/iteration=1000k bytes_read/sec=7.45873G/s eltcnt=1.40211G eltcnt/sec=2.00219G/s
BM_bcmp<uint16_t, InequalHalfway>_BigO         0.50 N          0.50 N
BM_bcmp<uint16_t, InequalHalfway>_RMS             0 %             0 %
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000      49140 ns        49140 ns        14281 bytes_read/iteration=1000k bytes_read/sec=19.4072G/s eltcnt=1.82797G eltcnt/sec=2.60478G/s
BM_bcmp<uint32_t, InequalHalfway>_BigO         0.40 N          0.40 N
BM_bcmp<uint32_t, InequalHalfway>_RMS            18 %            18 %
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000       32101 ns        32099 ns        21786 bytes_read/iteration=1000k bytes_read/sec=29.7101G/s eltcnt=1.3943G eltcnt/sec=1.99381G/s
BM_bcmp<uint64_t, InequalHalfway>_BigO         0.50 N          0.50 N
BM_bcmp<uint64_t, InequalHalfway>_RMS             1 %             1 %
RUNNING: build-new/test/llvm-bcmp-bench --benchmark_out=/tmp/tmpQ46PP0
2019-04-25 21:19:29
Running build-new/test/llvm-bcmp-bench
Run on (8 X 4000 MHz CPU s)
CPU Caches:
  L1 Data 16K (x8)
  L1 Instruction 64K (x4)
  L2 Unified 2048K (x4)
  L3 Unified 8192K (x1)
Load Average: 1.01, 2.85, 3.71
---------------------------------------------------------------------------------------------------
Benchmark                                         Time             CPU   Iterations UserCounters...
---------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000            18593 ns        18590 ns        37565 bytes_read/iteration=1000k bytes_read/sec=51.2991G/s eltcnt=19.2333G eltcnt/sec=27.541G/s
BM_bcmp<uint8_t, Identical>_BigO               0.04 N          0.04 N
BM_bcmp<uint8_t, Identical>_RMS                  37 %            37 %
<...>
BM_bcmp<uint16_t, Identical>/256000           18950 ns        18948 ns        37223 bytes_read/iteration=1000k bytes_read/sec=50.3324G/s eltcnt=9.52909G eltcnt/sec=13.511G/s
BM_bcmp<uint16_t, Identical>_BigO              0.08 N          0.08 N
BM_bcmp<uint16_t, Identical>_RMS                 34 %            34 %
<...>
BM_bcmp<uint32_t, Identical>/128000           18627 ns        18627 ns        37895 bytes_read/iteration=1000k bytes_read/sec=51.198G/s eltcnt=4.85056G eltcnt/sec=6.87168G/s
BM_bcmp<uint32_t, Identical>_BigO              0.16 N          0.16 N
BM_bcmp<uint32_t, Identical>_RMS                 35 %            35 %
<...>
BM_bcmp<uint64_t, Identical>/64000            18855 ns        18855 ns        37458 bytes_read/iteration=1000k bytes_read/sec=50.5791G/s eltcnt=2.39731G eltcnt/sec=3.3943G/s
BM_bcmp<uint64_t, Identical>_BigO              0.32 N          0.32 N
BM_bcmp<uint64_t, Identical>_RMS                 33 %            33 %
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000        9570 ns         9569 ns        73500 bytes_read/iteration=1000k bytes_read/sec=99.6601G/s eltcnt=37.632G eltcnt/sec=53.5046G/s
BM_bcmp<uint8_t, InequalHalfway>_BigO          0.02 N          0.02 N
BM_bcmp<uint8_t, InequalHalfway>_RMS             29 %            29 %
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000       9547 ns         9547 ns        74343 bytes_read/iteration=1000k bytes_read/sec=99.8971G/s eltcnt=19.0318G eltcnt/sec=26.8159G/s
BM_bcmp<uint16_t, InequalHalfway>_BigO         0.04 N          0.04 N
BM_bcmp<uint16_t, InequalHalfway>_RMS            29 %            29 %
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000       9396 ns         9394 ns        73521 bytes_read/iteration=1000k bytes_read/sec=101.518G/s eltcnt=9.41069G eltcnt/sec=13.6255G/s
BM_bcmp<uint32_t, InequalHalfway>_BigO         0.08 N          0.08 N
BM_bcmp<uint32_t, InequalHalfway>_RMS            30 %            30 %
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000        9499 ns         9498 ns        73802 bytes_read/iteration=1000k bytes_read/sec=100.405G/s eltcnt=4.72333G eltcnt/sec=6.73808G/s
BM_bcmp<uint64_t, InequalHalfway>_BigO         0.16 N          0.16 N
BM_bcmp<uint64_t, InequalHalfway>_RMS            28 %            28 %
Comparing build-old/test/llvm-bcmp-bench to build-new/test/llvm-bcmp-bench
Benchmark                                                  Time             CPU      Time Old      Time New       CPU Old       CPU New
---------------------------------------------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000                      -0.9570         -0.9570        432131         18593        432101         18590
<...>
BM_bcmp<uint16_t, Identical>/256000                     -0.8826         -0.8826        161408         18950        161409         18948
<...>
BM_bcmp<uint32_t, Identical>/128000                     -0.7714         -0.7714         81497         18627         81488         18627
<...>
BM_bcmp<uint64_t, Identical>/64000                      -0.6239         -0.6239         50138         18855         50138         18855
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000                 -0.9503         -0.9503        192405          9570        192392          9569
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000                -0.9253         -0.9253        127858          9547        127860          9547
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000                -0.8088         -0.8088         49140          9396         49140          9394
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000                 -0.7041         -0.7041         32101          9499         32099          9498
```

What can we tell from the benchmark?
* Performance of naive equality check somewhat improves with element size,
  maxing out at eltcnt/sec=1.58603G/s for uint16_t, or bytes_read/sec=19.0209G/s
  for uint64_t. I think, that instability implies performance problems.
* Performance of `memcmp()`-aware benchmark always maxes out at around
  bytes_read/sec=51.2991G/s for every type. That is 2.6x the throughput of the
  naive variant!
* eltcnt/sec metric for the `memcmp()`-aware benchmark maxes out at
  eltcnt/sec=27.541G/s for uint8_t (was: eltcnt/sec=1.18491G/s, so 24x) and
  linearly decreases with element size.
  For uint64_t, it's ~4x+ the elements/second.
* The call obvious is more pricey than the loop, with small element count.
  As it can be seen from the full output {F8768210}, the `memcmp()` is almost
  universally worse, independent of the element size (and thus buffer size) when
  element count is less than 8.

So all in all, bcmp idiom does indeed pose untapped performance headroom.
This diff does implement said idiom recognition. I think a reasonable test
coverage is present, but do tell if there is anything obvious missing.

Now, quality. This does succeed to build and pass the test-suite, at least
without any non-bundled elements. {F8768216} {F8768217}
This transform fires 91 times:
```
$ /build/test-suite/utils/compare.py -m loop-idiom.NumBCmp result-new.json
Tests: 1149
Metric: loop-idiom.NumBCmp

Program                                         result-new

MultiSourc...Benchmarks/7zip/7zip-benchmark    79.00
MultiSource/Applications/d/make_dparser         3.00
SingleSource/UnitTests/vla                      2.00
MultiSource/Applications/Burg/burg              1.00
MultiSourc.../Applications/JM/lencod/lencod     1.00
MultiSource/Applications/lemon/lemon            1.00
MultiSource/Benchmarks/Bullet/bullet            1.00
MultiSourc...e/Benchmarks/MallocBench/gs/gs     1.00
MultiSourc...gs-C/TimberWolfMC/timberwolfmc     1.00
MultiSourc...Prolangs-C/simulator/simulator     1.00
```
The size changes are:
I'm not sure what's going on with SingleSource/UnitTests/vla.test yet, did not look.
```
$ /build/test-suite/utils/compare.py -m size..text result-{old,new}.json --filter-hash
Tests: 1149
Same hash: 907 (filtered out)
Remaining: 242
Metric: size..text

