'schedule' clause for combined directives requires additional processing. Special helper variable is generated, that is captured in the outlined parallel region for 'parallel for' region. This captured variable is used to store chunk expression from the 'schedule' clause in this 'parallel for' region.
llvm-svn: 237100
We didn't supporting taking the address of virtual member functions
which overrode a method in a virtual base. We simply need to encode the
virtual base index in the member pointer.
This fixes PR23452.
N.B. There is no data member pointer side to this change because taking
the address of a virtual bases' data member gives you a member pointer
whose type is derived from the virtual bases' type, not the most derived
type.
llvm-svn: 236962
MSVC 2015 renamed the symbol found by name lookup for 'std::terminate'
so we cannot rely on using '?terminate@@YAXXZ'. Furthermore, it seems
that 2015 will be the first release of MSVC which permits inlining a
function which is noexcept into a function which isn't. This is
implemented by creating a cleanup for the invoker which jumps to
__std_terminate. Clang's implementation of this aspect of the MSVC
scheme is slightly less efficient in this respect because we use a
catch handler configured as a catch-all handler instead.
llvm-svn: 236961
Patch from Geoff Berry <gberry@codeaurora.org>
Fix BackendConsumer::EmitOptimizationMessage() to check if the
DiagnosticInfoOptimizationBase object has a valid location before
calling getLocation() to avoid dereferencing a null pointer inside
getLocation() when no debug info is present.
llvm-svn: 236898
Functions with available_externally linkage will not be emitted to object
files (they will just be undefined symbols), so it does not make sense to
put them in comdats.
Creates a second overload of maybeSetTrivialComdat that uses the GlobalObject
instead of the Decl, and uses that in several places that had the faulty
logic.
Differential Revision: http://reviews.llvm.org/D9580
llvm-svn: 236879
Summary:
Possible coverage levels are:
* -fsanitize-coverage=func - function-level coverage
* -fsanitize-coverage=bb - basic-block-level coverage
* -fsanitize-coverage=edge - edge-level coverage
Extra features are:
* -fsanitize-coverage=indirect-calls - coverage for indirect calls
* -fsanitize-coverage=trace-bb - tracing for basic blocks
* -fsanitize-coverage=trace-cmp - tracing for cmp instructions
* -fsanitize-coverage=8bit-counters - frequency counters
Levels and features can be combined in comma-separated list, and
can be disabled by subsequent -fno-sanitize-coverage= flags, e.g.:
-fsanitize-coverage=bb,trace-bb,8bit-counters -fno-sanitize-coverage=trace-bb
is equivalient to:
-fsanitize-coverage=bb,8bit-counters
Original semantics of -fsanitize-coverage flag is preserved:
* -fsanitize-coverage=0 disables the coverage
* -fsanitize-coverage=1 is a synonym for -fsanitize-coverage=func
* -fsanitize-coverage=2 is a synonym for -fsanitize-coverage=bb
* -fsanitize-coverage=3 is a synonym for -fsanitize-coverage=edge
* -fsanitize-coverage=4 is a synonym for -fsanitize-coverage=edge,indirect-calls
Driver tries to diagnose invalid flag usage, in particular:
* At most one level (func,bb,edge) must be specified.
* "trace-bb" and "8bit-counters" features require some level to be specified.
See test case for more examples.
Test Plan: regression test suite
Reviewers: kcc
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D9577
llvm-svn: 236790
- added -fcuda-include-gpubinary option to incorporate results of
device-side compilation into host-side one.
- generate code to register GPU binaries and associated kernels
with CUDA runtime and clean-up on exit.
- added test case for init/deinit code generation.
Differential Revision: http://reviews.llvm.org/D9507
llvm-svn: 236765
Summary:
The next step is to add user-friendly control over these options
to driver via -fsanitize-coverage= option.
Test Plan: regression test suite
Reviewers: kcc
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D9545
llvm-svn: 236756
Fix for codegen of static variables declared inside of captured statements. Captured statements are actually a transparent DeclContexts, so we have to skip them when trying to get a mangled name for statics.
Differential Revision: http://reviews.llvm.org/D9522
llvm-svn: 236701
The MSVC 2015 ABI utilizes a rather straightforward adaptation of the
algorithm found in the appendix of N2382. While we are here, implement
support for emitting cleanups if an exception is thrown while we are
intitializing a static local variable.
llvm-svn: 236697
Inner bodies of OpenMP worksharing loop-based constructs with dynamic or guided scheduling are allowed to be marked with !llvm.mem.parallel_loop_access metadata for better optimization. Worksharing constructs with static scheduling cannot be marked this way (according to OpenMP standard "A data dependence between the same logical iterations in two such loops is guaranteed").
