Fix "Invalid operator call kind" error (llvm_unreachable) in
DecodeOperatorCall when profiling a dependent co_await.
Patch by Victor Zverovich!
Differential Revision: https://reviews.llvm.org/D50002
llvm-svn: 338343
This diff includes the logic for setting the precision bits for each primary fixed point type in the target info and logic for initializing a fixed point literal.
Fixed point literals are declared using the suffixes
```
hr: short _Fract
uhr: unsigned short _Fract
r: _Fract
ur: unsigned _Fract
lr: long _Fract
ulr: unsigned long _Fract
hk: short _Accum
uhk: unsigned short _Accum
k: _Accum
uk: unsigned _Accum
```
Errors are also thrown for illegal literal values
```
unsigned short _Accum u_short_accum = 256.0uhk; // expected-error{{the integral part of this literal is too large for this unsigned _Accum type}}
```
Differential Revision: https://reviews.llvm.org/D46915
llvm-svn: 335148
This is similar to the LLVM change https://reviews.llvm.org/D46290.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\@brief'); do perl -pi -e 's/\@brief //g' $i & done
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46320
llvm-svn: 331834
Build the index off of DeclarationName instead of Decl pointers. When finding
an UnresolvedLookupExprClass, hash it as if it were a DeclRefExpr. This will
allow methods to be hashed.
llvm-svn: 325741
From http://reviews.llvm.org/D4368 these cases were thought to not be reachable
and the checks removed before the rest of the code was committed in r216649.
However, these cases are reachable and the checks are added back.
llvm-svn: 317957
C2017 update 3 produces a clang that crashes when compiling clang. Disabling
optimizations for StmtProfiler::VisitCXXOperatorCallExpr() makes the crash go
away.
Patch from Bruce Dawson <brucedawson@chromium.org>!
https://reviews.llvm.org/D35757
llvm-svn: 308897
Summary:
The changes contained in this patch are:
1. Defines a new AST node `CoawaitDependentExpr` for representing co_await expressions while the promise type is still dependent.
2. Correctly detect and transform the 'co_await' operand to `p.await_transform(<expr>)` when possible.
3. Change the initial/final suspend points to build during the initial parse, so they have the correct operator co_await lookup results.
4. Fix transformation of the CoroutineBodyStmt so that it doesn't re-build the final/initial suspends.
@rsmith: This change is a little big, but it's not trivial for me to split it up. Please let me know if you would prefer this submitted as multiple patches.
Reviewers: rsmith, GorNishanov
Reviewed By: rsmith
Subscribers: ABataev, rsmith, mehdi_amini, cfe-commits
Differential Revision: https://reviews.llvm.org/D26057
llvm-svn: 297093
If the QualType is null, calling ASTContext::getCanonicalType on it will lead
to an assert. This was found while testing a new use for Stmt::Profile, so
there is no test case for this.
llvm-svn: 296956
Add support for static_cast in classes. Add pointer-independent profiling for
Stmt's, sharing most of the logic with Stmt::Profile. This is the first of the
deep sub-Decl diffing for error messages.
Differential Revision: https://reviews.llvm.org/D21675
llvm-svn: 295890
A slightly weaker form of ODR checking than previous attempts, but hopefully
won't break the modules build bot. Future work will be needed to catch all
cases.
When objects are imported for modules, there is a chance that a name collision
will cause an ODR violation. Previously, only a small number of such
violations were detected. This patch provides a stronger check based on
AST nodes.
The information needed to uniquely identify an object is taken from the AST and
put into a one-dimensional byte stream. This stream is then hashed to give
a value to represent the object, which is stored with the other object data
in the module.
When modules are loaded, and Decl's are merged, the hash values of the two
Decl's are compared. Only Decl's with matched hash values will be merged.
Mismatch hashes will generate a module error, and if possible, point to the
first difference between the two objects.
The transform from AST to byte stream is a modified depth first algorithm.
Due to references between some AST nodes, a pure depth first algorithm could
generate loops. For Stmt nodes, a straight depth first processing occurs.
For Type and Decl nodes, they are replaced with an index number and only on
first visit will these nodes be processed. As an optimization, boolean
values are saved and stored together in reverse order at the end of the
byte stream to lower the ammount of data that needs to be hashed.