Program                                        result-old result-new diff
test-suite...ingleSource/UnitTests/vla.test   753.00     833.00     10.6%
test-suite...marks/7zip/7zip-benchmark.test   1001697.00 966657.00  -3.5%
test-suite...ngs-C/simulator/simulator.test   32369.00   32321.00   -0.1%
test-suite...plications/d/make_dparser.test   89585.00   89505.00   -0.1%
test-suite...ce/Applications/Burg/burg.test   40817.00   40785.00   -0.1%
test-suite.../Applications/lemon/lemon.test   47281.00   47249.00   -0.1%
test-suite...TimberWolfMC/timberwolfmc.test   250065.00  250113.00   0.0%
test-suite...chmarks/MallocBench/gs/gs.test   149889.00  149873.00  -0.0%
test-suite...ications/JM/lencod/lencod.test   769585.00  769569.00  -0.0%
test-suite.../Benchmarks/Bullet/bullet.test   770049.00  770049.00   0.0%
test-suite...HMARK_ANISTROPIC_DIFFUSION/128    NaN        NaN        nan%
test-suite...HMARK_ANISTROPIC_DIFFUSION/256    NaN        NaN        nan%
test-suite...CHMARK_ANISTROPIC_DIFFUSION/64    NaN        NaN        nan%
test-suite...CHMARK_ANISTROPIC_DIFFUSION/32    NaN        NaN        nan%
test-suite...ENCHMARK_BILATERAL_FILTER/64/4    NaN        NaN        nan%
Geomean difference                                                   nan%
         result-old    result-new       diff
count  1.000000e+01  10.00000      10.000000
mean   3.152090e+05  311695.40000  0.006749
std    3.790398e+05  372091.42232  0.036605
min    7.530000e+02  833.00000    -0.034981
25%    4.243300e+04  42401.00000  -0.000866
50%    1.197370e+05  119689.00000 -0.000392
75%    6.397050e+05  639705.00000 -0.000005
max    1.001697e+06  966657.00000  0.106242
```

I don't have timings though.

And now to the code. The basic idea is to completely replace the whole loop.
If we can't fully kill it, don't transform.
I have left one or two comments in the code, so hopefully it can be understood.

Also, there is a few TODO's that i have left for follow-ups:
* widening of `memcmp()`/`bcmp()`
* step smaller than the comparison size
* Metadata propagation
* more than two blocks as long as there is still a single backedge?
* ???

Reviewers: reames, fhahn, mkazantsev, chandlerc, craig.topper, courbet

Reviewed By: courbet

Subscribers: miyuki, hiraditya, xbolva00, nikic, jfb, gchatelet, courbet, llvm-commits, mclow.lists

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D61144

llvm-svn: 374662
2019-10-12 15:35:32 +00:00
Zi Xuan Wu 9802268ad3 recommit: [LoopVectorize][PowerPC] Estimate int and float register pressure separately in loop-vectorize
In loop-vectorize, interleave count and vector factor depend on target register number. Currently, it does not
estimate different register pressure for different register class separately(especially for scalar type,
float type should not be on the same position with int type), so it's not accurate. Specifically,
it causes too many times interleaving/unrolling, result in too many register spills in loop body and hurting performance.

So we need classify the register classes in IR level, and importantly these are abstract register classes,
and are not the target register class of backend provided in td file. It's used to establish the mapping between
the types of IR values and the number of simultaneous live ranges to which we'd like to limit for some set of those types.

For example, POWER target, register num is special when VSX is enabled. When VSX is enabled, the number of int scalar register is 32(GPR),
float is 64(VSR), but for int and float vector register both are 64(VSR). So there should be 2 kinds of register class when vsx is enabled,
and 3 kinds of register class when VSX is NOT enabled.

It runs on POWER target, it makes big(+~30%) performance improvement in one specific bmk(503.bwaves_r) of spec2017 and no other obvious degressions.

Differential revision: https://reviews.llvm.org/D67148

llvm-svn: 374634
2019-10-12 02:53:04 +00:00
Philip Reames 2d5820cd72 [CVP] Remove a masking operation if range information implies it's a noop
This is really a known bits style transformation, but known bits isn't context sensitive. The particular case which comes up happens to involve a range which allows range based reasoning to eliminate the mask pattern, so handle that case specifically in CVP.

InstCombine likes to generate the mask-by-low-bits pattern when widening an arithmetic expression which includes a zext in the middle.

Differential Revision: https://reviews.llvm.org/D68811

llvm-svn: 374506
2019-10-11 03:48:56 +00:00
Alina Sbirlea 7faa14a98b [MemorySSA] Make the use of moveAllAfterMergeBlocks consistent.
Summary:
The rule for the moveAllAfterMergeBlocks API si for all instructions
from `From` to have been moved to `To`, while keeping the CFG edges (and
block terminators) unchanged.
Update all the callsites for moveAllAfterMergeBlocks to follow this.

Pending follow-up: since the same behavior is needed everytime, merge
all callsites into one. The common denominator may be the call to
`MergeBlockIntoPredecessor`.

Resolves PR43569.

Reviewers: george.burgess.iv

Subscribers: Prazek, sanjoy.google, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D68659

llvm-svn: 374177
2019-10-09 15:54:24 +00:00
Roman Lebedev 354ba6985c [CVP} Replace SExt with ZExt if the input is known-non-negative
Summary:
zero-extension is far more friendly for further analysis.
While this doesn't directly help with the shift-by-signext problem, this is not unrelated.

This has the following effect on test-suite (numbers collected after the finish of middle-end module pass manager):
| Statistic                            |     old |     new | delta | percent change |
| correlated-value-propagation.NumSExt |       0 |    6026 |  6026 |   +100.00%     |
| instcount.NumAddInst                 |  272860 |  271283 | -1577 |     -0.58%     |
| instcount.NumAllocaInst              |   27227 |   27226 | -1    |      0.00%     |
| instcount.NumAndInst                 |   63502 |   63320 | -182  |     -0.29%     |
| instcount.NumAShrInst                |   13498 |   13407 | -91   |     -0.67%     |
| instcount.NumAtomicCmpXchgInst       |    1159 |    1159 |  0    |      0.00%     |
| instcount.NumAtomicRMWInst           |    5036 |    5036 |  0    |      0.00%     |
| instcount.NumBitCastInst             |  672482 |  672353 | -129  |     -0.02%     |
| instcount.NumBrInst                  |  702768 |  702195 | -573  |     -0.08%     |
| instcount.NumCallInst                |  518285 |  518205 | -80   |     -0.02%     |
| instcount.NumExtractElementInst      |   18481 |   18482 |  1    |      0.01%     |
| instcount.NumExtractValueInst        |   18290 |   18288 | -2    |     -0.01%     |
| instcount.NumFAddInst                |  139035 |  138963 | -72   |     -0.05%     |
| instcount.NumFCmpInst                |   10358 |   10348 | -10   |     -0.10%     |
| instcount.NumFDivInst                |   30310 |   30302 | -8    |     -0.03%     |
| instcount.NumFenceInst               |     387 |     387 |  0    |      0.00%     |
| instcount.NumFMulInst                |   93873 |   93806 | -67   |     -0.07%     |
| instcount.NumFPExtInst               |    7148 |    7144 | -4    |     -0.06%     |
| instcount.NumFPToSIInst              |    2823 |    2838 |  15   |      0.53%     |
| instcount.NumFPToUIInst              |    1251 |    1251 |  0    |      0.00%     |
| instcount.NumFPTruncInst             |    2195 |    2191 | -4    |     -0.18%     |
| instcount.NumFSubInst                |   92109 |   92103 | -6    |     -0.01%     |
| instcount.NumGetElementPtrInst       | 1221423 | 1219157 | -2266 |     -0.19%     |
| instcount.NumICmpInst                |  479140 |  478929 | -211  |     -0.04%     |
| instcount.NumIndirectBrInst          |       2 |       2 |  0    |      0.00%     |
| instcount.NumInsertElementInst       |   66089 |   66094 |  5    |      0.01%     |
| instcount.NumInsertValueInst         |    2032 |    2030 | -2    |     -0.10%     |
| instcount.NumIntToPtrInst            |   19641 |   19641 |  0    |      0.00%     |
| instcount.NumInvokeInst              |   21789 |   21788 | -1    |      0.00%     |
| instcount.NumLandingPadInst          |   12051 |   12051 |  0    |      0.00%     |
| instcount.NumLoadInst                |  880079 |  878673 | -1406 |     -0.16%     |
| instcount.NumLShrInst                |   25919 |   25921 |  2    |      0.01%     |
| instcount.NumMulInst                 |   42416 |   42417 |  1    |      0.00%     |
| instcount.NumOrInst                  |  100826 |  100576 | -250  |     -0.25%     |
| instcount.NumPHIInst                 |  315118 |  314092 | -1026 |     -0.33%     |
| instcount.NumPtrToIntInst            |   15933 |   15939 |  6    |      0.04%     |
| instcount.NumResumeInst              |    2156 |    2156 |  0    |      0.00%     |
| instcount.NumRetInst                 |   84485 |   84484 | -1    |      0.00%     |
| instcount.NumSDivInst                |    8599 |    8597 | -2    |     -0.02%     |
| instcount.NumSelectInst              |   45577 |   45913 |  336  |      0.74%     |
| instcount.NumSExtInst                |   84026 |   78278 | -5748 |     -6.84%     |
| instcount.NumShlInst                 |   39796 |   39726 | -70   |     -0.18%     |
| instcount.NumShuffleVectorInst       |  100272 |  100292 |  20   |      0.02%     |
| instcount.NumSIToFPInst              |   29131 |   29113 | -18   |     -0.06%     |
| instcount.NumSRemInst                |    1543 |    1543 |  0    |      0.00%     |
| instcount.NumStoreInst               |  805394 |  804351 | -1043 |     -0.13%     |
| instcount.NumSubInst                 |   61337 |   61414 |  77   |      0.13%     |
| instcount.NumSwitchInst              |    8527 |    8524 | -3    |     -0.04%     |
| instcount.NumTruncInst               |   60523 |   60484 | -39   |     -0.06%     |
| instcount.NumUDivInst                |    2381 |    2381 |  0    |      0.00%     |
| instcount.NumUIToFPInst              |    5549 |    5549 |  0    |      0.00%     |
| instcount.NumUnreachableInst         |    9855 |    9855 |  0    |      0.00%     |
| instcount.NumURemInst                |    1305 |    1305 |  0    |      0.00%     |
| instcount.NumXorInst                 |   10230 |   10081 | -149  |     -1.46%     |
| instcount.NumZExtInst                |   60353 |   66840 |  6487 |     10.75%     |
| instcount.TotalBlocks                |  829582 |  829004 | -578  |     -0.07%     |
| instcount.TotalFuncs                 |   83818 |   83817 | -1    |      0.00%     |
| instcount.TotalInsts                 | 7316574 | 7308483 | -8091 |     -0.11%     |

TLDR: we produce -0.11% less instructions, -6.84% less `sext`, +10.75% more `zext`.
To be noted, clearly, not all new `zext`'s are produced by this fold.

(And now i guess it might have been interesting to measure this for D68103 :S)

Reviewers: nikic, spatel, reames, dberlin

Reviewed By: nikic

Subscribers: hiraditya, jfb, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D68654

llvm-svn: 374112
2019-10-08 20:29:48 +00:00
Jinsong Ji 9912232b46 Revert "[LoopVectorize][PowerPC] Estimate int and float register pressure separately in loop-vectorize"
Also Revert "[LoopVectorize] Fix non-debug builds after rL374017"

This reverts commit 9f41deccc0.
This reverts commit 18b6fe07bc.

The patch is breaking PowerPC internal build, checked with author, reverting
on behalf of him for now due to timezone.

llvm-svn: 374091
2019-10-08 17:32:56 +00:00
Graham Hunter b302561b76 [SVE][IR] Scalable Vector size queries and IR instruction support
* Adds a TypeSize struct to represent the known minimum size of a type
  along with a flag to indicate that the runtime size is a integer multiple
  of that size
* Converts existing size query functions from Type.h and DataLayout.h to
  return a TypeSize result
* Adds convenience methods (including a transparent conversion operator
  to uint64_t) so that most existing code 'just works' as if the return
  values were still scalars.
* Uses the new size queries along with ElementCount to ensure that all
  supported instructions used with scalable vectors can be constructed
  in IR.

Reviewers: hfinkel, lattner, rkruppe, greened, rovka, rengolin, sdesmalen

Reviewed By: rovka, sdesmalen

Differential Revision: https://reviews.llvm.org/D53137

llvm-svn: 374042
2019-10-08 12:53:54 +00:00
Florian Hahn 537225a6a3 [LoopRotate] Unconditionally get DomTree.
LoopRotate is a loop pass and the DomTree should always be available.

Similar to a70c526143

llvm-svn: 374036
2019-10-08 11:54:42 +00:00
Florian Hahn a70c526143 [LoopRotate] Unconditionally get ScalarEvolution.
Summary: LoopRotate is a loop pass and SE should always be available.

Reviewers: anemet, asbirlea

Reviewed By: asbirlea

Differential Revision: https://reviews.llvm.org/D68573

llvm-svn: 374026
2019-10-08 08:46:38 +00:00
Zi Xuan Wu 9f41deccc0 [LoopVectorize][PowerPC] Estimate int and float register pressure separately in loop-vectorize
In loop-vectorize, interleave count and vector factor depend on target register number. Currently, it does not
estimate different register pressure for different register class separately(especially for scalar type,
float type should not be on the same position with int type), so it's not accurate. Specifically,
it causes too many times interleaving/unrolling, result in too many register spills in loop body and hurting performance.

So we need classify the register classes in IR level, and importantly these are abstract register classes,
and are not the target register class of backend provided in td file. It's used to establish the mapping between
the types of IR values and the number of simultaneous live ranges to which we'd like to limit for some set of those types.

For example, POWER target, register num is special when VSX is enabled. When VSX is enabled, the number of int scalar register is 32(GPR),
float is 64(VSR), but for int and float vector register both are 64(VSR). So there should be 2 kinds of register class when vsx is enabled,
and 3 kinds of register class when VSX is NOT enabled.

It runs on POWER target, it makes big(+~30%) performance improvement in one specific bmk(503.bwaves_r) of spec2017 and no other obvious degressions.

Differential revision: https://reviews.llvm.org/D67148

llvm-svn: 374017
2019-10-08 03:28:33 +00:00
Chen Zheng 9806a1d5f9 [ConstantRange] [NFC] replace addWithNoSignedWrap with addWithNoWrap.
llvm-svn: 374016
2019-10-08 03:00:31 +00:00
Jordan Rose fdaa742174 Second attempt to add iterator_range::empty()
Doing this makes MSVC complain that `empty(someRange)` could refer to
either C++17's std::empty or LLVM's llvm::empty, which previously we
avoided via SFINAE because std::empty is defined in terms of an empty
member rather than begin and end. So, switch callers over to the new
method as it is added.

https://reviews.llvm.org/D68439

llvm-svn: 373935
2019-10-07 18:14:24 +00:00
Alina Sbirlea 145cdad119 [MemorySSA] Don't hoist stores if interfering uses (as calls) exist.
llvm-svn: 373674
2019-10-03 22:20:04 +00:00
Guillaume Chatelet d400d45150 [Alignment][NFC] Remove StoreInst::setAlignment(unsigned)
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Reviewers: courbet, bollu, jdoerfert

Subscribers: hiraditya, asbirlea, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D68268

llvm-svn: 373595
2019-10-03 13:17:21 +00:00
Florian Hahn eb6700b57e [Local] Remove unused LazyValueInfo pointer from removeUnreachableBlock.
There are no users that pass in LazyValueInfo, so we can simplify the
function a bit.

Reviewers: brzycki, asbirlea, davide

Reviewed By: davide

Differential Revision: https://reviews.llvm.org/D68297

llvm-svn: 373488
2019-10-02 16:58:13 +00:00
Simon Pilgrim 91b4085b03 LowerExpectIntrinsic handlePhiDef - silence static analyzer dyn_cast<PHINode> null dereference warning. NFCI.
The static analyzer is warning about a potential null dereference, but we should be able to use cast<PHINode> directly and if not assert will fire for us.

llvm-svn: 373481
2019-10-02 16:03:45 +00:00
Simon Pilgrim da4cbae696 LICM - remove unused variable and reduce scope of another variable. NFCI.
Appeases both clang static analyzer and cppcheck

llvm-svn: 373453
2019-10-02 11:49:53 +00:00
Philip Reames 0200626f0b [IndVars] An implementation of loop predication without a need for speculation
This patch implements a variation of a well known techniques for JIT compilers - we have an implementation in tree as LoopPredication - but with an interesting twist. This version does not assume the ability to execute a path which wasn't taken in the original program (such as a guard or widenable.condition intrinsic). The benefit is that this works for arbitrary IR from any frontend (including C/C++/Fortran). The tradeoff is that it's restricted to read only loops without implicit exits.

This builds on SCEV, and can thus eliminate the loop varying portion of the any early exit where all exits are understandable by SCEV. A key advantage is that fixing deficiency exposed in SCEV - already found one while writing test cases - will also benefit all of full redundancy elimination (and most other loop transforms).

I haven't seen anything in the literature which quite matches this. Given that, I'm not entirely sure that keeping the name "loop predication" is helpful. Anyone have suggestions for a better name? This is analogous to partial redundancy elimination - since we remove the condition flowing around the backedge - and has some parallels to our existing transforms which try to make conditions invariant in loops.

Factoring wise, I chose to put this in IndVarSimplify since it's a generally applicable to all workloads. I could split this off into it's own pass, but we'd then probably want to add that new pass every place we use IndVars.  One solid argument for splitting it off into it's own pass is that this transform is "too good". It breaks a huge number of existing IndVars test cases as they tend to be simple read only loops.  At the moment, I've opted it off by default, but if we add this to IndVars and enable, we'll have to update around 20 test files to add side effects or disable this transform.

Near term plan is to fuzz this extensively while off by default, reflect and discuss on the factoring issue mentioned just above, and then enable by default.  I also need to give some though to supporting widenable conditions in this framing.

Differential Revision: https://reviews.llvm.org/D67408

llvm-svn: 373351
2019-10-01 17:03:44 +00:00
Alina Sbirlea 0fa07f4276 [LegacyPassManager] Deprecate the BasicBlockPass/Manager.
Summary:
The BasicBlockManager is potentially broken and should not be used.
Replace all uses of the BasicBlockPass with a FunctionBlockPass+loop on
blocks.

Reviewers: chandlerc

Subscribers: jholewinski, sanjoy.google, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D68234

llvm-svn: 373254
2019-09-30 20:17:23 +00:00
Alina Sbirlea 8299fd9dee [EarlyCSE] Pass preserves AA.
llvm-svn: 373231
2019-09-30 17:08:40 +00:00
Guillaume Chatelet ab11b9188d [Alignment][NFC] Remove AllocaInst::setAlignment(unsigned)
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Reviewers: courbet

Subscribers: jholewinski, arsenm, jvesely, nhaehnle, eraman, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D68141

llvm-svn: 373207
2019-09-30 13:34:44 +00:00
Guillaume Chatelet 17380227e8 [Alignment][NFC] Remove LoadInst::setAlignment(unsigned)
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Reviewers: courbet, jdoerfert

Subscribers: hiraditya, asbirlea, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D68142

llvm-svn: 373195
2019-09-30 09:37:05 +00:00
Aditya Kumar a6d9d31279 [LLVM-C][Ocaml] Add MergeFunctions and DCE pass
MergeFunctions and DCE pass are missing from OCaml/C-api. This patch
adds them.

Differential Revision: https://reviews.llvm.org/D65071

Reviewers: whitequark, hiraditya, deadalnix

Reviewed By: whitequark

Subscribers: llvm-commits

Tags: #llvm

Authored by: kren1

llvm-svn: 373170
2019-09-29 16:06:22 +00:00
Roman Lebedev d30093bb8a [DivRemPairs] Don't assert that we won't ever get expanded-form rem pairs in different BB's (PR43500)
If we happen to have the same div in two basic blocks,
and in one of those we also happen to have the rem part,
we'd match the div-rem pair, but the wrong ones.
So let's drop overly-ambiguous assert.

Fixes https://bugs.llvm.org/show_bug.cgi?id=43500

llvm-svn: 373167
2019-09-29 15:25:24 +00:00
Simon Pilgrim 623b0e6963 SCCP - silence static analyzer dyn_cast<StructType> null dereference warning. NFCI.
The static analyzer is warning about a potential null dereference, but we should be able to use cast<StructType> directly and if not assert will fire for us.

llvm-svn: 373095
2019-09-27 15:49:10 +00:00
Guillaume Chatelet d886f391af [Alignment][NFC] MaybeAlign in GVNExpression
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Reviewers: courbet

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D67922

llvm-svn: 373054
2019-09-27 08:56:43 +00:00
Kit Barton 50bc610460 [LoopFusion] Add ability to fuse guarded loops
Summary:
This patch extends the current capabilities in loop fusion to fuse guarded loops
(as defined in https://reviews.llvm.org/D63885). The patch adds the necessary
safety checks to ensure that it safe to fuse the guarded loops (control flow
equivalent, no intervening code, and same guard conditions). It also provides an
alternative method to perform the actual fusion of guarded loops. The mechanics
to fuse guarded loops are slightly different then fusing non-guarded loops, so I
opted to keep them separate methods. I will be cleaning this up in later
patches, and hope to converge on a single method to fuse both guarded and
non-guarded loops, but for now I think the review will be easier to keep them
separate.

Reviewers: jdoerfert, Meinersbur, dmgreen, etiotto, Whitney

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D65464

llvm-svn: 373018
2019-09-26 21:42:45 +00:00
Zhaoshi Zheng 1128fa0924 [Unroll] Do NOT unroll a loop with small runtime upperbound
For a runtime loop if we can compute its trip count upperbound:

Don't unroll if:
1. loop is not guaranteed to run either zero or upperbound iterations; and
2. trip count upperbound is less than UnrollMaxUpperBound
Unless user or TTI asked to do so.

If unrolling, limit unroll factor to loop's trip count upperbound.

Differential Revision: https://reviews.llvm.org/D62989

Change-Id: I6083c46a9d98b2e22cd855e60523fdc5a4929c73
llvm-svn: 373017
2019-09-26 21:40:27 +00:00
Eli Friedman 69dddfe268 [LICM] Don't verify domtree/loopinfo unless EXPENSIVE_CHECKS is enabled.
For large functions, verifying the whole function after each loop takes
non-linear time.

Differential Revision: https://reviews.llvm.org/D67571

llvm-svn: 372924
2019-09-25 22:35:47 +00:00
Alexey Lapshin 49f3c2b604 [Debuginfo] dbg.value points to undef value after Induction Variable Simplification.
Induction Variable Simplification pass does not update dbg.value intrinsic.

Before:

%add = add nuw nsw i32 %ArgIndex.06, 1
call void @llvm.dbg.value(metadata i32 %add, metadata !17, metadata !DIExpression())

After:

%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
call void @llvm.dbg.value(metadata i64 undef, metadata !17, metadata !DIExpression())

There should be:

%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
call void @llvm.dbg.value(metadata i64 %indvars.iv.next, metadata !17, metadata !DIExpression())

Differential Revision: https://reviews.llvm.org/D67770

llvm-svn: 372703
2019-09-24 08:47:03 +00:00
Simon Pilgrim 2441455bc8 [LSR] Silence static analyzer null dereference warnings with assertions. NFCI.
Add assertions to make it clear that GenerateIVChain / NarrowSearchSpaceByPickingWinnerRegs should succeed in finding non-null values

llvm-svn: 372518
2019-09-22 17:59:24 +00:00
Simon Pilgrim db05a482bc ConstantHoisting - Silence static analyzer dyn_cast<PointerType> null dereference warning. NFCI.
llvm-svn: 372517
2019-09-22 17:45:05 +00:00
Suyog Sarda cd629ea0a8 SROA: Check Total Bits of vector type
While Promoting alloca instruction of Vector Type, 
Check total size in bits of its slices too.
If they don't match, don't promote the alloca instruction.

Bug : https://bugs.llvm.org/show_bug.cgi?id=42585

llvm-svn: 372480
2019-09-21 18:16:37 +00:00
Suyog Sarda c62136e674 Test mail. NFC.
Testing commit acces. NFC.

llvm-svn: 372479
2019-09-21 18:03:30 +00:00
Jakub Kuderski e6b2164723 Don't use invalidated iterators in FlattenCFGPass
Summary:
FlattenCFG may erase unnecessary blocks, which also invalidates iterators to those erased blocks.
Before this patch, `iterativelyFlattenCFG` could try to increment a BB iterator after that BB has been removed and crash.

This patch makes FlattenCFGPass use `WeakVH` to skip over erased blocks.

Reviewers: dblaikie, tstellar, davide, sanjoy, asbirlea, grosser

Reviewed By: asbirlea

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D67672

llvm-svn: 372347
2019-09-19 19:39:42 +00:00
Sanjay Patel 13e71ce693 [Float2Int] avoid crashing on unreachable code (PR38502)
In the example from:
https://bugs.llvm.org/show_bug.cgi?id=38502
...we hit infinite looping/crashing because we have non-standard IR -
an instruction operand is used before defined.
This and other unusual constructs are allowed in unreachable blocks,
so avoid the problem by using DominatorTree to step around landmines.

Differential Revision: https://reviews.llvm.org/D67766

llvm-svn: 372339
2019-09-19 16:31:17 +00:00
Serguei Katkov a44768858c [Unroll] Add an option to control complete unrolling
Add an ability to specify the max full unroll count for LoopUnrollPass pass
in pass options.

Reviewers: fhahn, fedor.sergeev
Reviewed By: fedor.sergeev
Subscribers: hiraditya, zzheng, dmgreen, llvm-commits
Differential Revision: https://reviews.llvm.org/D67701

llvm-svn: 372305
2019-09-19 06:57:29 +00:00
Florian Hahn 1bd58870e5 [LoopUnroll] Use LoopSize+1 as threshold, to allow unrolling loops matching LoopSize.
We use `< UP.Threshold` later on, so we should use LoopSize + 1, to
allow unrolling if the result won't exceed to loop size.

Fixes PR43305.

Reviewers: efriedma, dmgreen, paquette

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D67594

llvm-svn: 372084
2019-09-17 09:02:48 +00:00
Alina Sbirlea 6943472d45 [MemorySSA] Pass (for update) MSSAU when hoisting instructions.
Summary: Pass MSSAU to makeLoopInvariant in order to properly update MSSA.

Reviewers: george.burgess.iv

Subscribers: Prazek, sanjoy.google, uabelho, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D67470

llvm-svn: 371748
2019-09-12 17:12:51 +00:00
Eli Friedman 403e08d4cf [ConstantHoisting] Fix non-determinism.
Differential Revision: https://reviews.llvm.org/D66114

llvm-svn: 371644
2019-09-11 18:55:00 +00:00
Petr Hosek 7bdad08429 Reland "clang-misexpect: Profile Guided Validation of Performance Annotations in LLVM"
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300

We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.

We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.

A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.

In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect

Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324

llvm-svn: 371635
2019-09-11 16:19:50 +00:00
Florian Hahn e79381c3f7 [LoopInterchange] Drop unused splitInnerLoopHeader declaration.
llvm-svn: 371601
2019-09-11 10:32:15 +00:00
Dmitri Gribenko 57256af307 Revert "clang-misexpect: Profile Guided Validation of Performance Annotations in LLVM"
This reverts commit r371584. It introduced a dependency from compiler-rt
to llvm/include/ADT, which is problematic for multiple reasons.

One is that it is a novel dependency edge, which needs cross-compliation
machinery for llvm/include/ADT (yes, it is true that right now
compiler-rt included only header-only libraries, however, if we allow
compiler-rt to depend on anything from ADT, other libraries will
eventually get used).

Secondly, depending on ADT from compiler-rt exposes ADT symbols from
compiler-rt, which would cause ODR violations when Clang is built with
the profile library.

llvm-svn: 371598
2019-09-11 09:16:17 +00:00
Florian Hahn e4961218fd [LoopInterchange] Properly move condition, induction increment and ops to latch.
Currently we only rely on the induction increment to come before the
condition to ensure the required instructions get moved to the new
latch.

This patch duplicates and moves the required instructions to the
newly created latch. We move the condition to the end of the new block,
then process its operands. We stop at operands that are defined
outside the loop, or are the induction PHI.

We duplicate the instructions and update the uses in the moved
instructions, to ensure other users remain intact. See the added
test2 for such an example.

Reviewers: efriedma, mcrosier

Reviewed By: efriedma

Differential Revision: https://reviews.llvm.org/D67367

llvm-svn: 371595
2019-09-11 08:23:23 +00:00
Petr Hosek 394a8ed8f1 clang-misexpect: Profile Guided Validation of Performance Annotations in LLVM
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300

We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.

We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.

A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.

In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect

Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324

llvm-svn: 371584
2019-09-11 01:09:16 +00:00
Dmitri Gribenko 2bf8d77453 Revert "Reland "r364412 [ExpandMemCmp][MergeICmps] Move passes out of CodeGen into opt pipeline.""
This reverts commit r371502, it broke tests
(clang/test/CodeGenCXX/auto-var-init.cpp).

llvm-svn: 371507
2019-09-10 10:39:09 +00:00
Clement Courbet 612c260ec3 Reland "r364412 [ExpandMemCmp][MergeICmps] Move passes out of CodeGen into opt pipeline."
With a fix for sanitizer breakage (see explanation in D60318).

llvm-svn: 371502
2019-09-10 09:18:00 +00:00
Petr Hosek 7d1757aba8 Revert "clang-misexpect: Profile Guided Validation of Performance Annotations in LLVM"
This reverts commit r371484: this broke sanitizer-x86_64-linux-fast bot.

llvm-svn: 371488
2019-09-10 06:25:13 +00:00
Petr Hosek a10802fd73 clang-misexpect: Profile Guided Validation of Performance Annotations in LLVM
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300

We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.

We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.

A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.

In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect

Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324

llvm-svn: 371484
2019-09-10 03:11:39 +00:00
Teresa Johnson 9c27b59cec Change TargetLibraryInfo analysis passes to always require Function
Summary:
This is the first change to enable the TLI to be built per-function so
that -fno-builtin* handling can be migrated to use function attributes.
See discussion on D61634 for background. This is an enabler for fixing
handling of these options for LTO, for example.

This change should not affect behavior, as the provided function is not
yet used to build a specifically per-function TLI, but rather enables
that migration.

Most of the changes were very mechanical, e.g. passing a Function to the
legacy analysis pass's getTLI interface, or in Module level cases,
adding a callback. This is similar to the way the per-function TTI
analysis works.

There was one place where we were looking for builtins but not in the
context of a specific function. See FindCXAAtExit in
lib/Transforms/IPO/GlobalOpt.cpp. I'm somewhat concerned my workaround
could provide the wrong behavior in some corner cases. Suggestions
welcome.

Reviewers: chandlerc, hfinkel

Subscribers: arsenm, dschuff, jvesely, nhaehnle, mehdi_amini, javed.absar, sbc100, jgravelle-google, eraman, aheejin, steven_wu, george.burgess.iv, dexonsmith, jfb, asbirlea, gchatelet, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D66428

llvm-svn: 371284
2019-09-07 03:09:36 +00:00
Denis Bakhvalov 58f172f05a [MergedLoadStoreMotion] Sink stores to BB with more than 2 predecessors
If we have:

bb5:
  br i1 %arg3, label %bb6, label %bb7

bb6:
  %tmp = getelementptr inbounds i32, i32* %arg1, i64 2
  store i32 3, i32* %tmp, align 4
  br label %bb9

bb7:
  %tmp8 = getelementptr inbounds i32, i32* %arg1, i64 2
  store i32 3, i32* %tmp8, align 4
  br label %bb9

bb9:  ; preds = %bb4, %bb6, %bb7
  ...

We can't sink stores directly into bb9.
This patch creates new BB that is successor of %bb6 and %bb7
and sinks stores into that block.

SplitFooterBB is the parameter to the pass that controls
that behavior.

Change-Id: I7fdf50a772b84633e4b1b860e905bf7e3e29940f
Differential: https://reviews.llvm.org/D66234
llvm-svn: 371089
2019-09-05 17:00:32 +00:00
Philip Reames 4228245e41 [NFC] Switch last couple of invariant_load checks to use hasMetadata
llvm-svn: 370948
2019-09-04 18:27:31 +00:00
Philip Reames 27820f9909 [Instruction] Add hasMetadata(Kind) helper [NFC]
It's a common idiom, so let's add the obvious wrapper for metadata kinds which are basically booleans.

llvm-svn: 370933
2019-09-04 17:28:48 +00:00
Sanjay Patel 4a2cd7be5a [InstSimplify] guard against unreachable code (PR43218)
This would crash:
https://bugs.llvm.org/show_bug.cgi?id=43218

llvm-svn: 370911
2019-09-04 15:12:55 +00:00
Philip Reames 30dc2da827 [GVN] Remove a todo introduced w/rL370791
When I dug into this, it turns out to be *much* more involved than I'd realized and doesn't actually simplify anything.  

The general purpose of the leader table is that we want to find the most-dominating definition quickly.  The problem for equivalance folding is slightly different; we want to find the most dominating *value* whose definition block dominates our use quickly.

To make this change, we'd end up having to restructure the leader table (either the sorting thereof, or maybe even introducing multiple leader tables per value) and that complexity is just not worth it.

llvm-svn: 370824
2019-09-03 21:56:17 +00:00
Philip Reames 37e2f5f125 [GVN] Propagate simple equalities from assumes within the tail of the block
This extends the existing logic for propagating constant expressions in an analogous manner for what we do across basic blocks. The core point is that we chose some order of operands, and canonicalize uses towards that one.

The heuristic used is inspired by the one used across blocks; in a follow up change, I'd plan to common them so that the cross block version uses the slightly stronger ordering herein. 

As noted by the TODOs in the code, there's a good amount of room for improving the existing code and making it more powerful.  Some follow up work planned.

Differential Revision: https://reviews.llvm.org/D66977

llvm-svn: 370791
2019-09-03 17:31:19 +00:00
Roman Lebedev bdd65351d3 Revert r370454 "[LoopIdiomRecognize] BCmp loop idiom recognition"
https://bugs.llvm.org/show_bug.cgi?id=43206 was filed,
claiming that there is a miscompilation.
Reverting until i investigate.

This reverts commit r370454

llvm-svn: 370788
2019-09-03 17:14:56 +00:00
Nikita Popov b9e668f2e7 [CVP] Generate simpler code for elided with.overflow intrinsics
Use a { iN undef, i1 false } struct as the base, and only insert
the first operand, instead of using { iN undef, i1 undef } as the
base and inserting both. This is the same as what we do in InstCombine.

Differential Revision: https://reviews.llvm.org/D67034

llvm-svn: 370573
2019-08-31 09:58:37 +00:00
Wei Mi 5ef5829fb0 [GVN] Verify value equality before doing phi translation for call instruction
This is an updated version of https://reviews.llvm.org/D66909 to fix PR42605.

Basically, current phi translatation translates an old value number to an new
value number for a call instruction based on the literal equality of call
expression, without verifying there is no clobber in between. This is incorrect.

To get a finegrain check, use MachineDependence analysis to do the job. However,
this is still not ideal. Although given a call instruction,
`MemoryDependenceResults::getCallDependencyFrom` returns identical call
instructions without clobber in between using MemDepResult with its DepType to
be `Def`. However, identical is too strict here and we want it to be relaxed a
little to consider phi-translation -- callee is the same, param operands can be
different. That means changing the semantic of `MemDepResult::Def` and I don't
know the potential impact.

So currently the patch is still conservative to only handle
MemDepResult::NonFuncLocal, which means the current call has no function local
clobber. If there is clobber, even if the clobber doesn't stand in between the
current call and the call with the new value, we won't do phi-translate.

Differential Revision: https://reviews.llvm.org/D67013

llvm-svn: 370547
2019-08-30 23:01:22 +00:00
Haojian Wu ed170c9bf9 Remove an extra ";", NFC.
llvm-svn: 370465
2019-08-30 12:09:31 +00:00
Roman Lebedev 5c9f3cfec7 [LoopIdiomRecognize] BCmp loop idiom recognition
Summary:
@mclow.lists brought up this issue up in IRC.
It is a reasonably common problem to compare some two values for equality.
Those may be just some integers, strings or arrays of integers.

In C, there is `memcmp()`, `bcmp()` functions.
In C++, there exists `std::equal()` algorithm.
One can also write that function manually.

libstdc++'s `std::equal()` is specialized to directly call `memcmp()` for
various types, but not `std::byte` from C++2a. https://godbolt.org/z/mx2ejJ

libc++ does not do anything like that, it simply relies on simple C++'s
`operator==()`. https://godbolt.org/z/er0Zwf (GOOD!)

So likely, there exists a certain performance opportunities.
Let's compare performance of naive `std::equal()` (no `memcmp()`) with one that
is using `memcmp()` (in this case, compiled with modified compiler). {F8768213}

