Summary:
In SjLj exception mode, the old landingpad BB will create a new landingpad BB and use indirect branch jump to the old landingpad BB in lowering.
So we should add 2 endbr for this exception model.
Reviewers: hjl.tools, craig.topper, annita.zhang, LuoYuanke, pengfei, efriedma
Reviewed By: LuoYuanke
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77124
getFauxShuffle attempts to combine INSERT_VECTOR_ELT(TRUNCATE/EXTEND(EXTRACT_VECTOR_ELT(x))) patterns into a target shuffle chain.
PR45604 identified an issue where the scalar was truncated to a size smaller than the destination vector element and then zero extended back, which requires the upper bits to be zero'd which we don't currently do.
To avoid the bug I've added an early out in these truncation cases, a future commit should allow us to handle this by inserting the necessary SM_SentinelZero padding.
This is an enhancement to D77895 to avoid another
round-trip from XMM->GPR->XMM. This time we handle
the case of starting/ending with an f64 and casting
to signed i32 as the intermediate value.
It's a bit more involved than I initially assumed
because we need to use target-specific opcodes to
represent the non-standard cast ops.
Differential Revision: https://reviews.llvm.org/D78362
[MachineOutliner] fix test for excluding CFI and add test to include CFI in outlining
New test to check that we only outline CFI instruction if all CFI
Instructions in the function would be captured by the outlining
adding x86 tests analagous to AARCH64 cfi tests
Revision: https://reviews.llvm.org/D77852
The immediate used for the regdef is the encoding for the register
class in the enum generated by tablegen. This encoding will change
any time a new register class is added. Since the number is part
of the input, this means it can become stale.
This change modifies some test to avoid this kind of immediate
all together. And updates one test to use the current encoding of
GR64.
Starting with hasRedZone adding MachineFunctionInfo to be put in the YAML for MIR files.
Split out of: D78062
Based on implementation for MachineFunctionInfo for WebAssembly
Differential Revision: https://reviews.llvm.org/D78173
Patch by Andrew Litteken! (AndrewLitteken)
InstCombine should ensure these don't exist.
I'm looking at making some changes to how we detect these
patterns and not having to worry about these phis will help.
This reverts commit 17b1869b72.
It is an attempt to fix the failure reported at
The patch differs from the original one reviwed at
https://reviews.llvm.org/D77435 only for the use of the std::make_tuple
in building the return value of `findAddrModeSVELoadStore`:
- return {IsRegReg ? Opc_rr : Opc_ri, NewBase, NewOffset};
+ return std::make_tuple(IsRegReg ? Opc_rr : Opc_ri, NewBase,
the original patch submitted at
fc4e954ed5
was failing the following build:
http://lab.llvm.org:8011/builders/clang-armv7-linux-build-cache/builds/29420/
with error:
/home/buildslave/buildslave/clang-armv7-linux-build-cache/llvm/llvm/lib/Target/AArch64/AArch64ISelDAGToDAG.cpp
/home/buildslave/buildslave/clang-armv7-linux-build-cache/llvm/llvm/lib/Target/AArch64/AArch64ISelDAGToDAG.cpp:1439:10:
error: chosen constructor is explicit in copy-initialization
return {IsRegReg ? Opc_rr : Opc_ri, NewBase, NewOffset};
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/usr/bin/../lib/gcc/arm-linux-gnueabihf/5.4.0/../../../../include/c++/5.4.0/tuple:479:19:
note: explicit constructor declared here
constexpr tuple(_UElements&&... __elements)
^
1 error generated.
Summary:
This change is fixing an issue where the dagcombine incorrectly used an addressing mode with scaled offsets (indices), instead of unscaled offsets.
Those addressing modes do not exist for `prfh` , `prfw` and `prfd`, hence we can reuse `prfb` because that has unscaled offsets, and because the pseudo-code in the XML spec suggests that the element size is not used for the amount of data that is prefetched by the instruction.
FWIW, GCC also emits a `prfb` for these cases.
Reviewers: sdesmalen, andwar, rengolin
Reviewed By: sdesmalen
Subscribers: tschuett, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78069
Summary:
Fixed wrong conditions for generating (S[LR]I X, Y, C2) from
(or (and X, BvecC1), (lsl Y, C2)) and added ISel nodes to lower to S[LR]I. The
optimisation is also enabled by default now.
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77387
Add initial support for PC Relative addressing for global values that
require GOT indirect addressing. This patch adds PCRelative support for
global addresses that may not be known at link time and may require
access through the GOT.
Differential Revision: https://reviews.llvm.org/D76064
Summary:
AIX symbol have qualname and unqualified name. The stock getSymbol
could only return unqualified name, which leads us to patch many
caller side(lowerConstant, getMCSymbolForTOCPseudoMO).
So we should try to address this problem in the callee
side(getSymbol) and clean up the caller side instead.