Constructs with auto and runtime scheduling are also not marked because automatically chosen scheduling may be static also.
Differential Revision: http://reviews.llvm.org/D9518
llvm-svn: 236693
Fixed codegen for reduction operations min, max, && and ||. Codegen for them is quite similar and I was confused by this similarity.
Also added a call to kmpc_end_reduce() in atomic part of reduction codegen (call to kmpc_end_reduce_nowait() is not required).
Differential Revision: http://reviews.llvm.org/D9513
llvm-svn: 236689
All callers should be passing `CXXConstructorDecl` or
`CXXDestructorDecl` here, so use `cast<>` instead of `dyn_cast<>` when
setting up the `GlobalDecl`.
llvm-svn: 236651
It doesn't make much sense to try to show coverage inside system
macros, and source locations in builtins confuses the coverage
mapping. Just avoid doing this.
Fixes an assert that fired when a __block storage specifier starts a
region.
llvm-svn: 236547
This adds low-level builtins to allow access to all of the z13 vector
instructions. Note that instructions whose semantics can be described
by standard C (including clang extensions) do not get any builtins.
For each instructions whose semantics *cannot* (fully) be described, we
define a builtin named __builtin_s390_<insn> that directly maps to this
instruction. These are intended to be compatible with GCC.
For instructions that also set the condition code, the builtin will take
an extra argument of type "int *" at the end. The integer pointed to by
this argument will be set to the post-instruction CC value.
For many instructions, the low-level builtin is mapped to the corresponding
LLVM IR intrinsic. However, a number of instructions can be represented
in standard LLVM IR without requiring use of a target intrinsic.
Some instructions require immediate integer operands within a certain
range. Those are verified at the Sema level.
Based on a patch by Richard Sandiford.
llvm-svn: 236532
This patch adds support for the z13 architecture type. For compatibility
with GCC, a pair of options -mvx / -mno-vx can be used to selectively
enable/disable use of the vector facility.
When the vector facility is present, we default to the new vector ABI.
This is characterized by two major differences:
- Vector types are passed/returned in vector registers
(except for unnamed arguments of a variable-argument list function).
- Vector types are at most 8-byte aligned.
The reason for the choice of 8-byte vector alignment is that the hardware
is able to efficiently load vectors at 8-byte alignment, and the ABI only
guarantees 8-byte alignment of the stack pointer, so requiring any higher
alignment for vectors would require dynamic stack re-alignment code.
However, for compatibility with old code that may use vector types, when
*not* using the vector facility, the old alignment rules (vector types
are naturally aligned) remain in use.
These alignment rules are not only implemented at the C language level,
but also at the LLVM IR level. This is done by selecting a different
DataLayout string depending on whether the vector ABI is in effect or not.
Based on a patch by Richard Sandiford.
llvm-svn: 236531
Destructors are never called for cleanups, so we can't use SmallVector as a member.
Differential Revision: http://reviews.llvm.org/D9399
llvm-svn: 236491
Destructors are never called for cleanups, so we can't use SmallVector as a member.
Differential Revision: http://reviews.llvm.org/D9399
llvm-svn: 236487
Destructors are never called for cleanups, so we can't use SmallVector as a member.
Differential Revision: http://reviews.llvm.org/D9399
llvm-svn: 236482
Destructors are never called for cleanups, so we can't use SmallVector as a member.
Differential Revision: http://reviews.llvm.org/D9399
llvm-svn: 236480
For tasks codegen for private/firstprivate variables are different rather than for other directives.
1. Build an internal structure of privates for each private variable:
struct .kmp_privates_t. {
Ty1 var1;
...
Tyn varn;
};
2. Add a new field to kmp_task_t type with list of privates.
struct kmp_task_t {
void * shareds;
kmp_routine_entry_t routine;
kmp_int32 part_id;
kmp_routine_entry_t destructors;
.kmp_privates_t. privates;
};
3. Create a function with destructors calls for all privates after end of task region.
kmp_int32 .omp_task_destructor.(kmp_int32 gtid, kmp_task_t *tt) {
~Destructor(&tt->privates.var1);
...