```
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <iterator>
#include <limits>
#include <random>
#include <type_traits>
#include <utility>
#include <vector>

#include "benchmark/benchmark.h"

template <class T>
bool equal(T* a, T* a_end, T* b) noexcept {
  for (; a != a_end; ++a, ++b) {
    if (*a != *b) return false;
  }
  return true;
}

template <typename T>
std::vector<T> getVectorOfRandomNumbers(size_t count) {
  std::random_device rd;
  std::mt19937 gen(rd());
  std::uniform_int_distribution<T> dis(std::numeric_limits<T>::min(),
                                       std::numeric_limits<T>::max());
  std::vector<T> v;
  v.reserve(count);
  std::generate_n(std::back_inserter(v), count,
                  [&dis, &gen]() { return dis(gen); });
  assert(v.size() == count);
  return v;
}

struct Identical {
  template <typename T>
  static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
    auto Tmp = getVectorOfRandomNumbers<T>(count);
    return std::make_pair(Tmp, std::move(Tmp));
  }
};

struct InequalHalfway {
  template <typename T>
  static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
    auto V0 = getVectorOfRandomNumbers<T>(count);
    auto V1 = V0;
    V1[V1.size() / size_t(2)]++;  // just change the value.
    return std::make_pair(std::move(V0), std::move(V1));
  }
};

template <class T, class Gen>
void BM_bcmp(benchmark::State& state) {
  const size_t Length = state.range(0);

  const std::pair<std::vector<T>, std::vector<T>> Data =
      Gen::template Gen<T>(Length);
  const std::vector<T>& a = Data.first;
  const std::vector<T>& b = Data.second;
  assert(a.size() == Length && b.size() == a.size());

  benchmark::ClobberMemory();
  benchmark::DoNotOptimize(a);
  benchmark::DoNotOptimize(a.data());
  benchmark::DoNotOptimize(b);
  benchmark::DoNotOptimize(b.data());

  for (auto _ : state) {
    const bool is_equal = equal(a.data(), a.data() + a.size(), b.data());
    benchmark::DoNotOptimize(is_equal);
  }
  state.SetComplexityN(Length);
  state.counters["eltcnt"] =
      benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariant);
  state.counters["eltcnt/sec"] =
      benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariantRate);
  const size_t BytesRead = 2 * sizeof(T) * Length;
  state.counters["bytes_read/iteration"] =
      benchmark::Counter(BytesRead, benchmark::Counter::kDefaults,
                         benchmark::Counter::OneK::kIs1024);
  state.counters["bytes_read/sec"] = benchmark::Counter(
      BytesRead, benchmark::Counter::kIsIterationInvariantRate,
      benchmark::Counter::OneK::kIs1024);
}

template <typename T>
static void CustomArguments(benchmark::internal::Benchmark* b) {
  const size_t L2SizeBytes = []() {
    for (const benchmark::CPUInfo::CacheInfo& I :
         benchmark::CPUInfo::Get().caches) {
      if (I.level == 2) return I.size;
    }
    return 0;
  }();
  // What is the largest range we can check to always fit within given L2 cache?
  const size_t MaxLen = L2SizeBytes / /*total bufs*/ 2 /
                        /*maximal elt size*/ sizeof(T) / /*safety margin*/ 2;
  b->RangeMultiplier(2)->Range(1, MaxLen)->Complexity(benchmark::oN);
}

BENCHMARK_TEMPLATE(BM_bcmp, uint8_t, Identical)
    ->Apply(CustomArguments<uint8_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint16_t, Identical)
    ->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint32_t, Identical)
    ->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint64_t, Identical)
    ->Apply(CustomArguments<uint64_t>);