Note: this is a "mostly" NFC patch, with a fix for the original
lowerConstant behavior.
Differential Revision: https://reviews.llvm.org/D78045
Add patterns that use a normal, non-wrapping, add and sub nodes along
with an arm vshr imm node.
Differential Revision: https://reviews.llvm.org/D77065
If we are and the constant like 0xFFFFFFC00000, for now, we are using several
instructions to generate this 48bit constant and final an "and". However, we
could exploit it with two rotate instructions.
MB ME MB+63-ME
+----------------------+ +----------------------+
|0000001111111111111000| -> |0000000001111111111111|
+----------------------+ +----------------------+
0 63 0 63
Rotate left ME + 1 bit first, and then, mask it with (MB + 63 - ME, 63),
finally, rotate back. Notice that, we need to round it with 64 bit for the
wrapping case.
Reviewed by: ChenZheng, Nemanjai
Differential Revision: https://reviews.llvm.org/D71831
I've always found the "findValue" a little odd and
inconsistent with other things in SDB.
This simplfifies the code in SDB to just handle a splat constant
address or a 2 operand GEP in the same BB. This removes the
need for "findValue" since the operands to the GEP are
guaranteed to be available. The splat constant handling is
new, but was needed to avoid regressions due to constant
folding combining GEPs created in CGP.
CGP is now responsible for canonicalizing gather/scatters into
this form. The pattern I'm using for scalarizing, a scalar GEP
followed by a GEP with an all zeroes index, seems to be subject
to constant folding that the insertelement+shufflevector was not.
Differential Revision: https://reviews.llvm.org/D76947
Ensure that symbols explicitly* assigned a section name are placed into
a section with a compatible entry size.
This is done by creating multiple sections with the same name** if
incompatible symbols are explicitly given the name of an incompatible
section, whilst:
- Avoiding using uniqued sections where possible (for readability and
to maximize compatibly with assemblers).
- Creating as few SHF_MERGE sections as possible (for efficiency).
Given that each symbol is assigned to a section in a single pass, we
must decide which section each symbol is assigned to without seeing the
properties of all symbols. A stable and easy to understand assignment is
desirable. The following rules facilitate this: The "generic" section
for a given section name will be mergeable if the name is a mergeable
"default" section name (such as .debug_str), a mergeable "implicit"
section name (such as .rodata.str2.2), or MC has already created a
mergeable "generic" section for the given section name (e.g. in response
to a section directive in inline assembly). Otherwise, the "generic"
section for a given name is non-mergeable; and, non-mergeable symbols
are assigned to the "generic" section, while mergeable symbols are
assigned to uniqued sections.
Terminology:
"default" sections are those always created by MC initially, e.g. .text
or .debug_str.
"implicit" sections are those created normally by MC in response to the
symbols that it encounters, i.e. in the absence of an explicit section
name assignment on the symbol, e.g. a function foo might be placed into
a .text.foo section.
"generic" sections are those that are referred to when a unique section
ID is not supplied, e.g. if there are multiple unique .bob sections then
".quad .bob" will reference the generic .bob section. Typically, the
generic section is just the first section of a given name to be created.
Default sections are always generic.
* Typically, section names might be explicitly assigned in source code
using a language extension e.g. a section attribute: _attribute_
((section ("section-name"))) -
https://clang.llvm.org/docs/AttributeReference.html
** I refer to such sections as unique/uniqued sections. In assembly the
", unique," assembly syntax is used to express such sections.
Fixes https://bugs.llvm.org/show_bug.cgi?id=43457.
See https://reviews.llvm.org/D68101 for previous discussions leading to
this patch.
Some minor fixes were required to LLVM's tests, for tests had been using
the old behavior - which allowed for explicitly assigning globals with
incompatible entry sizes to a section.
This fix relies on the ",unique ," assembly feature. This feature is not
available until bintuils version 2.35
(https://sourceware.org/bugzilla/show_bug.cgi?id=25380). If the
integrated assembler is not being used then we avoid using this feature
for compatibility and instead try to place mergeable symbols into
non-mergeable sections or issue an error otherwise.
Differential Revision: https://reviews.llvm.org/D72194
Summary:
AArch64 test case llvm/test/CodeGen/AArch64/branch-target-enforcement.mir is checking for invalid DBG_VALUE instruction with one operand(`DBG_VALUE $lr`). And this DBG_VALUE instruction is echoed from test case it self only.
Correct format of DBG_VALUE is given in below link:
https://llvm.org/docs/SourceLevelDebugging.html#variable-locations-in-instruction-selection-and-mir
Reviewers: dsanders, eli.friedman, jmorse, vsk
Reviewed By: dsanders
Subscribers: kristof.beyls, danielkiss, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78309
Add DestructiveBinaryImm SQSHLU patterns and tests. These patterns allow the SQSHLU instruction to match with a MOVPRFX.