Compile time impact was measured at 1.5-2.0% during module building, and
negligible during builds without module building.
Differential Revision: https://reviews.llvm.org/D21675
llvm-svn: 295421
Recommit r293585 that was reverted in r293611 with new fixes. The previous
issue was determined to be an overly aggressive AST visitor from forward
declared objects. The visitor will now only deeply visit certain Decl's and
only do a shallow information extraction from all other Decl's.
When objects are imported for modules, there is a chance that a name collision
will cause an ODR violation. Previously, only a small number of such
violations were detected. This patch provides a stronger check based on
AST nodes.
The information needed to uniquely identify an object is taken from the AST and
put into a one-dimensional byte stream. This stream is then hashed to give
a value to represent the object, which is stored with the other object data
in the module.
When modules are loaded, and Decl's are merged, the hash values of the two
Decl's are compared. Only Decl's with matched hash values will be merged.
Mismatch hashes will generate a module error, and if possible, point to the
first difference between the two objects.
The transform from AST to byte stream is a modified depth first algorithm.
Due to references between some AST nodes, a pure depth first algorithm could
generate loops. For Stmt nodes, a straight depth first processing occurs.
For Type and Decl nodes, they are replaced with an index number and only on
first visit will these nodes be processed. As an optimization, boolean
values are saved and stored together in reverse order at the end of the
byte stream to lower the ammount of data that needs to be hashed.
Compile time impact was measured at 1.5-2.0% during module building, and
negligible during builds without module building.
Differential Revision: https://reviews.llvm.org/D21675
llvm-svn: 295284
We're seeing what we believe are false positives. (It's hard to tell with the
available diagnostics, and I'm not sure how to reduce them yet).
I'll send Richard reproduction details offline.
djasper/chandlerc suggested this should be a warning for now, to make rolling it
out feasible.
llvm-svn: 293611
When objects are imported for modules, there is a chance that a name collision
will cause an ODR violation. Previously, only a small number of such
violations were detected. This patch provides a stronger check based on
AST nodes.
The information needed to uniquely identify an object is taked from the AST and
put into a one-dimensional byte stream. This stream is then hashed to give
a value to represent the object, which is stored with the other object data
in the module.
When modules are loaded, and Decl's are merged, the hash values of the two
Decl's are compared. Only Decl's with matched hash values will be merged.
Mismatch hashes will generate a module error, and if possible, point to the
first difference between the two objects.
The transform from AST to byte stream is a modified depth first algorithm.
Due to references between some AST nodes, a pure depth first algorithm could
generate loops. For Stmt nodes, a straight depth first processing occurs.
For Type and Decl nodes, they are replaced with an index number and only on
first visit will these nodes be processed. As an optimization, boolean
values are saved and stored together in reverse order at the end of the
byte stream to lower the ammount of data that needs to be hashed.
Compile time impact was measured at 1.5-2.0% during module building, and
negligible during builds without module building.
Differential Revision: https://reviews.llvm.org/D21675
llvm-svn: 293585
The thread_limit-clause on the combined directive applies to the
'teams' region of this construct. We modify the ThreadLimitClause
class to capture the clause expression within the 'target' region.
Reviewers: ABataev
Differential Revision: https://reviews.llvm.org/D29087
llvm-svn: 293049
The num_teams-clause on the combined directive applies to the
'teams' region of this construct. We modify the NumTeamsClause
class to capture the clause expression within the 'target' region.
Reviewers: ABataev
Differential Revision: https://reviews.llvm.org/D29085
llvm-svn: 293048
The num_threads-clause on the combined directive applies to the
'parallel' region of this construct. We modify the NumThreadsClause
class to capture the clause expression within the 'target' region.
The offload runtime call for 'target parallel' is changed to
__tgt_target_teams() with 1 team and the number of threads set by
this clause or a default if none.
Reviewers: ABataev
Differential Revision: https://reviews.llvm.org/D29082
llvm-svn: 292997
The if-clause on the combined directive potentially applies to both the
'target' and the 'parallel' regions. Codegen'ing the if-clause on the
combined directive requires additional support because the expression in
the clause must be captured by the 'target' capture statement but not
the 'parallel' capture statement. Note that this situation arises for
other clauses such as num_threads.