BENCHMARK_TEMPLATE(BM_bcmp, uint8_t, InequalHalfway)
    ->Apply(CustomArguments<uint8_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint16_t, InequalHalfway)
    ->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint32_t, InequalHalfway)
    ->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint64_t, InequalHalfway)
    ->Apply(CustomArguments<uint64_t>);
```
{F8768210}
```
$ ~/src/googlebenchmark/tools/compare.py --no-utest benchmarks build-{old,new}/test/llvm-bcmp-bench
RUNNING: build-old/test/llvm-bcmp-bench --benchmark_out=/tmp/tmpb6PEUx
2019-04-25 21:17:11
Running build-old/test/llvm-bcmp-bench
Run on (8 X 4000 MHz CPU s)
CPU Caches:
  L1 Data 16K (x8)
  L1 Instruction 64K (x4)
  L2 Unified 2048K (x4)
  L3 Unified 8192K (x1)
Load Average: 0.65, 3.90, 4.14
---------------------------------------------------------------------------------------------------
Benchmark                                         Time             CPU   Iterations UserCounters...
---------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000           432131 ns       432101 ns         1613 bytes_read/iteration=1000k bytes_read/sec=2.20706G/s eltcnt=825.856M eltcnt/sec=1.18491G/s
BM_bcmp<uint8_t, Identical>_BigO               0.86 N          0.86 N
BM_bcmp<uint8_t, Identical>_RMS                   8 %             8 %
<...>
BM_bcmp<uint16_t, Identical>/256000          161408 ns       161409 ns         4027 bytes_read/iteration=1000k bytes_read/sec=5.90843G/s eltcnt=1030.91M eltcnt/sec=1.58603G/s
BM_bcmp<uint16_t, Identical>_BigO              0.67 N          0.67 N
BM_bcmp<uint16_t, Identical>_RMS                 25 %            25 %
<...>
BM_bcmp<uint32_t, Identical>/128000           81497 ns        81488 ns         8415 bytes_read/iteration=1000k bytes_read/sec=11.7032G/s eltcnt=1077.12M eltcnt/sec=1.57078G/s
BM_bcmp<uint32_t, Identical>_BigO              0.71 N          0.71 N
BM_bcmp<uint32_t, Identical>_RMS                 42 %            42 %
<...>
BM_bcmp<uint64_t, Identical>/64000            50138 ns        50138 ns        10909 bytes_read/iteration=1000k bytes_read/sec=19.0209G/s eltcnt=698.176M eltcnt/sec=1.27647G/s
BM_bcmp<uint64_t, Identical>_BigO              0.84 N          0.84 N
BM_bcmp<uint64_t, Identical>_RMS                 27 %            27 %
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000      192405 ns       192392 ns         3638 bytes_read/iteration=1000k bytes_read/sec=4.95694G/s eltcnt=1.86266G eltcnt/sec=2.66124G/s
BM_bcmp<uint8_t, InequalHalfway>_BigO          0.38 N          0.38 N
BM_bcmp<uint8_t, InequalHalfway>_RMS              3 %             3 %
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000     127858 ns       127860 ns         5477 bytes_read/iteration=1000k bytes_read/sec=7.45873G/s eltcnt=1.40211G eltcnt/sec=2.00219G/s
BM_bcmp<uint16_t, InequalHalfway>_BigO         0.50 N          0.50 N
BM_bcmp<uint16_t, InequalHalfway>_RMS             0 %             0 %
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000      49140 ns        49140 ns        14281 bytes_read/iteration=1000k bytes_read/sec=19.4072G/s eltcnt=1.82797G eltcnt/sec=2.60478G/s
BM_bcmp<uint32_t, InequalHalfway>_BigO         0.40 N          0.40 N
BM_bcmp<uint32_t, InequalHalfway>_RMS            18 %            18 %
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000       32101 ns        32099 ns        21786 bytes_read/iteration=1000k bytes_read/sec=29.7101G/s eltcnt=1.3943G eltcnt/sec=1.99381G/s
BM_bcmp<uint64_t, InequalHalfway>_BigO         0.50 N          0.50 N
BM_bcmp<uint64_t, InequalHalfway>_RMS             1 %             1 %
RUNNING: build-new/test/llvm-bcmp-bench --benchmark_out=/tmp/tmpQ46PP0
2019-04-25 21:19:29
Running build-new/test/llvm-bcmp-bench
Run on (8 X 4000 MHz CPU s)
CPU Caches:
  L1 Data 16K (x8)
  L1 Instruction 64K (x4)
  L2 Unified 2048K (x4)
  L3 Unified 8192K (x1)
Load Average: 1.01, 2.85, 3.71
---------------------------------------------------------------------------------------------------
Benchmark                                         Time             CPU   Iterations UserCounters...
---------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000            18593 ns        18590 ns        37565 bytes_read/iteration=1000k bytes_read/sec=51.2991G/s eltcnt=19.2333G eltcnt/sec=27.541G/s
BM_bcmp<uint8_t, Identical>_BigO               0.04 N          0.04 N
BM_bcmp<uint8_t, Identical>_RMS                  37 %            37 %
<...>
BM_bcmp<uint16_t, Identical>/256000           18950 ns        18948 ns        37223 bytes_read/iteration=1000k bytes_read/sec=50.3324G/s eltcnt=9.52909G eltcnt/sec=13.511G/s
BM_bcmp<uint16_t, Identical>_BigO              0.08 N          0.08 N
BM_bcmp<uint16_t, Identical>_RMS                 34 %            34 %
<...>
BM_bcmp<uint32_t, Identical>/128000           18627 ns        18627 ns        37895 bytes_read/iteration=1000k bytes_read/sec=51.198G/s eltcnt=4.85056G eltcnt/sec=6.87168G/s
BM_bcmp<uint32_t, Identical>_BigO              0.16 N          0.16 N
BM_bcmp<uint32_t, Identical>_RMS                 35 %            35 %
<...>
BM_bcmp<uint64_t, Identical>/64000            18855 ns        18855 ns        37458 bytes_read/iteration=1000k bytes_read/sec=50.5791G/s eltcnt=2.39731G eltcnt/sec=3.3943G/s
BM_bcmp<uint64_t, Identical>_BigO              0.32 N          0.32 N
BM_bcmp<uint64_t, Identical>_RMS                 33 %            33 %
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000        9570 ns         9569 ns        73500 bytes_read/iteration=1000k bytes_read/sec=99.6601G/s eltcnt=37.632G eltcnt/sec=53.5046G/s
BM_bcmp<uint8_t, InequalHalfway>_BigO          0.02 N          0.02 N
BM_bcmp<uint8_t, InequalHalfway>_RMS             29 %            29 %
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000       9547 ns         9547 ns        74343 bytes_read/iteration=1000k bytes_read/sec=99.8971G/s eltcnt=19.0318G eltcnt/sec=26.8159G/s
BM_bcmp<uint16_t, InequalHalfway>_BigO         0.04 N          0.04 N
BM_bcmp<uint16_t, InequalHalfway>_RMS            29 %            29 %
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000       9396 ns         9394 ns        73521 bytes_read/iteration=1000k bytes_read/sec=101.518G/s eltcnt=9.41069G eltcnt/sec=13.6255G/s
BM_bcmp<uint32_t, InequalHalfway>_BigO         0.08 N          0.08 N
BM_bcmp<uint32_t, InequalHalfway>_RMS            30 %            30 %
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000        9499 ns         9498 ns        73802 bytes_read/iteration=1000k bytes_read/sec=100.405G/s eltcnt=4.72333G eltcnt/sec=6.73808G/s
BM_bcmp<uint64_t, InequalHalfway>_BigO         0.16 N          0.16 N
BM_bcmp<uint64_t, InequalHalfway>_RMS            28 %            28 %
Comparing build-old/test/llvm-bcmp-bench to build-new/test/llvm-bcmp-bench
Benchmark                                                  Time             CPU      Time Old      Time New       CPU Old       CPU New
---------------------------------------------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000                      -0.9570         -0.9570        432131         18593        432101         18590
<...>
BM_bcmp<uint16_t, Identical>/256000                     -0.8826         -0.8826        161408         18950        161409         18948
<...>
BM_bcmp<uint32_t, Identical>/128000                     -0.7714         -0.7714         81497         18627         81488         18627
<...>
BM_bcmp<uint64_t, Identical>/64000                      -0.6239         -0.6239         50138         18855         50138         18855
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000                 -0.9503         -0.9503        192405          9570        192392          9569
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000                -0.9253         -0.9253        127858          9547        127860          9547
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000                -0.8088         -0.8088         49140          9396         49140          9394
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000                 -0.7041         -0.7041         32101          9499         32099          9498
```

What can we tell from the benchmark?
* Performance of naive equality check somewhat improves with element size,
  maxing out at eltcnt/sec=1.58603G/s for uint16_t, or bytes_read/sec=19.0209G/s
  for uint64_t. I think, that instability implies performance problems.
* Performance of `memcmp()`-aware benchmark always maxes out at around
  bytes_read/sec=51.2991G/s for every type. That is 2.6x the throughput of the
  naive variant!
* eltcnt/sec metric for the `memcmp()`-aware benchmark maxes out at
  eltcnt/sec=27.541G/s for uint8_t (was: eltcnt/sec=1.18491G/s, so 24x) and
  linearly decreases with element size.
  For uint64_t, it's ~4x+ the elements/second.
* The call obvious is more pricey than the loop, with small element count.
  As it can be seen from the full output {F8768210}, the `memcmp()` is almost
  universally worse, independent of the element size (and thus buffer size) when
  element count is less than 8.

So all in all, bcmp idiom does indeed pose untapped performance headroom.
This diff does implement said idiom recognition. I think a reasonable test
coverage is present, but do tell if there is anything obvious missing.

Now, quality. This does succeed to build and pass the test-suite, at least
without any non-bundled elements. {F8768216} {F8768217}
This transform fires 91 times:
```
$ /build/test-suite/utils/compare.py -m loop-idiom.NumBCmp result-new.json
Tests: 1149
Metric: loop-idiom.NumBCmp

Program                                         result-new

MultiSourc...Benchmarks/7zip/7zip-benchmark    79.00
MultiSource/Applications/d/make_dparser         3.00
SingleSource/UnitTests/vla                      2.00
MultiSource/Applications/Burg/burg              1.00
MultiSourc.../Applications/JM/lencod/lencod     1.00
MultiSource/Applications/lemon/lemon            1.00
MultiSource/Benchmarks/Bullet/bullet            1.00
MultiSourc...e/Benchmarks/MallocBench/gs/gs     1.00
MultiSourc...gs-C/TimberWolfMC/timberwolfmc     1.00
MultiSourc...Prolangs-C/simulator/simulator     1.00
```
The size changes are:
I'm not sure what's going on with SingleSource/UnitTests/vla.test yet, did not look.
```
$ /build/test-suite/utils/compare.py -m size..text result-{old,new}.json --filter-hash
Tests: 1149
Same hash: 907 (filtered out)
Remaining: 242
Metric: size..text

Program                                        result-old result-new diff
test-suite...ingleSource/UnitTests/vla.test   753.00     833.00     10.6%
test-suite...marks/7zip/7zip-benchmark.test   1001697.00 966657.00  -3.5%
test-suite...ngs-C/simulator/simulator.test   32369.00   32321.00   -0.1%
test-suite...plications/d/make_dparser.test   89585.00   89505.00   -0.1%
test-suite...ce/Applications/Burg/burg.test   40817.00   40785.00   -0.1%
test-suite.../Applications/lemon/lemon.test   47281.00   47249.00   -0.1%
test-suite...TimberWolfMC/timberwolfmc.test   250065.00  250113.00   0.0%
test-suite...chmarks/MallocBench/gs/gs.test   149889.00  149873.00  -0.0%
test-suite...ications/JM/lencod/lencod.test   769585.00  769569.00  -0.0%
test-suite.../Benchmarks/Bullet/bullet.test   770049.00  770049.00   0.0%
test-suite...HMARK_ANISTROPIC_DIFFUSION/128    NaN        NaN        nan%
test-suite...HMARK_ANISTROPIC_DIFFUSION/256    NaN        NaN        nan%
test-suite...CHMARK_ANISTROPIC_DIFFUSION/64    NaN        NaN        nan%
test-suite...CHMARK_ANISTROPIC_DIFFUSION/32    NaN        NaN        nan%
test-suite...ENCHMARK_BILATERAL_FILTER/64/4    NaN        NaN        nan%
Geomean difference                                                   nan%
         result-old    result-new       diff
count  1.000000e+01  10.00000      10.000000
mean   3.152090e+05  311695.40000  0.006749
std    3.790398e+05  372091.42232  0.036605
min    7.530000e+02  833.00000    -0.034981
25%    4.243300e+04  42401.00000  -0.000866
50%    1.197370e+05  119689.00000 -0.000392
75%    6.397050e+05  639705.00000 -0.000005
max    1.001697e+06  966657.00000  0.106242
```

I don't have timings though.

And now to the code. The basic idea is to completely replace the whole loop.
If we can't fully kill it, don't transform.
I have left one or two comments in the code, so hopefully it can be understood.

Also, there is a few TODO's that i have left for follow-ups:
* widening of `memcmp()`/`bcmp()`
* step smaller than the comparison size
* Metadata propagation
* more than two blocks as long as there is still a single backedge?
* ???

Reviewers: reames, fhahn, mkazantsev, chandlerc, craig.topper, courbet

Reviewed By: courbet

Subscribers: hiraditya, xbolva00, nikic, jfb, gchatelet, courbet, llvm-commits, mclow.lists

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D61144

llvm-svn: 370454
2019-08-30 09:51:23 +00:00
Fangrui Song 6964027315 [LoopFusion] Fix another -Wunused-function in -DLLVM_ENABLE_ASSERTIONS=off build
llvm-svn: 370156
2019-08-28 03:12:40 +00:00
Philip Reames 2694522f13 [Loads/SROA] Remove blatantly incorrect code and fix a bug revealed in the process
The code we had isSafeToLoadUnconditionally was blatantly wrong. This function takes a "Size" argument which is supposed to describe the span loaded from. Instead, the code use the size of the pointer passed (which may be unrelated!) and only checks that span. For any Size > LoadSize, this can and does lead to miscompiles.

Worse, the generic code just a few lines above correctly handles the cases which *are* valid. So, let's delete said code.

Removing this code revealed two issues:
1) As noted by jdoerfert the removed code incorrectly handled external globals.  The test update in SROA is to stop testing incorrect behavior.
2) SROA was confusing bytes and bits, but this wasn't obvious as the Size parameter was being essentially ignored anyway.  Fixed.

Differential Revision: https://reviews.llvm.org/D66778

llvm-svn: 370102
2019-08-27 19:34:43 +00:00
Fangrui Song eb70ac0249 [LoopFusion] Fix -Wunused-function in -DLLVM_ENABLE_ASSERTIONS=off build
llvm-svn: 369836
2019-08-24 02:50:42 +00:00
Benjamin Kramer dc5f805d31 Do a sweep of symbol internalization. NFC.
llvm-svn: 369803
2019-08-23 19:59:23 +00:00
Cameron McInally 688f3bc240 [Reassoc] Small fix to support unary FNeg in NegateValue(...)
Differential Revision: https://reviews.llvm.org/D66612

llvm-svn: 369772
2019-08-23 15:49:38 +00:00
Philip Reames 2a52583d67 [IndVars] Fix a bug noticed by inspection
We were computing the loop exit value, but not ensuring the addrec belonged to the loop whose exit value we were computing.  I couldn't actually trip this; the test case shows the basic setup which *might* trip this, but none of the variations I've tried actually do.

llvm-svn: 369730
2019-08-23 04:03:23 +00:00
Fangrui Song 3fc933af8b [AlignmentFromAssumptions] getNewAlignmentDiff(): use getURemExpr()
The alignment is calculated incorrectly, thus sometimes it doesn't generate aligned mov instructions, as shown by the example below:

```
// b.cc
typedef long long index;

extern "C" index g_tid;
extern "C" index g_num;

void add3(float* __restrict__ a, float* __restrict__ b, float* __restrict__ c) {
    index n = 64*1024;
    index m = 16*1024;
    index k = 4*1024;
    index tid = g_tid;
    index num = g_num;
    __builtin_assume_aligned(a, 32);
    __builtin_assume_aligned(b, 32);
    __builtin_assume_aligned(c, 32);
    for (index i0=tid*k; i0<m; i0+=num*k)
        for (index i1=0; i1<n*m; i1+=m)
            for (index i2=0; i2<k; i2++)
                c[i1+i0+i2] = b[i0+i2] + a[i1+i0+i2];
}
```

Compile with `clang b.cc -Ofast -march=skylake -mavx2 -S`