Differential Revision: https://reviews.llvm.org/D76728
This patch adds PC Relative support for global values that are known at link
time. If a global value requires access through the global offset table (GOT)
it is not covered in this patch.
Differential Revision: https://reviews.llvm.org/D75280
These are needed as a counterpart for VGPR subregs even though
there are no scalar instructions which can operate 16 bit values.
When we are materializing a constant that is done into an SGPR
and that SGPR may/will be copied into a 16 bit VGPR subreg. Such
copy is illegal. There are also similar problems if a source
operand of a 16 bit VALU instruction is an SGPR. In addition
we need to get a register with a lo16 subregister of an SGPR
RC during selection and this fails as well.
All of that makes me believe we need these subregisters as a
syntactic glue.
Differential Revision: https://reviews.llvm.org/D78250
Fix for the address optimization for gathers and scatters which would in
some complex cases push out instructions not to the vector loop preheader,
but to other locations as well which lead to a scrambled order and the
compilation failing.
This patch ensures that said instructions are always pushed to the end
of the vector loop preheader.
Differential Revision: https://reviews.llvm.org/D78293
Summary:
When doing the conversion: MachineInst -> MCInst, we should ignore the
implicit operands, it will expose more opportunity for InstiAlias.
Reviewed By: steven.zhang
Differential Revision: https://reviews.llvm.org/D77118
BreakPHIEdge would be set based on whether the instruction needs to
insert a new critical edge to allow sinking into a block where the uses
are PHI nodes. But for instructions with multiple defs it would be reset
on the second def, allowing the instruciton to sink where it should not.
Fixes PR44981
Differential Revision: https://reviews.llvm.org/D78087
Summary:
The INLINEASM MIR instructions use immediate operands to encode the values of some operands.
The MachineInstr pretty printer function already handles those operands and prints human readable annotations instead of the immediates. This patch adds similar annotations to the output of the MIRPrinter, however uses the new MIROperandComment feature.
Reviewers: SjoerdMeijer, arsenm, efriedma
Reviewed By: arsenm
Subscribers: qcolombet, sdardis, jvesely, wdng, nhaehnle, hiraditya, jrtc27, atanasyan, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78088
Summary:
The renaming is necessary to make the naming scheme uniform with other
gather/scatter load/stores SVE intrinsics.
The naming of variables and functions have been adapted to make it
explicit whether we are dealing with a scalar offset (which is
unscaled) or an index (which is scaled according to the data type of
the lanes of the vector).
Reviewers: andwar, sdesmalen, rengolin
Reviewed By: andwar
Subscribers: tschuett, hiraditya, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77839
The "Align" passed into getMachineMemOperand etc. is the alignment of
the MachinePointerInfo, not the alignment of the memory operation.
(getAlign() on a MachineMemOperand automatically reduces the alignment
to account for this.)
We were passing on wrong (overconservative) alignment in a bunch of
places. Fix a bunch of these, mostly in legalization. And while I'm
here, switch to the new Align APIs.
The test changes are all scheduling changes: the biggest effect of
preserving large alignments is that it improves alias analysis, so the
scheduler has more freedom.
(I was originally just trying to do a minor cleanup in
SelectionDAGBuilder, but I accidentally went deeper down the rabbit
hole.)
Differential Revision: https://reviews.llvm.org/D77687
This moves v32i16/v64i8 to a model consistent with how we
treat integer types with avx1.
This does change the ABI for types vXi16/vXi8 vectors larger than
512 bits to pass in multiple zmms instead of multiple ymms. We'd
already hacked some code to make v64i8/v32i16 pass in zmm.
Cost model is still a bit of a mess. In some place I tried to
match existing behavior. But really we need to account for
splitting and concating costs. Cost model for shuffles is
especially pessimistic.
Differential Revision: https://reviews.llvm.org/D76212
We generally only combine starting from users to defs in the artifact combiner,
but this doesn't catch cases where at the point of combining a G_UNMERGE we don't
yet have the opposite G_MERGE on input yet since we haven't legalized that far.
This change adds the users of a G_MERGE to the artifact combiner worklist if one
of the uses is a G_UNMERGE or G_TRUNC.
Differential Revision: https://reviews.llvm.org/D77931
Summary:
The combine for unmerge(cast(merge)) is only valid for vectors, but was
missing a corresponding check. Add a check that the operands are vectors
to avoid an invalid combine.
Without this check, the combiner would emit incorrect code for scalars
and pointers because the artifact cast (trunc/ext) only affects bits at
the end of the type, while this combine assumes that the casted bits
appear between meaningful bits.
This also uncovered a segmentation fault in the AMDGPU
InstructionSelector. The tests triggering this bug have been moved to
their own file and a check for the segmentation fault has been added.
Reviewers: arsenm, dsanders, aemerson, paquette, aditya_nandakumar
Reviewed By: arsenm
Subscribers: tpr, jvesely, wdng, nhaehnle, rovka, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78191