~Destructor(&tt->privates.varn);
return 0;
}
4. Perform initialization of all firstprivate fields (by simple copying for POD data, copy constructor calls for classes) + provide address of a destructor function after kmpc_omp_task_alloc() and before kmpc_omp_task() calls.
kmp_task_t *new_task = __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, kmp_routine_entry_t *task_entry);
CopyConstructor(new_task->privates.var1, *new_task->shareds.var1_ref);
new_task->shareds.var1_ref = &new_task->privates.var1;
...
CopyConstructor(new_task->privates.varn, *new_task->shareds.varn_ref);
new_task->shareds.varn_ref = &new_task->privates.varn;
new_task->destructors = .omp_task_destructor.;
kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t *new_task)
Differential Revision: http://reviews.llvm.org/D9370
llvm-svn: 236479
The fact that PGO has a say in how these branch weights are determined
isn't interesting to most of CodeGen, so it makes more sense for this
API to be accessible via CodeGenFunction rather than CodeGenPGO.
llvm-svn: 236380
The underlying problem is that there is currently no way to run
ObjCARCContract from llvm bitcode which is required by ObjC ARC.
This fix the problem by always enable ObjCARCContract pass if
optimization is enabled. The ObjCARC Contract pass has almost no
overhead on code that is not using ARC.
llvm-svn: 236372
No functional change. This just makes it more obvious that the logic
in ComputeRegionCounts only depends on the counter map and local
state.
llvm-svn: 236370
This removes the RegionCounter class, which is only used as a helper
in teh ComputeRegionCounts stmt visitor. This class is just an extra
layer of abstraction that makes the code harder to follow at this
point, and removing it makes the logic quite a bit more direct.
llvm-svn: 236364
This change is the third of 3 patches to add support for specifying
the profile output from the command line via -fprofile-instr-generate=<path>,
where the specified output path/file will be overridden by the
LLVM_PROFILE_FILE environment variable.
This patch adds the necessary support to the clang frontend, and adds a
new test.
The compiler-rt and llvm parts are r236055 and r236288, respectively.
Patch by Teresa Johnson. Thanks!
llvm-svn: 236289
We were assigning the counter for the body of the loop to the loop
variable initialization for some reason here, but our tests completely
lacked coverage for range-for loops. This fixes that and makes the
logic generally more similar to the logic for a regular for.
llvm-svn: 236277
For tasks codegen for private/firstprivate variables are different rather than for other directives.
1. Build an internal structure of privates for each private variable:
struct .kmp_privates_t. {
Ty1 var1;
...
Tyn varn;
};
2. Add a new field to kmp_task_t type with list of privates.
struct kmp_task_t {
void * shareds;
kmp_routine_entry_t routine;
kmp_int32 part_id;
kmp_routine_entry_t destructors;
.kmp_privates_t. privates;
};
3. Create a function with destructors calls for all privates after end of task region.
kmp_int32 .omp_task_destructor.(kmp_int32 gtid, kmp_task_t *tt) {
~Destructor(&tt->privates.var1);
...
~Destructor(&tt->privates.varn);
return 0;
}
4. Perform default initialization of all private fields (no initialization for POD data, default constructor calls for classes) + provide address of a destructor function after kmpc_omp_task_alloc() and before kmpc_omp_task() calls.
kmp_task_t *new_task = __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, kmp_routine_entry_t *task_entry);
DefaultConstructor(new_task->privates.var1);
new_task->shareds.var1_ref = &new_task->privates.var1;
...
DefaultConstructor(new_task->privates.varn);
new_task->shareds.varn_ref = &new_task->privates.varn;
new_task->destructors = .omp_task_destructor.;
kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t *new_task)
Differential Revision: http://reviews.llvm.org/D9322
llvm-svn: 236207
Fixed initialization of 'single' region completion + changed type of the third argument of __kmpc_copyprivate() runtime function to size_t.
llvm-svn: 236198
and as artificial local variables in the debug info.
This is a follow-up to r236059. We can't get rid of the local variables
entirely because the gdb buildbot depends on them, but we can mark them
as artificial while still emitting the correct debug info. As I learned
from review comments other compilers also follow this model.
A paired commit in LLVM temporarily relaxes the debug info verifier to
not check the integrity of DW_OP_bit_pieces of artificial variables.
rdar://problem/20730771
llvm-svn: 236125
LLVM r236120 renamed debug info IR constructs to use a `DI` prefix, now
that the `DIDescriptor` hierarchy has been gone for about a week. This
commit was generated using the rename-md-di-nodes.sh upgrade script
attached to PR23080, followed by running clang-format-diff.py on the
`lib/` portion of the patch.
llvm-svn: 236121
This issue was fixed elsewhere in r235396 in a more general way, hence these
changes no longer do anything. Keep the testcase however, to ensure that we
don't regress this for ARM.
llvm-svn: 236104
in the debug info. This patch deletes a hack that emits the members
of local anonymous unions as local variables.