```
vmovaps -224(%rdi,%rbx,4), %ymm0
vmovups -192(%rdi,%rbx,4), %ymm1         # should be movaps
vmovups -160(%rdi,%rbx,4), %ymm2         # should be movaps
vmovups -128(%rdi,%rbx,4), %ymm3         # should be movaps
vaddps  -224(%rsi,%rbx,4), %ymm0, %ymm0
vaddps  -192(%rsi,%rbx,4), %ymm1, %ymm1
vaddps  -160(%rsi,%rbx,4), %ymm2, %ymm2
vaddps  -128(%rsi,%rbx,4), %ymm3, %ymm3
vmovaps %ymm0, -224(%rdx,%rbx,4)
vmovups %ymm1, -192(%rdx,%rbx,4)         # should be movaps
vmovups %ymm2, -160(%rdx,%rbx,4)         # should be movaps
vmovups %ymm3, -128(%rdx,%rbx,4)         # should be movaps
```

Differential Revision: https://reviews.llvm.org/D66575
Patch by Dun Liang

llvm-svn: 369723
2019-08-23 02:17:04 +00:00
Florian Hahn b5e52bfd83 [GVN] Do PHI translations across all edges between the load and the unavailable pred.
Currently we do not properly translate addresses with PHIs if LoadBB !=
LI->getParent(), because PHITranslateAddr expects a direct predecessor as argument,
because it considers all instructions outside of the current block to
not requiring translation.

The amount of cases that trigger this should be very low, as most single
predecessor blocks should be folded into their predecessor by GVN before
we actually start with value numbering. It is still not guaranteed to
happen, so we should do PHI translation along all edges between the
loads' block and the predecessor where we have to place a load.

There are a few test cases showing current limits of the PHI translation, which
could be improved later.

Reviewers: spatel, reames, efriedma, john.brawn

Reviewed By: efriedma

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D65020

llvm-svn: 369570
2019-08-21 20:06:50 +00:00
Evgeniy Stepanov 55ccd16354 Refactor isPointerOffset (NFC).
Summary:
Simplify the API using Optional<> and address comments in
         https://reviews.llvm.org/D66165

Reviewers: vitalybuka

Subscribers: hiraditya, llvm-commits, ostannard, pcc

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D66317

llvm-svn: 369300
2019-08-19 21:08:04 +00:00
Alina Sbirlea 1a3fdaf6a6 [MemorySSA] Rename uses when inserting memory uses.
Summary:
When inserting uses from outside the MemorySSA creation, we don't
normally need to rename uses, based on the assumption that there will be
no inserted Phis (if  Def existed that required a Phi, that Phi already
exists). However, when dealing with unreachable blocks, MemorySSA will
optimize away Phis whose incoming blocks are unreachable, and these Phis end
up being re-added when inserting a Use.
There are two potential solutions here:
1. Analyze the inserted Phis and clean them up if they are unneeded
(current method for cleaning up trivial phis does not cover this)
2. Leave the Phi in place and rename uses, the same way as whe inserting
defs.
This patch use approach 2.

Resolves first test in PR42940.

Reviewers: george.burgess.iv

Subscribers: Prazek, sanjoy.google, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D66033

llvm-svn: 369291
2019-08-19 18:57:40 +00:00
Alina Sbirlea f92109dc01 [MemorySSA] Loop passes should mark MSSA preserved when available.
This patch applies only to the new pass manager.
Currently, when MSSA Analysis is available, and pass to each loop pass, it will be preserved by that loop pass.
Hence, mark the analysis preserved based on that condition, vs the current `EnableMSSALoopDependency`. This leaves the global flag to affect only the entry point in the loop pass manager (in FunctionToLoopPassAdaptor).

llvm-svn: 369181
2019-08-17 01:02:12 +00:00
Evgeniy Stepanov 75344955fc Move isPointerOffset function to ValueTracking (NFC).
Summary: To be reused in MemTag sanitizer.

Reviewers: pcc, vitalybuka, ostannard

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D66165

llvm-svn: 369062
2019-08-15 22:58:28 +00:00
Jonas Devlieghere 0eaee545ee [llvm] Migrate llvm::make_unique to std::make_unique
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.

llvm-svn: 369013
2019-08-15 15:54:37 +00:00
Philip Reames 7b0515176b [SCEV] Rename getMaxBackedgeTakenCount to getConstantMaxBackedgeTakenCount [NFC]
llvm-svn: 368930
2019-08-14 21:58:13 +00:00
Philip Reames 6cca3ad43e [RLEV] Rewrite loop exit values for multiple exit loops w/o overall loop exit count
We already supported rewriting loop exit values for multiple exit loops, but if any of the loop exits were not computable, we gave up on all loop exit values. This patch generalizes the existing code to handle individual computable loop exits where possible.

As discussed in the review, this is a starting point for figuring out a better API.  The code is a bit ugly, but getting it in lets us test as we go.  

Differential Revision: https://reviews.llvm.org/D65544

llvm-svn: 368898
2019-08-14 18:27:57 +00:00
Matt Arsenault dbc1f207fa InferAddressSpaces: Move target intrinsic handling to TTI
I'm planning on handling intrinsics that will benefit from checking
the address space enums. Don't bother moving the address collection
for now, since those won't need th enums.

llvm-svn: 368895
2019-08-14 18:13:00 +00:00
Matt Arsenault 0eac2a2963 InferAddressSpaces: Remove unnecessary check for ConstantInt
The IR is invalid if this isn't a constant since immarg was added.

llvm-svn: 368893
2019-08-14 18:01:42 +00:00
Bill Wendling cc2bebe039 Ignore indirect branches from callbr.
Summary:
We can't speculate around indirect branches: indirectbr and invoke. The
callbr instruction needs to be included here.

Reviewers: nickdesaulniers, manojgupta, chandlerc

Reviewed By: chandlerc

Subscribers: llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D66200

llvm-svn: 368873
2019-08-14 16:44:07 +00:00
David L. Jones d4edd9d97e Revert '[LICM] Make Loop ICM profile aware' and 'Fix pass dependency for LICM'
This reverts r368526 (git commit 7e71aa24bc)
This reverts r368542 (git commit cb5a90fd31)

llvm-svn: 368800
2019-08-14 04:50:33 +00:00
Wenlei He cb5a90fd31 Fix pass dependency for LICM
Expected to address buildbot failure http://lab.llvm.org:8011/builders/clang-x86_64-debian-fast/builds/16285 caused by D65060.

llvm-svn: 368542
2019-08-11 22:54:05 +00:00
Wenlei He 7e71aa24bc [LICM] Make Loop ICM profile aware
Summary:
Hoisting/sinking instruction out of a loop isn't always beneficial. Hoisting an instruction from a cold block inside a loop body out of the loop could hurt performance. This change makes Loop ICM profile aware - it now checks block frequency to make sure hoisting/sinking anly moves instruction to colder block.

Test Plan:

ninja check

Reviewers: asbirlea, sanjoy, reames, nikic, hfinkel, vsk

Reviewed By: asbirlea

Subscribers: fhahn, vsk, davidxl, xbolva00, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D65060

llvm-svn: 368526
2019-08-11 06:05:35 +00:00
Sanjay Patel 21c15ef384 [Reassociate] try harder to convert negative FP constants to positive
This is an extension of a transform that tries to produce positive floating-point
constants to improve canonicalization (and hopefully lead to more reassociation
and CSE).

The original patches were:
D4904
D5363 (rL221721)

But as the test diffs show, these were limited to basic patterns by walking from
an instruction to its single user rather than recursively moving up the def-use
sequence. No fast-math is required here because we're only rearranging implicit
FP negations in intermediate ops.

A motivating bug is:
https://bugs.llvm.org/show_bug.cgi?id=32939

Differential Revision: https://reviews.llvm.org/D65954

llvm-svn: 368512
2019-08-10 13:17:54 +00:00
Bjorn Pettersson d218a3326e [InstSimplify] Report "Changed" also when only deleting dead instructions
Summary:
Make sure that we report that changes has been made
by InstSimplify also in situations when only trivially
dead instructions has been removed. If for example a call
is removed the call graph must be updated.

Bug seem to have been introduced by llvm-svn r367173
(commit 02b9e45a7e), since the code in question
was rewritten in that commit.

Reviewers: spatel, chandlerc, foad

Reviewed By: spatel

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D65973

llvm-svn: 368401
2019-08-09 07:08:25 +00:00
Cameron McInally 8416f20f2f [LICM] Support unary FNeg in LICM
Differential Revision: https://reviews.llvm.org/D65908

llvm-svn: 368350
2019-08-08 21:38:31 +00:00
Tim Corringham 4f64f1ba3c Add llvm.licm.disable metadata
For some targets the LICM pass can result in sub-optimal code in some
cases where it would be better not to run the pass, but it isn't
always possible to suppress the transformations heuristically.

Where the front-end has insight into such cases it is beneficial
to attach loop metadata to disable the pass - this change adds the
llvm.licm.disable metadata to enable that.

Differential Revision: https://reviews.llvm.org/D64557

llvm-svn: 368296
2019-08-08 13:46:17 +00:00
Cameron McInally 303b6dbfb4 [EarlyCSE] Add support for unary FNeg to EarlyCSE
Differential Revision: https://reviews.llvm.org/D65815

llvm-svn: 368171
2019-08-07 14:34:41 +00:00
Tim Renouf 5a0794327a [StructurizeCFG] Enable -structurizecfg-relaxed-uniform-regions by default
D62198 introduced an option to relax the checks for
hasOnlyUniformBranches. This commit turns the option on by default, for
better code generation in some cases in AMDGPU.

Differential Revision: https://reviews.llvm.org/D63198

Change-Id: I9cbff002a1e74d3b7eb96b4192dc8129936d537d
llvm-svn: 368042
2019-08-06 14:30:19 +00:00
Serguei Katkov de67affd00 [Loop Peeling] Introduce an option for profile based peeling disabling.
This patch adds an ability to disable profile based peeling 
causing the peeling of all iterations and as a result prohibits
further unroll/peeling attempts on that loop.

The motivation to get an ability to separate peeling usage in
pipeline where in the first part we peel only separate iterations if needed
and later in pipeline we apply the full peeling which will prohibit further peeling.

Reviewers: reames, fhahn
Reviewed By: reames
Subscribers: hiraditya, zzheng, dmgreen, llvm-commits
Differential Revision: https://reviews.llvm.org/D64983

llvm-svn: 367668
2019-08-02 09:32:52 +00:00
Serguei Katkov bbdcc82111 [Loop Peeling] Do not close further unroll/peel if profile based peeling was not used.
Current peeling cost model can decide to peel off not all iterations
but only some of them to eliminate conditions on phi. At the same time 
if any peeling happens the door for further unroll/peel optimizations on that
loop closes because the part of the code thinks that if peeling happened
it is profile based peeling and all iterations are peeled off.

To resolve this inconsistency the patch provides the flag which states whether
the full peeling basing on profile is enabled or not and peeling cost model
is able to modify this field like it does not PeelCount.

In a separate patch I will introduce an option to allow/disallow peeling basing
on profile.

To avoid infinite loop peeling the patch tracks the total number of peeled iteration
through llvm.loop.peeled.count loop metadata.

Reviewers: reames, fhahn
Reviewed By: reames
Subscribers: hiraditya, zzheng, dmgreen, llvm-commits
Differential Revision: https://reviews.llvm.org/D64972

llvm-svn: 367647
2019-08-02 04:29:23 +00:00
Roman Lebedev 081e990d08 [IR] Value: add replaceUsesWithIf() utility
Summary:
While there is always a `Value::replaceAllUsesWith()`,
sometimes the replacement needs to be conditional.

I have only cleaned a few cases where `replaceUsesWithIf()`
could be used, to both add test coverage,
and show that it is actually useful.

Reviewers: jdoerfert, spatel, RKSimon, craig.topper

Reviewed By: jdoerfert

Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, aheejin, george.burgess.iv, asbirlea, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D65528

llvm-svn: 367548
2019-08-01 12:32:08 +00:00
Philip Reames 79c27c9464 Fix a release-only build warning triggered by rL367485
llvm-svn: 367499
2019-08-01 01:16:08 +00:00
Philip Reames f8e7b53657 [IndVars, RLEV] Support rewriting exit values in loops without known exits (prep work)
This is a prepatory patch for future work on support exit value rewriting in loops with a mixture of computable and non-computable exit counts.  The intention is to be "mostly NFC" - i.e. not enable any interesting new transforms - but in practice, there are some small output changes.

The test differences are caused by cases wherewhere getSCEVAtScope can simplify a single entry phi without needing any knowledge of the loop.

llvm-svn: 367485
2019-07-31 21:15:21 +00:00
Florian Hahn fa42f42858 [IPSCCP] Move callsite check to the beginning of the loop.
We have some code marks instructions with struct operands as overdefined,
but if the instruction is a call to a function with tracked arguments,
this breaks the assumption that the lattice values of all call sites
are not overdefined and will be replaced by a constant.

This also re-adds the assertion from D65222, with additionally skipping
non-callsite uses. This patch should address the cases reported in which
the assertion fired.

Fixes PR42738.

Reviewers: efriedma, davide

Reviewed By: efriedma

Differential Revision: https://reviews.llvm.org/D65439

llvm-svn: 367430
2019-07-31 12:57:04 +00:00
Roman Lebedev 5e4e6b1fb1 [DivRemPairs] Fixup DNDEBUG build - variable is only used in assertion
llvm-svn: 367423
2019-07-31 12:26:37 +00:00
Roman Lebedev a686c60c45 [DivRemPairs] Recommit: Handling for expanded-form rem - recomposition (PR42673)
Summary:
While `-div-rem-pairs` pass can decompose rem in div+rem pair when div-rem pair
is unsupported by target, nothing performs the opposite fold.
We can't do that in InstCombine or DAGCombine since neither of those has access to TTI.
So it makes most sense to teach `-div-rem-pairs` about it.

If we matched rem in expanded form, we know we will be able to place div-rem pair
next to each other so we won't regress the situation.
Also, we shouldn't decompose rem if we matched already-decomposed form.
This is surprisingly straight-forward otherwise.

The original patch was committed in rL367288 but was reverted in rL367289
because it exposed pre-existing RAUW issues in internal data structures
of the pass; those now have been addressed in a previous patch.

https://bugs.llvm.org/show_bug.cgi?id=42673

Reviewers: spatel, RKSimon, efriedma, ZaMaZaN4iK, bogner

Reviewed By: bogner

Subscribers: bogner, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D65298

llvm-svn: 367419
2019-07-31 12:06:51 +00:00
Roman Lebedev 5f616901f5 [DivRemPairs] Avoid RAUW pitfalls (PR42823)
Summary:
`DivRemPairs` internally creates two maps:
* {sign, divident, divisor} -> div instruction
* {sign, divident, divisor} -> rem instruction
Then it iterates over rem map, and looks if there is an entry
in div map with the same key. Then depending on some internal logic
it may RAUW rem instruction with something else.

But if that rem instruction is an input to other div/rem,
then it was used as a key in these maps, so the old value (used in key)
is now dandling, because RAUW didn't update those maps.
And we can't even RAUW map keys in general, there's `ValueMap`,
but we don't have a single `Value` as key...

The bug was discovered via D65298, and the test there exists.
Now, i'm not sure how to expose this issue in trunk.
The bug is clearly there if i change the map keys to be `AssertingVH`/`PoisoningVH`,
but i guess this didn't miscompiled anything thus far?
I really don't think this is benin without that patch.

The fix is actually rather straight-forward - instead of trying to somehow
shoe-horn `ValueMap` here (doesn't fit, key isn't just `Value`), or writing a new
`ValueMap` with key being a struct of `Value`s, we can just have an intermediate
data structure - a vector, each entry containing matching `Div, Rem` pair,
and pre-filling it before doing any modifications.
This way we won't need to query map after doing RAUW, so no bug is possible.

Reviewers: spatel, bogner, RKSimon, craig.topper

Reviewed By: spatel

Subscribers: hiraditya, hans, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D65451

llvm-svn: 367417
2019-07-31 12:06:38 +00:00
Florian Hahn 189efe295b Recommit "[GVN] Preserve loop related analysis/canonical forms."
This fixes some pipeline tests.
This reverts commit d0b6f42936.

llvm-svn: 367401
2019-07-31 09:27:54 +00:00
Florian Hahn d0b6f42936 Revert [GVN] Preserve loop related analysis/canonical forms.
This reverts r367332 (git commit 2d7227ec3a)

llvm-svn: 367335
2019-07-30 17:04:58 +00:00
Florian Hahn 2d7227ec3a [GVN] Preserve loop related analysis/canonical forms.
LoopInfo can be easily preserved by passing it to the functions that
modify the CFG (SplitCriticalEdge and MergeBlockIntoPredecessor.
SplitCriticalEdge also preserves LoopSimplify and LCSSA form when when passing in
LoopInfo. The test case shows that we preserve LoopSimplify and
LoopInfo. Adding addPreservedID(LCSSAID) did not preserve LCSSA for some
reason.

Also I am not sure if it is possible to preserve those in the new pass
manager, as they aren't analysis passes.

Reviewers: reames, hfinkel, davide, jdoerfert

Reviewed By: jdoerfert

Differential Revision: https://reviews.llvm.org/D65137

llvm-svn: 367332
2019-07-30 16:43:39 +00:00
Kit Barton de0b633999 [LoopFusion] Extend use of OptimizationRemarkEmitter
Summary:
This patch extends the use of the OptimizationRemarkEmitter to provide
information about loops that are not fused, and loops that are not eligible for
fusion. In particular, it uses the OptimizationRemarkAnalysis to identify loops
that are not eligible for fusion and the OptimizationRemarkMissed to identify
loops that cannot be fused.

It also reuses the statistics to provide the messages used in the
OptimizationRemarks. This provides common message strings between the
optimization remarks and the statistics.

I would like feedback on this approach, in general. If people are OK with this,
I will flesh out additional remarks in subsequent commits.

Subscribers: hiraditya, jsji, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D63844

llvm-svn: 367327
2019-07-30 15:58:43 +00:00
Roman Lebedev 8e0cf076ac Revert "[DivRemPairs] Handling for expanded-form rem - recomposition (PR42673)"