The OMPIfClause class inherits OMPClauseWithPreInit to support capturing
of expressions in the clause. A member CaptureRegion is added to
OMPClauseWithPreInit to indicate which captured statement (in this case
'target' but not 'parallel') captures these expressions.
To ensure correct codegen of captured expressions in the presence of
combined 'target' directives, OMPParallelScope was added to 'parallel'
codegen.
Reviewers: ABataev
Differential Revision: https://reviews.llvm.org/D28781
llvm-svn: 292437
This patch is to implement sema and parsing for 'target teams distribute simd’ pragma.
Differential Revision: https://reviews.llvm.org/D28252
llvm-svn: 291579
This patch is to implement sema and parsing for 'target teams distribute parallel for simd’ pragma.
Differential Revision: https://reviews.llvm.org/D28202
llvm-svn: 290862
This patch is to implement sema and parsing for 'target teams distribute parallel for’ pragma.
Differential Revision: https://reviews.llvm.org/D28160
llvm-svn: 290725
This patch is to implement sema and parsing for 'target teams distribute' pragma.
Differential Revision: https://reviews.llvm.org/D28015
llvm-svn: 290508
initialization of each array element:
* ArrayInitLoopExpr is a prvalue of array type with two subexpressions:
a common expression (an OpaqueValueExpr) that represents the up-front
computation of the source of the initialization, and a subexpression
representing a per-element initializer
* ArrayInitIndexExpr is a prvalue of type size_t representing the current
position in the loop
This will be used to replace the creation of explicit index variables in lambda
capture of arrays and copy/move construction of classes with array elements,
and also C++17 structured bindings of arrays by value (which inexplicably allow
copying an array by value, unlike all of C++'s other array declarations).
No uses of these nodes are introduced by this change, however.
llvm-svn: 289413
This patch is to implement sema and parsing for 'teams distribute parallel for' pragma.
Differential Revision: https://reviews.llvm.org/D27345
llvm-svn: 289179
This patch is to implement sema and parsing for 'teams distribute parallel for simd' pragma.
Differential Revision: https://reviews.llvm.org/D27084
llvm-svn: 288294
resolved the -> to a call to a specific operator-> function. The particular
test case added here is actually being mishandled: the implicit member access
should not be type-dependent (because it's accessing a non-type-dependent
member of the current instantiation), but calls to a type-dependent operator->
that is a member of the current instantiation would be liable to hit the same
codepath.
llvm-svn: 284999
This reverts commit r279003 as it breaks some of our buildbots (e.g.
clang-cmake-aarch64-quick, clang-x86_64-linux-selfhost-modules).
The error is in OpenMP/teams_distribute_simd_ast_print.cpp:
clang: /home/buildslave/buildslave/clang-cmake-aarch64-quick/llvm/include/llvm/ADT/DenseMap.h:527:
bool llvm::DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT>::LookupBucketFor(const LookupKeyT&, const BucketT*&) const
[with LookupKeyT = clang::Stmt*; DerivedT = llvm::DenseMap<clang::Stmt*, long unsigned int>;
KeyT = clang::Stmt*; ValueT = long unsigned int;
KeyInfoT = llvm::DenseMapInfo<clang::Stmt*>;
BucketT = llvm::detail::DenseMapPair<clang::Stmt*, long unsigned int>]:
Assertion `!KeyInfoT::isEqual(Val, EmptyKey) && !KeyInfoT::isEqual(Val, TombstoneKey) &&
"Empty/Tombstone value shouldn't be inserted into map!"' failed.
llvm-svn: 279045
This patch is to implement sema and parsing for 'teams distribute simd’ pragma.
This patch is originated by Carlo Bertolli.
Differential Revision: https://reviews.llvm.org/D23528
llvm-svn: 279003
This patch adds a new AST node: ObjCAvailabilityCheckExpr, and teaches the
Parser and Sema to generate it. This node represents an availability check of
the form:
@available(macos 10.10, *);
Which will eventually compile to a runtime check of the host's OS version. This
is the first patch of the feature I proposed here:
http://lists.llvm.org/pipermail/cfe-dev/2016-July/049851.html
Differential Revision: https://reviews.llvm.org/D22171
llvm-svn: 275654
This patch is to implement sema and parsing for 'target parallel for simd' pragma.