Besides being morally wrong, the existing representation using local
variables breaks internal assumptions about the local variables' storage
size.
Compiling
```
void fn1() {
union {
int i;
char c;
};
i = c;
}
```
with -g -O3 -verify will cause the verifier to fail after SROA splits
the 32-bit storage for the "local variable" c into two pieces because the
second piece is clearly outside the 8-bit range that is expected for a
variable of type char. Given the choice I'd rather fix the debug
representation than weaken the verifier.
Debuggers generally already know how to deal with anonymous unions when
they are members of C++ record types, but they may have problems finding
the local anonymous struct members in the expression evaluator.
rdar://problem/20730771
llvm-svn: 236059
This is just the clang-side of 32-bit SEH. LLVM still needs work, and it
will determinstically fail to compile until it's feature complete.
On x86, all outlined handlers have no parameters, but they do implicitly
take the EBP value passed in and use it to address locals of the parent
frame. We model this with llvm.frameaddress(1).
This works (mostly), but __finally block inlining can break it. For now,
we apply the 'noinline' attribute. If we really want to inline __finally
blocks on 32-bit x86, we should teach the inliner how to untangle
frameescape and framerecover.
Promote the error diagnostic from codegen to sema. It now rejects SEH on
non-Windows platforms. LLVM doesn't implement SEH on non-x86 Windows
platforms, but there's nothing preventing it.
llvm-svn: 236052
ability to generate code that CodeGen likes. Test
cases can use this functionality by calling
// RUN: %clang_cc1 -emit-obj -o /dev/null -ast-merge %t.1.ast -ast-merge %t.2.ast %s
llvm-svn: 236011
When creating a global variable with a type of a struct with bitfields, we must
forcibly set the alignment of the global from the RecordDecl. We must do this so
that the proper bitfield alignment makes its way down to LLVM, since clang will
mangle the bitfields into one large type.
llvm-svn: 235976
This makes sure that the front end is specific about what they're expecting
the backend to produce. Update a FIXME with the idea that the target-features
could be more precise using backend knowledge.
llvm-svn: 235936
Currently clang emits file-scope asm during *both* host and device
compilation modes which is usually a wrong thing to do.
There's no way to attach any attribute to an __asm statement, so
there's no way to differentiate between host-side and device-side
file-scope asm. This patch makes clang to match nvcc behavior and
emit file-scope-asm only during host-side compilation.
Differential Revision: http://reviews.llvm.org/D9270
llvm-svn: 235905
Emit the following code for 'taskwait' directive within tied task:
call i32 @__kmpc_omp_taskwait(<loc>, i32 <thread_id>);
Differential Revision: http://reviews.llvm.org/D9245
llvm-svn: 235836
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
#pragma omp sections lastprivate(<var>)
<BODY>;
This construct is translated into something like:
<last_iter> = alloca i32
<init for lastprivates>;
<last_iter> = 0
; No initializer for simple variables or a default constructor is called for objects.
; For arrays perform element by element initialization by the call of the default constructor.
...
OMP_FOR_START(...,<last_iter>, ..); sets <last_iter> to 1 if this is the last iteration.
<BODY>
...
OMP_FOR_END
if (<last_iter> != 0) {
<final copy for lastprivate>; Update original variable with the lastprivate value.
}
call __kmpc_cancel_barrier() ; an implicit barrier to avoid possible data race.
If there is only one section, there is no special code generation, original shared variables are used + barrier is emitted at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9240
llvm-svn: 235834
If there are 2 or more sections in a 'section' directive the following code is generated:
<default init for privates>
@__kmpc_for_static_init_4();
<BODY for sections directive>
@__kmpc_for_static_fini()
If there is only one section, the following code is generated:
if (@__kmpc_single()) {
<default init for privates>
@__kmpc_end_single();
}
Differential Revision: http://reviews.llvm.org/D9239
llvm-svn: 235833
Emit the following code for 'single' directive with 'private' clause:
if (@__kmpc_single()) {
<default init for privates>
@__kmpc_end_single();
}
Differential Revision: http://reviews.llvm.org/D9238
llvm-svn: 235832
Fixes rdar://20621065.