test-suite/MultiSource/Benchmarks/DOE-ProxyApps-C/miniGMG broke:

Only PHI nodes may reference their own value!
  %sub33 = srem i32 %sub33, %ranks_in_i

This reverts commit r367288.

llvm-svn: 367289
2019-07-30 07:44:58 +00:00
Roman Lebedev c75cdd056f [DivRemPairs] Handling for expanded-form rem - recomposition (PR42673)
Summary:
While `-div-rem-pairs` pass can decompose rem in div+rem pair when div-rem pair
is unsupported by target, nothing performs the opposite fold.
We can't do that in InstCombine or DAGCombine since neither of those has access to TTI.
So it makes most sense to teach `-div-rem-pairs` about it.

If we matched rem in expanded form, we know we will be able to place div-rem pair
next to each other so we won't regress the situation.
Also, we shouldn't decompose rem if we matched already-decomposed form.
This is surprisingly straight-forward otherwise.

https://bugs.llvm.org/show_bug.cgi?id=42673

Reviewers: spatel, RKSimon, efriedma, ZaMaZaN4iK, bogner

Reviewed By: bogner

Subscribers: bogner, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D65298

llvm-svn: 367288
2019-07-30 07:10:00 +00:00
Sanjay Patel 02b9e45a7e [InstSimplify] remove quadratic time looping (PR42771)
The test case from:
https://bugs.llvm.org/show_bug.cgi?id=42771
...shows a ~30x slowdown caused by the awkward loop iteration (rL207302) that is
seemingly done just to avoid invalidating the instruction iterator. We can instead
delay instruction deletion until we reach the end of the block (or we could delay
until we reach the end of all blocks).

There's a test diff here for a degenerate case with llvm.assume that is not
meaningful in itself, but serves to verify this change in logic.

This change probably doesn't result in much overall compile-time improvement
because we call '-instsimplify' as a standalone pass only once in the standard
-O2 opt pipeline currently.

Differential Revision: https://reviews.llvm.org/D65336

llvm-svn: 367173
2019-07-27 14:05:51 +00:00
Florian Hahn d89f6cb299 Revert [IPSCCP] Add assertion to surface cases where we zap returns with overdefined users.
This reverts r366998 (git commit 5354c83ece)

This breaks a linux kernel build and we have reproducer to investigate.

llvm-svn: 367160
2019-07-26 22:14:08 +00:00
Wei Mi 55a68a2400 [JumpThreading] Stop searching predecessor when the current bb is in a
unreachable loop.

updatePredecessorProfileMetadata in jumpthreading tries to find the
first dominating predecessor block for a PHI value by searching upwards
the predecessor block chain.

But jumpthreading may see some temporary IR state which contains
unreachable bb not being cleaned up. If an unreachable loop happens to
be on the predecessor block chain, keeping chasing the predecessor
block will run into an infinite loop.

The patch fixes it.

Differential Revision: https://reviews.llvm.org/D65310

llvm-svn: 367154
2019-07-26 20:59:22 +00:00
Serguei Katkov 3c3a76527e [Loop Utils] Move utilty addStringMetadataToLoop to LoopUtils.cpp. NFC.
Just move the utility function to LoopUtils.cpp to re-use it in loop peeling.

Reviewers: reames, Ashutosh
Reviewed By: reames
Subscribers: hiraditya, asbirlea, llvm-commits
Differential Revision: https://reviews.llvm.org/D65264

llvm-svn: 367085
2019-07-26 06:10:08 +00:00
JF Bastien dbc0a5df8d Allow prefetching from non-zero address spaces
Summary:
This is useful for targets which have prefetch instructions for non-default address spaces.

<rdar://problem/42662136>

Subscribers: nemanjai, javed.absar, hiraditya, kbarton, jkorous, dexonsmith, cfe-commits, llvm-commits, RKSimon, hfinkel, t.p.northover, craig.topper, anemet

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D65254

llvm-svn: 367032
2019-07-25 16:11:57 +00:00
Florian Hahn 5354c83ece [IPSCCP] Add assertion to surface cases where we zap returns with overdefined users.
We should only zap returns in functions, where all live users have a
replace-able value (are not overdefined). Unused return values should be
undefined.

This should make it easier to detect bugs like in PR42738.

Alternatively we could bail out of zapping the function returns, but I
think it would be better to address those divergences between function
and call-site values where they are actually caused.

Reviewers: davide, efriedma

Reviewed By: davide, efriedma

Differential Revision: https://reviews.llvm.org/D65222

llvm-svn: 366998
2019-07-25 09:37:09 +00:00
Chen Zheng a2d74d3d90 [PowerPC] exclude more icmps in LSR which is converted in later hardware loop pass
Differential Revision: https://reviews.llvm.org/D64795

llvm-svn: 366976
2019-07-25 01:22:08 +00:00
David Bolvansky d2904ccf88 Let CorrelatedValuePropagation preserve LazyValueInfo
Summary:
This patch makes CorrelatedValuePropagation preserve LazyValueInfo by adding LazyValueInfo::eraseValue & calling it whenever an instruction is erased.

Passes `make check` , test-suite, and SPECrate 2017.

Patch by aqjune (Juneyoung Lee)

Reviewers: reames, mzolotukhin

Reviewed By: reames

Subscribers: xbolva00, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D59349

llvm-svn: 366942
2019-07-24 20:27:32 +00:00
Philip Reames ea5c94b497 [IndVars] Fix a subtle bug in optimizeLoopExits
The original code failed to account for the fact that one exit can have a pointer exit count without all of them having pointer exit counts.  This could cause two separate bugs:
1) We might exit the loop early, and leave optimizations undone.  This is what triggered the assertion failure in the reported test case.
2) We might optimize one exit, then exit without indicating a change.  This could result in an analysis invalidaton bug if no other transform is done by the rest of indvars.

Note that the pointer exit counts are a really fragile concept.  They show up only when we have a pointer IV w/o a datalayout to provide their size.  It's really questionable to me whether the complexity implied is worth it.

llvm-svn: 366829
2019-07-23 17:45:11 +00:00
Philip Reames 6e1c3bb181 [IndVars] Speculative fix for an assertion failure seen in bots
I don't have an IR sample which is actually failing, but the issue described in the comment is theoretically possible, and should be guarded against even if there's a different root cause for the bot failures.

llvm-svn: 366241
2019-07-16 18:23:49 +00:00
Amara Emerson 228a7b4f2a [ADCE] Fix non-deterministic behaviour due to iterating over a pointer set.
Original patch by Yann Laigle-Chapuy

Differential Revision: https://reviews.llvm.org/D64785

llvm-svn: 366215
2019-07-16 15:23:10 +00:00
Rui Ueyama 49a3ad21d6 Fix parameter name comments using clang-tidy. NFC.
This patch applies clang-tidy's bugprone-argument-comment tool
to LLVM, clang and lld source trees. Here is how I created this
patch:

$ git clone https://github.com/llvm/llvm-project.git
$ cd llvm-project
$ mkdir build
$ cd build
$ cmake -GNinja -DCMAKE_BUILD_TYPE=Debug \
    -DLLVM_ENABLE_PROJECTS='clang;lld;clang-tools-extra' \
    -DCMAKE_EXPORT_COMPILE_COMMANDS=On -DLLVM_ENABLE_LLD=On \
    -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ ../llvm
$ ninja
$ parallel clang-tidy -checks='-*,bugprone-argument-comment' \
    -config='{CheckOptions: [{key: StrictMode, value: 1}]}' -fix \
    ::: ../llvm/lib/**/*.{cpp,h} ../clang/lib/**/*.{cpp,h} ../lld/**/*.{cpp,h}

llvm-svn: 366177
2019-07-16 04:46:31 +00:00
Alina Sbirlea db101864bd [MemorySSA] Use SetVector to avoid nondeterminism.
Summary:
Use a SetVector for DeadBlockSet.
Resolves PR42574.

Reviewers: george.burgess.iv, uabelho, dblaikie

Subscribers: jlebar, Prazek, mgrang, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D64601

llvm-svn: 365970
2019-07-12 22:30:30 +00:00
Sterling Augustine 6d75a9e873 The variable "Latch" is only used in an assert, which makes builds that use "-DNDEBUG" fail with unused variable messages.
Summary: Move the logic into the assert itself.

Subscribers: hiraditya, sanjoy, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D64654

llvm-svn: 365943
2019-07-12 18:51:08 +00:00
Philip Reames 34495b5533 [IndVars] Use exit count reasoning to discharge obviously untaken exits
Continue in the spirit of D63618, and use exit count reasoning to prove away loop exits which can not be taken since the backedge taken count of the loop as a whole is provably less than the minimal BE count required to take this particular loop exit.

As demonstrated in the newly added tests, this triggers in a number of cases where IndVars was previously unable to discharge obviously redundant exit tests. And some not so obvious ones.

Differential Revision: https://reviews.llvm.org/D63733

llvm-svn: 365920
2019-07-12 17:05:35 +00:00
Fangrui Song b251cc0d91 Delete dead stores
llvm-svn: 365903
2019-07-12 14:58:15 +00:00
Tim Northover 27658ed512 OpaquePtr: use load instruction directly for type. NFC.
llvm-svn: 365768
2019-07-11 13:12:08 +00:00
Vitaly Buka d03bd1db59 NFC: Pass DataLayout into isBytewiseValue
Summary:
We will need to handle IntToPtr which I will submit in a separate patch as it's
not going to be NFC.

Reviewers: eugenis, pcc

Reviewed By: eugenis

Subscribers: hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D63940

llvm-svn: 365709
2019-07-10 22:53:52 +00:00
Serguei Katkov d000f8b69f [SimpleLoopUnswitch] Don't consider unswitching `switch` insructions with one unique successor
Only instructions with two or more unique successors should be considered for unswitching.

Patch Author: Daniil Suchkov.

Reviewers: reames, asbirlea, skatkov
Reviewed By: skatkov
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D64404

llvm-svn: 365611
2019-07-10 10:25:22 +00:00
Tim Northover 60afa49abe OpaquePtr: add Type parameter to Loads analysis API.
This makes the functions in Loads.h require a type to be specified
independently of the pointer Value so that when pointers have no structure
other than address-space, it can still do its job.

Most callers had an obvious memory operation handy to provide this type, but a
SROA and ArgumentPromotion were doing more complicated analysis. They get
updated to merge the properties of the various instructions they were
considering.

llvm-svn: 365468
2019-07-09 11:35:35 +00:00
Serguei Katkov c6caddb73d [LoopInfo] Update getExitEdges to accept vector of pairs for non const BasicBlock
D63921 requires getExitEdges fills a vector of Edge pairs where
BasicBlocks are not constant.

The rest Loop API mostly returns non-const BasicBlocks, so to be more consistent with
other Loop API getExitEdges is modified to return non-const BasicBlocks as well.

This is an alternative solution to D64060. 

Reviewers: reames, fhahn
Reviewed By: reames, fhahn
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D64309

llvm-svn: 365437
2019-07-09 04:20:43 +00:00
Philip Reames 0e344e9dc5 [LoopPred] Stylistic improvement to recently added NE/EQ normalization [NFC]
llvm-svn: 365425
2019-07-09 02:03:31 +00:00
Philip Reames 5a637cbdc7 [LoopPred] Extend LFTR normalization to the inverse EQ case
A while back, I added support for NE latches formed by LFTR.  I didn't think that quite through, as LFTR will also produce the inverse EQ form for some loops and I hadn't handled that.  This change just adds handling for that case as well.

llvm-svn: 365419
2019-07-09 01:27:45 +00:00
Cameron McInally 771769be90 [Float2Int] Add support for unary FNeg to Float2Int
Differential Revision: https://reviews.llvm.org/D63941

llvm-svn: 365324
2019-07-08 14:46:07 +00:00
Philip Reames 9e62c86408 [IRBuilder] Introduce helpers for and/or of multiple values at once
We had versions of this code scattered around, so consolidate into one location.

Not strictly NFC since the order of intermediate results may change in some places, but since these operations are associatives, should not change results.

llvm-svn: 365259
2019-07-06 03:46:18 +00:00
Chen Zheng 469f30abab [PowerPC] Hardware Loop branch instruction's condition may not be icmp.
This fixes pr42492.
Differential Revision: https://reviews.llvm.org/D64124

llvm-svn: 365104
2019-07-04 01:51:47 +00:00
Eli Friedman 41ee3977c4 [JumpThreading] Fix threading with unusual PHI nodes.
If the block being cloned contains a PHI node, in general, we need to
clone that PHI node, even though it's trivial. If the operand of the PHI
is an instruction in the block being cloned, the correct value for the
operand doesn't exist until SSAUpdater constructs it.

We usually don't hit this issue because we try to avoid threading across
loop headers, but it's possible to hit this in some cases involving
irreducible CFGs.  I added a flag to allow threading across loop headers
to make the testcase easier to understand.

Thanks to Brian Rzycki for reducing the testcase.

Fixes https://bugs.llvm.org/show_bug.cgi?id=42085.

Differential Revision: https://reviews.llvm.org/D63913

llvm-svn: 365094
2019-07-03 23:12:39 +00:00
Philip Reames ea06d63c35 [LFTR] Use SCEVExpander for the pointer limit case instead of manual IR gen
As noted in the test change, this is not trivially NFC, but all of the changes in output are cases where the SCEVExpander form is more canonical/optimal than the hand generation.  

llvm-svn: 365075
2019-07-03 20:03:46 +00:00
Philip Reames 14f1543425 [LFTR] Remove a stray variable shadow *of the same value* [NFC]
llvm-svn: 365072
2019-07-03 19:08:43 +00:00
Philip Reames e7a258c6d9 [LFTR] Style and comment changes to clarify the narrow vs wide bitwidth evaluation behavior [NFC]
llvm-svn: 365071
2019-07-03 19:03:37 +00:00
Philip Reames abc8f344d6 [LFTR] Sink the decision not use truncate scheme for constants into genLoopLimit [NFC]
We might as well just evaluate the constants using SCEV, and having the cases grouped makes the logic slightly easier to read anyway.

llvm-svn: 365070
2019-07-03 18:41:03 +00:00
Philip Reames 4c80281c96 [LFTR] Remove falsely generalized (dead) code [NFC]
llvm-svn: 365067
2019-07-03 18:24:06 +00:00
Philip Reames 83cca94194 [LFTR] Hoist extend expressions outside of loops w/o waiting for LICM
The motivation for this is two fold:
1) Make the output (and thus tests)  a bit more readable to a human trying to understand the result of the transform
2) Reduce spurious diffs in a potential future change to restructure all of this logic to use SCEVExpander (which hoists by default)

llvm-svn: 365066
2019-07-03 18:18:36 +00:00
Chen Zheng dfdccbb26b [PowerPC] exclude ICmpZero in LSR if icmp can be replaced in later hardware loop.
Differential Revision: https://reviews.llvm.org/D63477

llvm-svn: 364993
2019-07-03 01:49:03 +00:00
Yevgeny Rouban d4097b4a93 [SimpleLoopUnswitch] Implement handling of prof branch_weights metadata for SwitchInst
Differential Revision: https://reviews.llvm.org/D60606

llvm-svn: 364734
2019-07-01 08:43:53 +00:00
Fangrui Song 78ee2fbf98 Cleanup: llvm::bsearch -> llvm::partition_point after r364719
llvm-svn: 364720
2019-06-30 11:19:56 +00:00
Nikita Popov 8023c84433 [LFTR] Rephrase getLoopTest into "based-on" check; NFCI
What we want to know here is whether we're already using this value
for the loop condition, so make the query about that. We can extend
this to a more general "based-on" relationship, rather than a direct
icmp use later.

llvm-svn: 364715
2019-06-29 15:12:59 +00:00
Nikita Popov 61a8b62b4c [LFTR] Remove unnecessary latch check; NFCI
The whole indvars pass works on loops in simplified form, so there
is always a unique latch. Convert the condition into an assertion
in needsLFTR (though we also assert this in later LFTR functions).

Additionally update the comment on getLoopTest() now that we are
dealing with multiple exits.

llvm-svn: 364713
2019-06-29 12:41:02 +00:00
Nikita Popov 2d756c4feb [LFTR] Fix post-inc pointer IV with truncated exit count (PR41998)
Fixes https://bugs.llvm.org/show_bug.cgi?id=41998. Usually when we
have a truncated exit count we'll truncate the IV when comparing
against the limit, in which case exit count overflow in post-inc
form doesn't matter. However, for pointer IVs we don't do that, so
we have to be careful about incrementing the IV in the wide type.

I'm fixing this by removing the IVCount variable (which was
ExitCount or ExitCount+1) and replacing it with a UsePostInc flag,
and then moving the actual limit adjustment to the individual cases
(which are: pointer IV where we add to the wide type, integer IV
where we add to the narrow type, and constant integer IV where we
add to the wide type).

Differential Revision: https://reviews.llvm.org/D63686

llvm-svn: 364709
2019-06-29 09:24:12 +00:00
Philip Reames 1504b6ee7e [IndVars] Remove a bit of manual constant folding [NFC]
SCEV is more than capable of folding (add x, trunc(0)) to x.  

llvm-svn: 364693
2019-06-29 00:19:31 +00:00
Cameron McInally 30e5cf1d8f [NewGVN] Add unary FNeg support to NewGVN pass
Differential Revision: https://reviews.llvm.org/D63933

llvm-svn: 364680
2019-06-28 20:09:32 +00:00
Cameron McInally ab4b2364e5 [GVNSink] Add unary FNeg support to GVNSink pass
Differential Revision: https://reviews.llvm.org/D63900

llvm-svn: 364678
2019-06-28 19:57:31 +00:00
Cameron McInally 6e62a796d5 [GVN] Add support for unary FNeg to GVN pass
Differential Revision: https://reviews.llvm.org/D63896

llvm-svn: 364592
2019-06-27 21:05:02 +00:00
Gerolf Hoflehner e311a4d5c4 [SCCP] Fix non-deterministic uselists of return values (DenseMap -> MapVector)
llvm-svn: 364482
2019-06-26 21:44:37 +00:00
Philip Reames 03b2e2d986 [IndVars] Kill a redundant bit of debug output
llvm-svn: 364449
2019-06-26 17:19:09 +00:00
Clement Courbet 2851248fa1 Revert "r364412 [ExpandMemCmp][MergeICmps] Move passes out of CodeGen into opt pipeline."
Breaks sanitizers:
    libFuzzer :: cxxstring.test
    libFuzzer :: memcmp.test
    libFuzzer :: recommended-dictionary.test
    libFuzzer :: strcmp.test
    libFuzzer :: value-profile-mem.test
    libFuzzer :: value-profile-strcmp.test

llvm-svn: 364416
2019-06-26 12:13:13 +00:00
Clement Courbet 7b3a5f0e6d [ExpandMemCmp][MergeICmps] Move passes out of CodeGen into opt pipeline.
This allows later passes (in particular InstCombine) to optimize more
cases.

One that's important to us is `memcmp(p, q, constant) < 0` and memcmp(p, q, constant) > 0.