Differential Revision: http://reviews.llvm.org/D22096
llvm-svn: 275365
http://reviews.llvm.org/D21904
This patch is similar to the implementation of 'private' clause: it adds a list of private pointers to be used within the target data region to store the device pointers returned by the runtime.
Please refer to the following document for a full description of what the runtime witll return in this case (page 10 and 11):
https://github.com/clang-omp/OffloadingDesign
I am happy to answer any question related to the runtime interface to help reviewing this patch.
llvm-svn: 275271
Summary: This patch is an implementation of sema and parsing for the OpenMP composite pragma 'distribute simd'.
Differential Revision: http://reviews.llvm.org/D22007
llvm-svn: 274604
Summary: This patch is an implementation of sema and parsing for the OpenMP composite pragma 'distribute parallel for simd'.
Differential Revision: http://reviews.llvm.org/D21977
llvm-svn: 274530
Replace inheriting constructors implementation with new approach, voted into
C++ last year as a DR against C++11.
Instead of synthesizing a set of derived class constructors for each inherited
base class constructor, we make the constructors of the base class visible to
constructor lookup in the derived class, using the normal rules for
using-declarations.
For constructors, UsingShadowDecl now has a ConstructorUsingShadowDecl derived
class that tracks the requisite additional information. We create shadow
constructors (not found by name lookup) in the derived class to model the
actual initialization, and have a new expression node,
CXXInheritedCtorInitExpr, to model the initialization of a base class from such
a constructor. (This initialization is special because it performs real perfect
forwarding of arguments.)
In cases where argument forwarding is not possible (for inalloca calls,
variadic calls, and calls with callee parameter cleanup), the shadow inheriting
constructor is not emitted and instead we directly emit the initialization code
into the caller of the inherited constructor.
Note that this new model is not perfectly compatible with the old model in some
corner cases. In particular:
* if B inherits a private constructor from A, and C uses that constructor to
construct a B, then we previously required that A befriends B and B
befriends C, but the new rules require A to befriend C directly, and
* if a derived class has its own constructors (and so its implicit default
constructor is suppressed), it may still inherit a default constructor from
a base class
llvm-svn: 274049
[OpenMP] Initial implementation of parse and sema for composite pragma 'distribute parallel for'
This patch is an initial implementation for #distribute parallel for.
The main differences that affect other pragmas are:
The implementation of 'distribute parallel for' requires blocking of the associated loop, where blocks are "distributed" to different teams and iterations within each block are scheduled to parallel threads within each team. To implement blocking, sema creates two additional worksharing directive fields that are used to pass the team assigned block lower and upper bounds through the outlined function resulting from 'parallel'. In this way, scheduling for 'for' to threads can use those bounds.
As a consequence of blocking, the stride of 'distribute' is not 1 but it is equal to the blocking size. This is returned by the runtime and sema prepares a DistIncrExpr variable to hold that value.
As a consequence of blocking, the global upper bound (EnsureUpperBound) expression of the 'for' is not the original loop upper bound (e.g. in for(i = 0 ; i < N; i++) this is 'N') but it is the team-assigned block upper bound. Sema creates a new expression holding the calculation of the actual upper bound for 'for' as UB = min(UB, PrevUB), where UB is the loop upper bound, and PrevUB is the team-assigned block upper bound.
llvm-svn: 273884
http://reviews.llvm.org/D21564
This patch is an initial implementation for #distribute parallel for.
The main differences that affect other pragmas are:
The implementation of 'distribute parallel for' requires blocking of the associated loop, where blocks are "distributed" to different teams and iterations within each block are scheduled to parallel threads within each team. To implement blocking, sema creates two additional worksharing directive fields that are used to pass the team assigned block lower and upper bounds through the outlined function resulting from 'parallel'. In this way, scheduling for 'for' to threads can use those bounds.
As a consequence of blocking, the stride of 'distribute' is not 1 but it is equal to the blocking size. This is returned by the runtime and sema prepares a DistIncrExpr variable to hold that value.