A more elegant fix would preclude this case by defining the
rules such that zero-size classes are always formally empty.
I believe the only extensions which create zero-size classes
right now are flexible arrays and zero-length arrays; it's
not abstractly unreasonable to say that those don't count
as members for the purposes of emptiness, just as zero-width
bitfields don't count. But that's an ABI-affecting change
and requires further discussion; in the meantime, let's not
assert / miscompile.
llvm-svn: 235815
This fixes a crash when we're emitting coverage and a macro appears
between two binary conditional operators, ie, "foo ?: MACRO ?: bar",
and fixes the interaction of macros and conditional operators in
general.
llvm-svn: 235793
Emit the following code for 'single' directive with 'firtstprivate' clause:
if (@__kmpc_single()) {
<init for firstprivates>
@__kmpc_end_single();
}
@__kmpc_cancel_barrier(); // To avoid data race in firstprivate init
Differential Revision: http://reviews.llvm.org/D9223
llvm-svn: 235694
Runtime function for 'copyprivate' directive generates implicit barriers, so no need to emit it.
Differential Revision: http://reviews.llvm.org/D9215
llvm-svn: 235692
If there are 2 or more sections in a 'section' directive the following code is generated:
<init for firstprivates>
@__kmpc_cancel_barrier();// To avoid data race in firstprivate init
@__kmpc_for_static_init_4();
<BODY for sections directive>
@__kmpc_for_static_fini()
If there is only one section, the following code is generated:
if (@__kmpc_single()) {
<init for firstprivates>
@__kmpc_end_single();
}
@__kmpc_cancel_barrier(); // To avoid data race in firstprivate init
Differential Revision: http://reviews.llvm.org/D9214
llvm-svn: 235691
The RegionCounter type does a lot of legwork, but most of it is only
meaningful within the implementation of CodeGenPGO. The uses elsewhere
in CodeGen generally just want to increment or read counters, so do
that directly.
llvm-svn: 235664
In r235553, Clang started emitting lifetime markers more often. This
caused false negative in MSan, because MSan only poisons all allocas
once at function entry. Eventually, MSan should poison allocas at
lifetime start and probably also lifetime end, but until then, let's not
emit markers that aren't going to be useful.
llvm-svn: 235613
Adds codegen for 'atomic capture' constructs with the following forms of expressions/statements:
v = x binop= expr;
v = x++;
v = ++x;
v = x--;
v = --x;
v = x = x binop expr;
v = x = expr binop x;
{v = x; x = binop= expr;}
{v = x; x++;}
{v = x; ++x;}
{v = x; x--;}
{v = x; --x;}
{x = x binop expr; v = x;}
{x binop= expr; v = x;}
{x++; v = x;}
{++x; v = x;}
{x--; v = x;}
{--x; v = x;}
{x = x binop expr; v = x;}
{x = expr binop x; v = x;}
{v = x; x = expr;}
If x and expr are integer and binop is associative or x is a LHS in a RHS of the assignment expression, and atomics are allowed for type of x on the target platform atomicrmw instruction is emitted.
Otherwise compare-and-swap sequence is emitted.
Update of 'v' is not required to be be atomic with respect to the read or write of the 'x'.
bb:
...
atomic load <x>
cont:
<expected> = phi [ <x>, label %bb ], [ <new_failed>, %cont ]
<desired> = <expected> binop <expr>
<res> = cmpxchg atomic &<x>, desired, expected
<new_failed> = <res>.field1;
br <res>field2, label %exit, label %cont
exit:
atomic store <old/new x>, <v>
...
Differential Revision: http://reviews.llvm.org/D9049
llvm-svn: 235573
Summary:
Make sure signed overflow in "x--" is checked with
llvm.ssub.with.overflow intrinsic and is reported as:
"-2147483648 - 1 cannot be represented in type 'int'"
instead of:
"-2147483648 + -1 cannot be represented in type 'int'"
, like we do for unsigned overflow.
Test Plan: clang + compiler-rt regression test suite
Reviewers: rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D8236
llvm-svn: 235568
We try to use the member variable "FuncName" here, but we've also used
that name as a parameter. This ends with us getting the length of the
function name wrong when we generate the coverage data.
llvm-svn: 235565
These extra endcatch markers aren't helping identify regions to outline,
so let's get rid of them. LLVM outlines (more or less) from begincatch
to endcatch. Any unwind edge from an enclosed invoke is a transition to
a new exception handler, which has it's own outlining markers.
llvm-svn: 235562
This reverts commit r234700. It turns out that the lifetime markers
were not the cause of Chromium failing but a bug which was uncovered by
optimizations exposed by the markers.
llvm-svn: 235553
Otherwise -fno-omit-frame-pointer and other flags like it aren't
applied.