llvm-svn: 364412
2019-06-26 11:50:18 +00:00
Philip Reames c42a357178 [LFTR] Adjust debug output to include extensions (if any)
llvm-svn: 364346
2019-06-25 20:14:08 +00:00
Clement Courbet 3bc5ad551a [ExpandMemCmp] Move all options to TargetTransformInfo.
Split off from D60318.

llvm-svn: 364281
2019-06-25 08:04:13 +00:00
Nikita Popov f1ffc4305d [CVP] Reenable nowrap flag inference
Inference of nowrap flags in CVP has been disabled, because it
triggered a bug in LFTR (https://bugs.llvm.org/show_bug.cgi?id=31181).
This issue has been fixed in D60935, so we should be able to reenable
nowrap flag inference now.

Differential Revision: https://reviews.llvm.org/D62776

llvm-svn: 364228
2019-06-24 20:13:13 +00:00
Sanjoy Das e2291f5af9 Fix typo in comment; NFC
llvm-svn: 364159
2019-06-23 19:22:13 +00:00
Philip Reames d22a2a9a72 [IndVars] Remove dead instructions after folding trivial loop exit
In rL364135, I taught IndVars to fold exiting branches in loops with a zero backedge taken count (i.e. loops that only run one iteration).  This extends that to eliminate the dead comparison left around.  

llvm-svn: 364155
2019-06-23 17:06:57 +00:00
Philip Reames 8deb84c8ef Exploit a zero LoopExit count to eliminate loop exits
This turned out to be surprisingly effective. I was originally doing this just for completeness sake, but it seems like there are a lot of cases where SCEV's exit count reasoning is stronger than it's isKnownPredicate reasoning.

Once this is in, I'm thinking about trying to build on the same infrastructure to eliminate provably untaken checks. There may be something generally interesting here.

Differential Revision: https://reviews.llvm.org/D63618

llvm-svn: 364135
2019-06-22 17:54:25 +00:00
Nikita Popov 8c8e40f763 [NewGVN] Fix copy/paste mistake in cast
llvm-svn: 364130
2019-06-22 10:20:13 +00:00
Nikita Popov e96fda726e [NewGVN] Remove dead SwitchEdges variable; NFC
llvm-svn: 364129
2019-06-22 10:20:07 +00:00
Sanjay Patel ddb9093684 [GVNSink] prevent crashing on mismatched instructions (PR42346)
Patch based on suggestion by James Molloy (@jmolloy) in:
https://bugs.llvm.org/show_bug.cgi?id=42346

llvm-svn: 364062
2019-06-21 15:17:24 +00:00
Jay Foad d9d3c91b48 [Scalarizer] Propagate IR flags
Summary:
The motivation for this was to propagate fast-math flags like nnan and
ninf on vector floating point operations to the corresponding scalar
operations to take advantage of follow-on optimizations. But I think
the same argument applies to all of our IR flags: if they apply to the
vector operation then they also apply to all the individual scalar
operations, and they might enable follow-on optimizations.

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D63593

llvm-svn: 364051
2019-06-21 14:10:18 +00:00
Fangrui Song dc8de6037c Simplify std::lower_bound with llvm::{bsearch,lower_bound}. NFC
llvm-svn: 364006
2019-06-21 05:40:31 +00:00
Cameron McInally 1c0bd6dd2c [Reassociate] Remove bogus assert reported in PR42349.
Also, add a FIXME for the unsafe transform on a unary FNeg. A unary FNeg can only be transformed to a FMul by -1.0 when the nnan flag is present. The unary FNeg project is a WIP, so the unsafe transformation is acceptable until that work is complete.

The bogus assert with introduced in D63445.

llvm-svn: 363998
2019-06-20 23:03:55 +00:00
Alina Sbirlea d0b11698cd [LICM & MSSA] Limit unsafe sinking and hoisting.
Summary:
The getClobberingMemoryAccess API checks for clobbering accesses in a loop by walking the backedge. This may check if a memory access is being
clobbered by the loop in a previous iteration, depending how smart AA got over the course of the updates in MemorySSA (it does not occur when built from scratch).
If no clobbering access is found inside the loop, it will optimize to an access outside the loop. This however does not mean that access is safe to sink.
Given:
```
for i
  load a[i]
  store a[i]
```
The access corresponding to the load can be optimized to outside the loop, and the load can be hoisted. But it is incorrect to sink it.
In order to sink the load, we'd need to check no Def clobbers the Use in the same iteration. With this patch we currently restrict sinking to either
Defs not existing in the loop, or Defs preceding the load in the same block. An easy extension is to ensure the load (Use) post-dominates all Defs.

Caught by PR42294.

This issue also shed light on the converse problem: hoisting stores in this same scenario would be illegal. With this patch we restrict
hoisting of stores to the case when their corresponding Defs are dominating all Uses in the loop.

Reviewers: george.burgess.iv

Subscribers: jlebar, Prazek, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D63582

llvm-svn: 363982
2019-06-20 21:09:09 +00:00
Philip Reames a7fd8a806f [LFTR] Fix a (latent?) bug related to nested loops
I can't actually come up with a test case this triggers on without an out of tree change, but in theory, it's a bug in the recently added multiple exit LFTR support.  The root issue is that an exiting block common to two loops can (in theory) have computable exit counts for both loops.  Rewriting the exit of an inner loop in terms of the outer loops IV would cause the inner loop to either a) run forever, or b) terminate on the first iteration.

In practice, we appear to get lucky and not have the exit count computable for the outer loop, except when it's trivially zero.  Given we bail on zero exit counts, we don't appear to ever trigger this.  But I can't come up with a reason we *can't* compute an exit count for the outer loop on the common exiting block, so this may very well be triggering in some cases.

llvm-svn: 363964
2019-06-20 18:45:06 +00:00
Philip Reames eda1ba65ca LFTR for multiple exit loops
Teach IndVarSimply's LinearFunctionTestReplace transform to handle multiple exit loops. LFTR does two key things 1) it rewrites (all) exit tests in terms of a common IV potentially eliminating one in the process and 2) it moves any offset/indexing/f(i) style logic out of the loop.

This turns out to actually be pretty easy to implement. SCEV already has all the information we need to know what the backedge taken count is for each individual exit. (We use that when computing the BE taken count for the loop as a whole.) We basically just need to iterate through the exiting blocks and apply the existing logic with the exit specific BE taken count. (The previously landed NFC makes this super obvious.)

I chose to go ahead and apply this to all loop exits instead of only latch exits as originally proposed. After reviewing other passes, the only case I could find where LFTR form was harmful was LoopPredication. I've fixed the latch case, and guards aren't LFTRed anyways. We'll have some more work to do on the way towards widenable_conditions, but that's easily deferred.

I do want to note that I added one bit after the review.  When running tests, I saw a new failure (no idea why didn't see previously) which pointed out LFTR can rewrite a constant condition back to a loop varying one.  This was theoretically possible with a single exit, but the zero case covered it in practice.  With multiple exits, we saw this happening in practice for the eliminate-comparison.ll test case because we'd compute a ExitCount for one of the exits which was guaranteed to never actually be reached.  Since LFTR ran after simplifyAndExtend, we'd immediately turn around and undo the simplication work we'd just done.  The solution seemed obvious, so I didn't bother with another round of review.

Differential Revision: https://reviews.llvm.org/D62625

llvm-svn: 363883
2019-06-19 21:58:25 +00:00
Philip Reames ce53e2226c [LFTR] Stylistic cleanup as suggested in last review comment of D62939 [NFC]
(Resumbit of r363292 which was reverted along w/an earlier patch)

llvm-svn: 363877
2019-06-19 20:45:57 +00:00
Philip Reames f8104f01e6 [LFTR] Rename variable to minimize confusion [NFC]
(Recommit of r363293 which was reverted when a dependent patch was.)

As pointed out by Nikita in D62625, BackedgeTakenCount is generally used to refer to the backedge taken count of the loop. A conditional backedge taken count - one which only applies if a particular exit is taken - is called a ExitCount in SCEV code, so be consistent here.

llvm-svn: 363875
2019-06-19 20:41:28 +00:00
Cameron McInally a027cf4764 [Reassociate] Handle unary FNeg in the Reassociate pass
Differential Revision: https://reviews.llvm.org/D63445

llvm-svn: 363813
2019-06-19 14:59:14 +00:00
Michael Liao 4f7f70e262 Recommit [SROA] Enhance SROA to handle `addrspacecast`ed allocas
[SROA] Enhance SROA to handle `addrspacecast`ed allocas

- Fix typo in original change
- Add additional handling to ensure all return pointers are properly
  casted.

Summary:
- After `addrspacecast` is allowed to be eliminated in SROA, the
  adjusting of storage pointer (from `alloca) needs to handle the
  potential different address spaces between the storage pointer (from
  alloca) and the pointer being used.

Reviewers: arsenm

Subscribers: wdng, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D63501

llvm-svn: 363743
2019-06-18 21:41:13 +00:00
Jordan Rupprecht 33e85ad956 Revert [SROA] Enhance SROA to handle `addrspacecast`ed allocas
This reverts r363711 (git commit 76a149ef81)

This causes stage2 build failures, e.g.:
http://lab.llvm.org:8011/builders/clang-x64-windows-msvc/builds/132/steps/stage%202%20build/logs/stdio
http://lab.llvm.org:8011/builders/ppc64le-lld-multistage-test/builds/87/steps/build-stage2-unified-tree/logs/stdio

llvm-svn: 363718
2019-06-18 18:40:04 +00:00
Michael Liao 76a149ef81 [SROA] Enhance SROA to handle `addrspacecast`ed allocas
Summary:
- After `addrspacecast` is allowed to be eliminated in SROA, the
  adjusting of storage pointer (from `alloca) needs to handle the
  potential different address spaces between the storage pointer (from
  alloca) and the pointer being used.

Reviewers: arsenm

Subscribers: wdng, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D63501

llvm-svn: 363711
2019-06-18 17:58:49 +00:00
Philip Reames 44475363e8 Teach getSCEVAtScope how to handle loop phis w/invariant operands in loops w/taken backedges
This patch really contains two pieces:
    Teach SCEV how to fold a phi in the header of a loop to the value on the backedge when a) the backedge is known to execute at least once, and b) the value is safe to use globally within the scope dominated by the original phi.
    Teach IndVarSimplify's rewriteLoopExitValues to allow loop invariant expressions which already exist (and thus don't need new computation inserted) even in loops where we can't optimize away other uses.

Differential Revision: https://reviews.llvm.org/D63224

llvm-svn: 363619
2019-06-17 21:06:17 +00:00
Philip Reames fe8bd96ebd Fix a bug w/inbounds invalidation in LFTR (recommit)
Recommit r363289 with a bug fix for crash identified in pr42279.  Issue was that a loop exit test does not have to be an icmp, leading to a null dereference crash when new logic was exercised for that case.  Test case previously committed in r363601.

Original commit comment follows:

This contains fixes for two cases where we might invalidate inbounds and leave it stale in the IR (a miscompile). Case 1 is when switching to an IV with no dynamically live uses, and case 2 is when doing pre-to-post conversion on the same pointer type IV.

The basic scheme used is to prove that using the given IV (pre or post increment forms) would have to already trigger UB on the path to the test we're modifying. As such, our potential UB triggering use does not change the semantics of the original program.

As was pointed out in the review thread by Nikita, this is defending against a separate issue from the hasConcreteDef case. This is about poison, that's about undef. Unfortunately, the two are different, see Nikita's comment for a fuller explanation, he explains it well.

(Note: I'm going to address Nikita's last style comment in a separate commit just to minimize chance of subtle bugs being introduced due to typos.)

Differential Revision: https://reviews.llvm.org/D62939

llvm-svn: 363613
2019-06-17 20:32:22 +00:00
Joseph Tremoulet daa1ae6142 [EarlyCSE] Fix hashing of self-compares
Summary:
Update compare normalization in SimpleValue hashing to break ties (when
the same value is being compared to itself) by switching to the swapped
predicate if it has a lower numerical value.  This brings the hashing in
line with isEqual, which already recognizes the self-compares with
swapped predicates as equal.

Fixes PR 42280.

Reviewers: spatel, efriedma, nikic, fhahn, uabelho

Reviewed By: nikic

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D63349

llvm-svn: 363598
2019-06-17 19:11:28 +00:00
Whitney Tsang 15b7f5b72d PHINode: introduce setIncomingValueForBlock() function, and use it.
Summary:
There is PHINode::getBasicBlockIndex() and PHINode::setIncomingValue()
but no function to replace incoming value for a specified BasicBlock*
predecessor.
Clearly, there are a lot of places that could use that functionality.

Reviewer: craig.topper, lebedev.ri, Meinersbur, kbarton, fhahn
Reviewed By: Meinersbur, fhahn
Subscribers: fhahn, hiraditya, zzheng, jsji, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D63338

llvm-svn: 363566
2019-06-17 14:38:56 +00:00
Matt Arsenault 1df203d78e InferAddressSpaces: Fix cloning original addrspacecast
If an addrspacecast needed to be inserted again, this was creating a
clone of the original cast for each user. Just use the original, which
also saves losing the value name.

llvm-svn: 363562
2019-06-17 14:13:29 +00:00
Matt Arsenault 282dac717e SROA: Allow eliminating addrspacecasted allocas
There is a circular dependency between SROA and InferAddressSpaces
today that requires running both multiple times in order to be able to
eliminate all simple allocas and addrspacecasts. InferAddressSpaces
can't remove addrspacecasts when written to memory, and SROA helps
move pointers out of memory.

This should avoid inserting new commuting addrspacecasts with GEPs,
since there are unresolved questions about pointer wrapping between
different address spaces.

For now, don't replace volatile operations that don't match the alloca
addrspace, as it would change the address space of the access. It may
be still OK to insert an addrspacecast from the new alloca, but be
more conservative for now.

llvm-svn: 363462
2019-06-14 21:38:31 +00:00
Florian Hahn dcdd12b68c Revert Fix a bug w/inbounds invalidation in LFTR
Reverting because it breaks a green dragon build:
    http://green.lab.llvm.org/green/job/clang-stage2-Rthinlto/18208

This reverts r363289 (git commit eb88badff9)

llvm-svn: 363427
2019-06-14 17:23:09 +00:00
Florian Hahn a19809045c Revert [LFTR] Stylistic cleanup as suggested in last review comment of D62939 [NFC]
Reverting because it depends on r363289, which breaks a green dragon build:
    http://green.lab.llvm.org/green/job/clang-stage2-Rthinlto/18208

This reverts r363292 (git commit 42a3fc133d)

llvm-svn: 363426
2019-06-14 17:22:56 +00:00
Florian Hahn e1b4b1b46e Revert [LFTR] Rename variable to minimize confusion [NFC]
Reverting because it depends on r363289, which breaks a green dragon
build:
    http://green.lab.llvm.org/green/job/clang-stage2-Rthinlto/18208

This reverts r363293 (git commit c37be29634)

llvm-svn: 363425
2019-06-14 17:22:49 +00:00
Philip Reames c37be29634 [LFTR] Rename variable to minimize confusion [NFC]
As pointed out by Nikita in D62625, BackedgeTakenCount is generally used to refer to the backedge taken count of the loop.  A conditional backedge taken count - one which only applies if a particular exit is taken - is called a ExitCount in SCEV code, so be consistent here.

llvm-svn: 363293
2019-06-13 18:40:15 +00:00
Philip Reames 42a3fc133d [LFTR] Stylistic cleanup as suggested in last review comment of D62939 [NFC]
llvm-svn: 363292
2019-06-13 18:32:55 +00:00
Philip Reames eb88badff9 Fix a bug w/inbounds invalidation in LFTR
This contains fixes for two cases where we might invalidate inbounds and leave it stale in the IR (a miscompile). Case 1 is when switching to an IV with no dynamically live uses, and case 2 is when doing pre-to-post conversion on the same pointer type IV.

The basic scheme used is to prove that using the given IV (pre or post increment forms) would have to already trigger UB on the path to the test we're modifying.  As such, our potential UB triggering use does not change the semantics of the original program.

As was pointed out in the review thread by Nikita, this is defending against a separate issue from the hasConcreteDef case. This is about poison, that's about undef. Unfortunately, the two are different, see Nikita's comment for a fuller explanation, he explains it well.

(Note: I'm going to address Nikita's last style comment in a separate commit just to minimize chance of subtle bugs being introduced due to typos.)

Differential Revision: https://reviews.llvm.org/D62939

llvm-svn: 363289
2019-06-13 18:23:13 +00:00
Joseph Tremoulet 3bc6e2a7aa [EarlyCSE] Ensure equal keys have the same hash value
Summary:
The logic in EarlyCSE that looks through 'not' operations in the
predicate recognizes e.g. that `select (not (cmp sgt X, Y)), X, Y` is
equivalent to `select (cmp sgt X, Y), Y, X`.  Without this change,
however, only the latter is recognized as a form of `smin X, Y`, so the
two expressions receive different hash codes.  This leads to missed
optimization opportunities when the quadratic probing for the two hashes
doesn't happen to collide, and assertion failures when probing doesn't
collide on insertion but does collide on a subsequent table grow
operation.

This change inverts the order of some of the pattern matching, checking
first for the optional `not` and then for the min/max/abs patterns, so
that e.g. both expressions above are recognized as a form of `smin X, Y`.

It also adds an assertion to isEqual verifying that it implies equal
hash codes; this fires when there's a collision during insertion, not
just grow, and so will make it easier to notice if these functions fall
out of sync again.  A new flag --earlycse-debug-hash is added which can