As a consequence of blocking, the global upper bound (EnsureUpperBound) expression of the 'for' is not the original loop upper bound (e.g. in for(i = 0 ; i < N; i++) this is 'N') but it is the team-assigned block upper bound. Sema creates a new expression holding the calculation of the actual upper bound for 'for' as UB = min(UB, PrevUB), where UB is the loop upper bound, and PrevUB is the team-assigned block upper bound.
llvm-svn: 273705
classes.
MSVC actively uses unqualified lookup in dependent bases, lookup at the
instantiation point (non-dependent names may be resolved on things
declared later) etc. and all this stuff is the main cause of
incompatibility between clang and MSVC.
Clang tries to emulate MSVC behavior but it may fail in many cases.
clang could store lexed tokens for member functions definitions within
ClassTemplateDecl for later parsing during template instantiation.
It will allow resolving many possible issues with lookup in dependent
base classes and removing many already existing MSVC-specific
hacks/workarounds from the clang code.
llvm-svn: 272774
Some calls from OMPClauseProfiler were calling the Stmt Profiler with null
pointers, but the profiler can only handle non-null pointers. Add an assert
to the VisitStmt for valid pointers, and check all calls from OMPClauseProfiler
to be non-null pointers.
llvm-svn: 272368
Summary:
The patch contains the parsing and sema support for the `from` clause.
Patch based on the original post by Kelvin Li.
Reviewers: hfinkel, carlo.bertolli, kkwli0, arpith-jacob, ABataev
Subscribers: caomhin, cfe-commits
Differential Revision: http://reviews.llvm.org/D18488
llvm-svn: 270882
Summary:
The patch contains the parsing and sema support for the `to` clause.
Patch based on the original post by Kelvin Li.
Reviewers: carlo.bertolli, hfinkel, kkwli0, arpith-jacob, ABataev
Subscribers: caomhin, cfe-commits
Differential Revision: http://reviews.llvm.org/D18597
llvm-svn: 270880
Summary:
This patch is to add parsing and sema support for `target update` directive. Support for the `to` and `from` clauses will be added by a different patch. This patch also adds support for other clauses that are already implemented upstream and apply to `target update`, e.g. `device` and `if`.
This patch is based on the original post by Kelvin Li.
Reviewers: hfinkel, carlo.bertolli, kkwli0, arpith-jacob, ABataev
Subscribers: caomhin, cfe-commits
Differential Revision: http://reviews.llvm.org/D15944
llvm-svn: 270878
Implement lambda capture of *this by copy.
For e.g.:
struct A {
int d = 10;
auto foo() { return [*this] (auto a) mutable { d+=a; return d; }; }
};
auto L = A{}.foo(); // A{}'s lifetime is gone.
// Below is still ok, because *this was captured by value.
assert(L(10) == 20);
assert(L(100) == 120);
If the capture was implicit, or [this] (i.e. *this was captured by reference), this code would be otherwise undefined.
Implementation Strategy:
- amend the parser to accept *this in the lambda introducer
- add a new king of capture LCK_StarThis
- teach Sema::CheckCXXThisCapture to handle by copy captures of the
enclosing object (i.e. *this)
- when CheckCXXThisCapture does capture by copy, the corresponding
initializer expression for the closure's data member
direct-initializes it thus making a copy of '*this'.
- in codegen, when assigning to CXXThisValue, if *this was captured by
copy, make sure it points to the corresponding field member, and
not, unlike when captured by reference, what the field member points
to.
- mark feature as implemented in svn
Much gratitude to Richard Smith for his carefully illuminating reviews!
llvm-svn: 263921
Clauses with post-update expressions always have pre-init statement. So
OMPClauseWithPreInit now is the base for OMPClauseWithPostUpdate.
llvm-svn: 262696
OpenMP 4.5 allows to privatize non-static data members of current class
in non-static member functions. Patch supports codegen for non-static
data members in 'reduction' clauses.
llvm-svn: 262460
OpenMP 4.5 allows to privatize non-static member decls in non-static
member functions. Patch captures such decls by reference in general (for
bitfields, by value) and then operates with this capture. For bitfields,
at the end of codegen for lastprivates original bitfield is updated with the value of captured copy.
llvm-svn: 261824
Expressions inside 'schedule'|'dist_schedule' clause must be captured in
combined directives to avoid possible crash during codegen. Patch
improves handling of such constructs
llvm-svn: 260954
Summary:
This patch adds parsing + sema for the target parallel for directive along with testcases.