Basic idea taken from Gao's patch, thanks!
Differential Revision: http://reviews.llvm.org/D9203
llvm-svn: 235537
If condition evaluates to true, the code executes task by calling @__kmpc_omp_task() runtime function.
If condition evaluates to false, the code executes serial version of the code by executing the following code:
call void @__kmpc_omp_task_begin_if0(<loc>, <threadid>, <task_t_ptr, returned by @__kmpc_omp_task_alloc()>);
proxy_task_entry(<gtid>, <task_t_ptr, returned by @__kmpc_omp_task_alloc()>);
call void @__kmpc_omp_task_complete_if0(<loc>, <threadid>, <task_t_ptr, returned by @__kmpc_omp_task_alloc()>);
Also it checks if the condition is constant and if it is constant it evaluates its value and then generates either parallel version of the code (if the condition evaluates to true), or the serial version of the code (if the condition evaluates to false).
Differential Revision: http://reviews.llvm.org/D9143
llvm-svn: 235507
This patch generates helper variables which used as a private copies of the corresponding original variables inside an OpenMP 'for' directive. These generated variables are initialized by default (with the default constructor, if any). In OpenMP region references to original variables are replaced by the references to these private helper variables.
Differential Revision: http://reviews.llvm.org/D9106
llvm-svn: 235503
Patch fixes bugs in codegen for loops with unsigned counters and zero trip count. Previously preconditions for all loops were built using logic (Upper - Lower) > 0. But if the loop is a loop with zero trip count, then Upper - Lower is < 0 only for signed integer, for unsigned we're running into an underflow situation.
In this patch we're using original Lower<Upper condition to check that loop body can be executed at least once. Also this allows to skip code generation for loops, if it is known that preconditions for the loop are always false.
Differential Revision: http://reviews.llvm.org/D9103
llvm-svn: 235500
Add codegen for 'ordered' directive:
__kmpc_ordered(ident_t *, gtid);
<associated statement>;
__kmpc_end_ordered(ident_t *, gtid);
Also for 'for' directives with the dynamic scheduling and an 'ordered' clause added a call to '__kmpc_dispatch_fini_(4|8)[u]()' function after increment expression for loop control variable:
while(__kmpc_dispatch_next(&LB, &UB)) {
idx = LB;
while (idx <= UB) { BODY; ++idx;
__kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
} // inner loop
}
Differential Revision: http://reviews.llvm.org/D9070
llvm-svn: 235496
- Changed CUDALaunchBounds arguments from integers to Expr* so they can
be saved in AST for instantiation.
- Added support for template instantiation of launch_bounds attrubute.
- Moved evaluation of launch_bounds arguments to NVPTXTargetCodeGenInfo::
SetTargetAttributes() where it can be done after template instantiation.
- Added a warning on negative launch_bounds arguments.
- Amended test cases.
Differential Revision: http://reviews.llvm.org/D8985
llvm-svn: 235452
An upcoming LLVM commit will remove the `DIArray` and `DITypeArray`
typedefs that shadow `DebugNodeArray` and `MDTypeRefArray`,
respectively. Use those types directly.
llvm-svn: 235412
Code in CodeGenModule::GetOrCreateLLVMGlobal that sets up GlobalValue
object for LLVM external symbols has this comment:
// FIXME: This code is overly simple and should be merged with other global
// handling.
One part does seems to be "overly simple" currently is that this code
never sets any alignment info on the GlobalValue, so that the emitted
IR does not have any align attribute on external globals. This can
lead to unnecessarily inefficient code generation.
This patch adds a GV->setAlignment call to set alignment info.
llvm-svn: 235396
Prepare for the deletion in LLVM of the subclasses of (the already
deleted) `DIScope` by using the raw pointers they were wrapping
directly.
llvm-svn: 235355
Subclasses of (the already deleted) `DIType` will be deleted by an
upcoming LLVM commit. Remove references.
While `DICompositeType` wraps `MDCompositeTypeBase` and `DIDerivedType`
wraps `MDDerivedTypeBase`, most uses of each really meant the more
specific `MDCompositeType` and `MDDerivedType`. I updated accordingly.
llvm-svn: 235350