be used when changing the hash function; it forces hash collisions so
that any pair of values inserted which compare as equal but hash
differently will be caught by the isEqual assertion.

Reviewers: spatel, nikic

Reviewed By: spatel, nikic

Subscribers: lebedev.ri, arsenm, craig.topper, efriedma, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D62644

llvm-svn: 363274
2019-06-13 15:24:11 +00:00
Philip Reames ae2581cef3 [IndVars] Extend diagnostic -replexitval flag w/ability to bypass hard use hueristic
Note: This does mean that "always" is now more powerful than it was. 
llvm-svn: 363196
2019-06-12 19:52:05 +00:00
Matt Arsenault 86325be3d7 LoopLoadElim: Respect convergent
llvm-svn: 363162
2019-06-12 13:50:47 +00:00
Matt Arsenault 2466ba97bc LoopDistribute/LAA: Respect convergent
This case is slightly tricky, because loop distribution should be
allowed in some cases, and not others. As long as runtime dependency
checks don't need to be introduced, this should be OK. This is further
complicated by the fact that LoopDistribute partially ignores if LAA
says that vectorization is safe, and then does its own runtime pointer
legality checks.

Note this pass still does not handle noduplicate correctly, as this
should always be forbidden with it. I'm not going to bother trying to
fix it, as it would require more effort and I think noduplicate should
be removed.

https://reviews.llvm.org/D62607

llvm-svn: 363160
2019-06-12 13:34:19 +00:00
Alina Sbirlea 3cef1f7d64 Only passes that preserve MemorySSA must mark it as preserved.
Summary:
The method `getLoopPassPreservedAnalyses` should not mark MemorySSA as
preserved, because it's being called in a lot of passes that do not
preserve MemorySSA.
Instead, mark the MemorySSA analysis as preserved by each pass that does
preserve it.
These changes only affect the new pass mananger.

Reviewers: chandlerc

Subscribers: mehdi_amini, jlebar, Prazek, george.burgess.iv, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D62536

llvm-svn: 363091
2019-06-11 18:27:49 +00:00
Philip Reames a9633d5f0b [LFTR] Use recomputed BE count
This was discussed as part of D62880.  The basic thought is that computing BE taken count after widening should produce (on average) an equally good backedge taken count as the one before widening.  Since there's only one test in the suite which is impacted by this change, and it's essentially equivelent codegen, that seems to be a reasonable assertion.  This change was separated from r362971 so that if this turns out to be problematic, the triggering piece is obvious and easily revertable.

For the nestedIV example from elim-extend.ll, we end up with the following BE counts:
BEFORE: (-2 + (-1 * %innercount) + %limit)
AFTER: (-1 + (sext i32 (-1 + %limit) to i64) + (-1 * (sext i32 %innercount to i64))<nsw>)

Note that before is an i32 type, and the after is an i64.  Truncating the i64 produces the i32. 

llvm-svn: 362975
2019-06-10 19:18:53 +00:00
Philip Reames 5d84ccb230 Prepare for multi-exit LFTR [NFC]
This change does the plumbing to wire an ExitingBB parameter through the LFTR implementation, and reorganizes the code to work in terms of a set of individual loop exits. Most of it is fairly obvious, but there's one key complexity which makes it worthy of consideration. The actual multi-exit LFTR patch is in D62625 for context.

Specifically, it turns out the existing code uses the backedge taken count from before a IV is widened. Oddly, we can end up with a different (more expensive, but semantically equivelent) BE count for the loop when requerying after widening.  For the nestedIV example from elim-extend, we end up with the following BE counts:
BEFORE: (-2 + (-1 * %innercount) + %limit)
AFTER: (-1 + (sext i32 (-1 + %limit) to i64) + (-1 * (sext i32 %innercount to i64))<nsw>)

This is the only test in tree which seems sensitive to this difference. The actual result of using the wider BETC on this example is that we actually produce slightly better code. :)

In review, we decided to accept that test change.  This patch is structured to preserve the old behavior, but a separate change will immediate follow with the behavior change.  (I wanted it separate for problem attribution purposes.)

Differential Revision: https://reviews.llvm.org/D62880

llvm-svn: 362971
2019-06-10 17:51:13 +00:00
Keno Fischer eb4a561fa3 [GVN] non-functional code movement
Summary: Move some code around, in preparation for later fixes
to the non-integral addrspace handling (D59661)

Patch By Jameson Nash <jameson@juliacomputing.com>

Reviewed By: reames, loladiro
Differential Revision: https://reviews.llvm.org/D59729

llvm-svn: 362853
2019-06-07 23:08:38 +00:00
Philip Reames 101915cfda [LoopPred] Fix a bug in unconditional latch bailout introduced in r362284
This is a really silly bug that even a simple test w/an unconditional latch would have caught.  I tried to guard against the case, but put it in the wrong if check.  Oops.

llvm-svn: 362727
2019-06-06 18:02:36 +00:00
Matt Arsenault 663d762c9a NewGVN: Handle addrspacecast
The AllConstant check needs to be moved out of the if/else if chain to
avoid a test regression. The "there is no SimplifyZExt" comment
puzzles me, since there is SimplifyCastInst. Additionally, the
Simplify* calls seem to not see the operand as constant, so this needs
to be tried if the simplify failed.

llvm-svn: 362653
2019-06-05 21:15:52 +00:00
Yevgeny Rouban a3e16719c4 Resubmit "[CorrelatedValuePropagation] Fix prof branch_weights metadata handling for SwitchInst"
This reverts commit 5b32f60ec3.
The fix is in commit 4f9e68148b.

This patch fixes the CorrelatedValuePropagation pass to keep
prof branch_weights metadata of SwitchInst consistent.
It makes use of SwitchInstProfUpdateWrapper.
New tests are added.

Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D62126

llvm-svn: 362583
2019-06-05 05:46:40 +00:00
Cameron McInally 5c7245b830 [Scalarizer] Add UnaryOperator visitor to scalarization pass
Differential Revision: https://reviews.llvm.org/D62858

llvm-svn: 362558
2019-06-04 23:01:36 +00:00
Cameron McInally 89f9af5487 [SCCP] Add UnaryOperator visitor to SCCP for unary FNeg
Differential Revision: https://reviews.llvm.org/D62819

llvm-svn: 362449
2019-06-03 21:53:56 +00:00
Philip Reames 9ed1673703 [LoopPred] Convert a second member function to a static helper [NFC]
(And remember to actually mark the first one static.)

llvm-svn: 362415
2019-06-03 16:23:20 +00:00
Philip Reames 0912b06f78 [LoopPred] Convert member function to free helper function [NFC]
llvm-svn: 362411
2019-06-03 16:17:14 +00:00
Nikita Popov 46d4dba6e6 [IndVarSimplify] Fixup nowrap flags during LFTR (PR31181)
Fix for https://bugs.llvm.org/show_bug.cgi?id=31181 and partial fix
for LFTR poison handling issues in general.

When LFTR moves a condition from pre-inc to post-inc, it may now
depend on value that is poison due to nowrap flags. To avoid this,
we clear any nowrap flag that SCEV cannot prove for the post-inc
addrec.

Additionally, LFTR may switch to a different IV that is dynamically
dead and as such may be arbitrarily poison. This patch will correct
nowrap flags in some but not all cases where this happens. This is
related to the adoption of IR nowrap flags for the pre-inc addrec.
(See some of the switch_to_different_iv tests, where flags are not
dropped or insufficiently dropped.)

Finally, there are likely similar issues with the handling of GEP
inbounds, but we don't have a test case for this yet.

Differential Revision: https://reviews.llvm.org/D60935

llvm-svn: 362292
2019-06-01 09:40:18 +00:00
Richard Trieu 4e875464df Inline variable into assert to fix unused variable warning.
llvm-svn: 362285
2019-06-01 03:32:20 +00:00
Philip Reames 19afdf74bb [LoopPred] Eliminate a redundant/confusing cover function [NFC]
llvm-svn: 362284
2019-06-01 03:09:28 +00:00
Philip Reames 099eca832e [LoopPred] Handle a subset of NE comparison based latches
At the moment, LoopPredication completely bails out if it sees a latch of the form:
%cmp = icmp ne %iv, %N
br i1 %cmp, label %loop, label %exit
OR
%cmp = icmp ne %iv.next, %NPlus1
br i1 %cmp, label %loop, label %exit

This is unfortunate since this is exactly the form that LFTR likes to produce. So, go ahead and recognize simple cases where we can.

For pre-increment loops, we leverage the fact that LFTR likes canonical counters (i.e. those starting at zero) and a (presumed) range fact on RHS to discharge the check trivially.

For post-increment forms, the key insight is in remembering that LFTR had to insert a (N+1) for the RHS. CVP can hopefully prove that add nsw/nuw (if there's appropriate range on N to start with). This leaves us both with the post-inc IV and the RHS involving an nsw/nuw add, and SCEV can discharge that with no problem.

This does still need to be extended to handle non-one steps, or other harder patterns of variable (but range restricted) starting values. That'll come later.

Differential Revision: https://reviews.llvm.org/D62748

llvm-svn: 362282
2019-06-01 00:31:58 +00:00
Nikita Popov 7bafae55c0 Reapply [CVP] Simplify non-overflowing saturating add/sub
If we can determine that a saturating add/sub will not overflow based
on range analysis, convert it into a simple binary operation. This is
a sibling transform to the existing with.overflow handling.

Reapplying this with an additional check that the saturating intrinsic
has integer type, as LVI currently does not support vector types.

Differential Revision: https://reviews.llvm.org/D62703

llvm-svn: 362263
2019-05-31 20:48:26 +00:00
Nikita Popov 23a02f6a5f [CVP] Fix assertion failure on vector with.overflow
Noticed on D62703. LVI only handles plain integers, not vectors of
integers. This was previously not an issue, because vector support
for with.overflow is only a relatively recent addition.

llvm-svn: 362261
2019-05-31 20:42:07 +00:00
Nikita Popov ccb63e0bfe Revert "[CVP] Simplify non-overflowing saturating add/sub"
This reverts commit 1e692d1777.

Causes assertion failure in builtins-wasm.c clang test.

llvm-svn: 362254
2019-05-31 19:04:47 +00:00
Nikita Popov 1e692d1777 [CVP] Simplify non-overflowing saturating add/sub
If we can determine that a saturating add/sub will not overflow
based on range analysis, convert it into a simple binary operation.
This is a sibling transform to the existing with.overflow handling.

Differential Revision: https://reviews.llvm.org/D62703

llvm-svn: 362242
2019-05-31 16:46:05 +00:00
Nikita Popov e906f2a370 [CVP] Generalize willNotOverflow(); NFC
Change argument from WithOverflowInst to BinaryOpIntrinsic, so this
function can also be used for saturating math intrinsics.

llvm-svn: 362152
2019-05-30 21:03:10 +00:00
Roman Lebedev e8578953ac [LoopIdiom] Basic OptimizationRemarkEmitter handling
Summary:
I'm adding ORE to memset/memcpy formation, with tests,
but mainly this is split off from D61144.

Reviewers: reames, anemet, thegameg, craig.topper

Reviewed By: thegameg

Subscribers: llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D62631

llvm-svn: 362092
2019-05-30 13:02:06 +00:00
Roman Lebedev fae2e46766 [LoopIdiomRecognize][NFC] Sort includes
Split off from D61144

llvm-svn: 362091
2019-05-30 13:01:53 +00:00
Matt Arsenault 79b3ea701c LoopVersioningLICM: Respect convergent and noduplicate
llvm-svn: 362031
2019-05-29 20:47:59 +00:00
Roman Lebedev 95dec50a35 [LoopIdiomRecognize][NFC] Use DEBUG_TYPE, add LLVM_DEBUG() to runOnNoncountableLoop()
Split off from D61144

llvm-svn: 362022
2019-05-29 20:11:53 +00:00
Matt Arsenault f80c4241b3 CallSiteSplitting: Respect convergent and noduplicate
llvm-svn: 361990
2019-05-29 16:59:48 +00:00
Matt Arsenault 36e7254441 SpeculateAroundPHIs: Respect convergent
llvm-svn: 361957
2019-05-29 13:14:39 +00:00
Nikita Popov 5b32f60ec3 Revert "[CorrelatedValuePropagation] Fix prof branch_weights metadata handling for SwitchInst"
This reverts commit 53f2f32865.

As reported on D62126, this causes assertion failures if the switch
has incorrect branch_weights metadata, which may happen as a result
of other transforms not handling it correctly yet.

llvm-svn: 361881
2019-05-28 21:28:24 +00:00
Yevgeny Rouban 53f2f32865 [CorrelatedValuePropagation] Fix prof branch_weights metadata handling for SwitchInst
This patch fixes the CorrelatedValuePropagation pass to keep
prof branch_weights metadata of SwitchInst consistent.
It makes use of SwitchInstProfUpdateWrapper.
New tests are added.

Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D62126

llvm-svn: 361808
2019-05-28 11:33:50 +00:00
Florian Hahn 11b2f4fe50 [LoopInterchange] Fix handling of LCSSA nodes defined in headers and latches.
The code to preserve LCSSA PHIs currently only properly supports
reduction PHIs and PHIs for values defined outside the latches.

This patch improves the LCSSA PHI handling to cover PHIs for values
defined in the latches.

Fixes PR41725.

Reviewers: efriedma, mcrosier, davide, jdoerfert

Reviewed By: jdoerfert

Differential Revision: https://reviews.llvm.org/D61576

llvm-svn: 361743
2019-05-26 23:38:25 +00:00
Nikita Popov 8b1fa07639 [CVP] Remove unnecessary checks for empty GNWR; NFC
The guaranteed no-wrap region is never empty, it always contains at
least zero, so these optimizations don't ever apply.

To make this more obviously true, replace the conversative return
in makeGNWR with an assertion.

llvm-svn: 361698
2019-05-25 14:11:55 +00:00
Bjorn Pettersson b4771425f5 Use the DataLayout::typeSizeEqualsStoreSize helper. NFC
Just a minor refactoring to use the new helper method
DataLayout::typeSizeEqualsStoreSize(). This is done when
checking if getTypeSizeInBits is equal/non-equal to
getTypeStoreSizeInBits.

llvm-svn: 361613
2019-05-24 09:20:20 +00:00
Neil Henning 119c31ad93 StructurizeCFG: Relax uniformity checks.
This change relaxes the checks for hasOnlyUniformBranches such that our
region is uniform if:

1. All conditional branches that are direct children are uniform.
2. And either:
  a. All sub-regions are uniform.
  b. There is one or less conditional branches among the direct
     children.

Differential Revision: https://reviews.llvm.org/D62198

llvm-svn: 361610
2019-05-24 08:59:17 +00:00
Bjorn Pettersson d63a2bb35f [DSE] Bugfix to avoid PartialStoreMerging involving non byte-sized stores
Summary:
The DeadStoreElimination pass now skips doing
PartialStoreMerging when stores overlap according to
OW_PartialEarlierWithFullLater and at least one of
the stores is having a store size that is different
from the size of the type being stored.

This solves problems seen in
  https://bugs.llvm.org/show_bug.cgi?id=41949
for which we in the past could end up with
mis-compiles or assertions.

The content and location of the padding bits is not
formally described (or undefined) in the LangRef
at the moment. So the solution is chosen based on
that we cannot assume anything about the padding bits
when having a store that clobbers more memory than
indicated by the type of the value that is stored
(such as storing an i6 using an 8-bit store instruction).

Fixes: https://bugs.llvm.org/show_bug.cgi?id=41949

Reviewers: spatel, efriedma, fhahn

Reviewed By: efriedma

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D62250

llvm-svn: 361605
2019-05-24 08:32:02 +00:00
Alina Sbirlea d82ddfa7c3 [NewPassManager] Add tuning option: ForgetAllSCEVInLoopUnroll [NFC].
Summary: Mirror tuning option from old pass manager in new pass manager.

Reviewers: chandlerc

Subscribers: mehdi_amini, jlebar, zzheng, dmgreen, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D61612

llvm-svn: 361560
2019-05-23 21:52:59 +00:00
Kit Barton 987fdfd9a7 Revert [LOOPINFO] Extend Loop object to add utilities to get the loop bounds, step, induction variable, and guard branch.
This reverts r361517 (git commit 2049e4dd8f)

llvm-svn: 361553
2019-05-23 20:53:05 +00:00
Kit Barton 2049e4dd8f [LOOPINFO] Extend Loop object to add utilities to get the loop bounds, step, induction variable, and guard branch.
Summary:
    This PR extends the loop object with more utilities to get loop bounds, step, induction variable, and guard branch. There already exists passes which try to obtain the loop induction variable in their own pass, e.g. loop interchange. It would be useful to have a common area to get these information. Moreover, loop fusion (https://reviews.llvm.org/D55851) is planning to use getGuard() to extend the kind of loops it is able to fuse, e.g. rotated loop with non-constant upper bound, which would have a loop guard.

      /// Example:
      /// for (int i = lb; i < ub; i+=step)
      ///   <loop body>
      /// --- pseudo LLVMIR ---
      /// beforeloop:
      ///   guardcmp = (lb < ub)
      ///   if (guardcmp) goto preheader; else goto afterloop
      /// preheader:
      /// loop:
      ///   i1 = phi[{lb, preheader}, {i2, latch}]
      ///   <loop body>
      ///   i2 = i1 + step
      /// latch:
      ///   cmp = (i2 < ub)
      ///   if (cmp) goto loop
      /// exit:
      /// afterloop:
      ///
      /// getBounds
      ///   getInitialIVValue      --> lb
      ///   getStepInst            --> i2 = i1 + step
      ///   getStepValue           --> step
      ///   getFinalIVValue        --> ub
      ///   getCanonicalPredicate  --> '<'
      ///   getDirection           --> Increasing
      /// getGuard             --> if (guardcmp) goto loop; else goto afterloop
      /// getInductionVariable          --> i1
      /// getAuxiliaryInductionVariable --> {i1}
      /// isCanonical                   --> false

    Committed on behalf of @Whitney (Whitney Tsang).

    Reviewers: kbarton, hfinkel, dmgreen, Meinersbur, jdoerfert, syzaara, fhahn

    Reviewed By: kbarton

    Subscribers: tvvikram, bmahjour, etiotto, fhahn, jsji, hiraditya, llvm-commits

    Tags: #llvm

    Differential Revision: https://reviews.llvm.org/D60565

llvm-svn: 361517
2019-05-23 17:56:35 +00:00
Saleem Abdulrasool 7bbefb13ee Transforms: lower fadd and fsub atomicrmw instructions
`fadd` and `fsub` have recently (r351850) been added as `atomicrmw`
operations. This diff adds lowering cases for them to the LowerAtomic
transform.

Patch by Josh Berdine!

llvm-svn: 361512
2019-05-23 17:03:43 +00:00