Reviewers: ABataev
Differential Revision: http://reviews.llvm.org/D16759
llvm-svn: 259654
Summary:
This patch adds parsing + sema for the target parallel directive and its clauses along with testcases.
Reviewers: ABataev
Differential Revision: http://reviews.llvm.org/D16553
Rebased to current trunk and updated test cases.
llvm-svn: 258832
Summary:
This patch adds parsing + sema for the defaultmap clause associated with the target directive (among others).
Reviewers: ABataev
Differential Revision: http://reviews.llvm.org/D16527
llvm-svn: 258817
Doing so required separating them so that the former doesn't inherit
from the latter anymore. Investigating that, it became clear that the
inheritance wasn't actually providing real value in any case.
So also:
- Remove a bunch of redundant functions (getExplicitTemplateArgs,
getOptionalExplicitTemplateArgs) on various Expr subclasses which
depended on the inheritance relationship.
- Switched external callers to use pre-existing accessors that return the
data they're actually interested in (getTemplateArgs,
getNumTemplateArgs, etc).
- Switched internal callers to use pre-existing getTemplateKWAndArgsInfo.
llvm-svn: 256359
OpenMP 4.5 adds directives 'taskloop' and 'taskloop simd'. These directives support clause 'num_tasks'. Patch adds parsing/semantic analysis for this clause.
llvm-svn: 255008
OpenMP 4.5 adds 'taksloop' and 'taskloop simd' directives, which have 'grainsize' clause. Patch adds parsing/sema analysis of this clause.
llvm-svn: 254903
OpenMP 4.5 adds 'taskloop' and 'taskloop simd' directives. These directives have new 'nogroup' clause. Patch adds basic parsing/sema support for this clause.
llvm-svn: 254899
OpenMP 4.5 defines new clause 'priority' for 'task', 'taskloop' and 'taskloop simd' directives. Added parsing and sema analysis for 'priority' clause in 'task' and 'taskloop' directives.
llvm-svn: 254398
MSVC supports 'property' attribute and allows to apply it to the declaration of an empty array in a class or structure definition.
For example:
```
__declspec(property(get=GetX, put=PutX)) int x[];
```
The above statement indicates that x[] can be used with one or more array indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b), and p->x[a][b] = i will be turned into p->PutX(a, b, i);
Differential Revision: http://reviews.llvm.org/D13336
llvm-svn: 254067
Parsing and sema analysis for 'simd' clause in 'ordered' directive.
Description
If the simd clause is specified, the ordered regions encountered by any thread will use only a single SIMD lane to execute the ordered
regions in the order of the loop iterations.
Restrictions
An ordered construct with the simd clause is the only OpenMP construct that can appear in the simd region
llvm-svn: 248696
OpenMP 4.1 extends format of '#pragma omp ordered'. It adds 3 additional clauses: 'threads', 'simd' and 'depend'.
If no clause is specified, the ordered construct behaves as if the threads clause had been specified. If the threads clause is specified, the threads in the team executing the loop region execute ordered regions sequentially in the order of the loop iterations.
The loop region to which an ordered region without any clause or with a threads clause binds must have an ordered clause without the parameter specified on the corresponding loop directive.
llvm-svn: 248569
This doesn't quite get alias template equivalence right yet, but handles the
egregious cases where we would silently give the wrong answers.
llvm-svn: 248431
Adds parsing/sema analysis/serialization/deserialization for array sections in OpenMP constructs (introduced in OpenMP 4.0).
Currently it is allowed to use array sections only in OpenMP clauses that accepts list of expressions.
Differential Revision: http://reviews.llvm.org/D10732
llvm-svn: 245937
Add parsing/sema analysis for 'simdlen' clause in simd directives. Also add check that if both 'safelen' and 'simdlen' clauses are specified, the value of 'simdlen' parameter is less than the value of 'safelen' parameter.
llvm-svn: 245692