Summary:
If there is a friend class template "prototype" (forward declaration)
and later a definition for it in the existing code, this existing
definition may be not found by ASTImporter because it is not linked
to the prototype (under the friend AST node). The problem is fixed by
looping over all found matching decls instead of break after the first
found one.
Reviewers: martong, a.sidorin, shafik, a_sidorin
Reviewed By: a_sidorin
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D65269
llvm-svn: 368551
This patch adds the SVE built-in types defined by the Procedure Call
Standard for the Arm Architecture:
https://developer.arm.com/docs/100986/0000
It handles the types in all relevant places that deal with built-in types.
At the moment, some of these places bail out with an error, including:
(1) trying to generate LLVM IR for the types
(2) trying to generate debug info for the types
(3) trying to mangle the types using the Microsoft C++ ABI
(4) trying to @encode the types in Objective C
(1) and (2) are fixed by follow-on patches but (unlike this patch)
they deal mostly with target-specific LLVM details, so seemed like
a logically separate change. There is currently no spec for (3) and
(4), so reporting an error seems like the correct behaviour for now.
The intention is that the types will become sizeless types:
http://lists.llvm.org/pipermail/cfe-dev/2019-June/062523.html
The main purpose of the sizeless type extension is to diagnose
impossible or dangerous uses of the types, such as any that would
require sizeof to have a meaningful defined value.
Until then, the patch sets the alignments of the types to the values
specified in the link above. It also sets the sizes of the types to
zero, which is chosen to be consistently wrong and shouldn't affect
correctly-written code (i.e. code that would compile even with the
sizeless type extension).
The patch adds the common subset of functionality needed to test the
sizeless type extension on the one hand and to provide SVE intrinsic
functions on the other. After this patch, the two pieces of work are
essentially independent.
The patch is based on one by Graham Hunter:
https://reviews.llvm.org/D59245
Differential Revision: https://reviews.llvm.org/D62960
llvm-svn: 368413
Summary:
For functions there is a check to not duplicate the declaration if it is in a
record (class). For function templates there was no similar check, if a
template (in the same class) was imported multiple times the
FunctionTemplateDecl was created multiple times with the same templated
FunctionDecl. This can result in problems with the declaration chain.
Reviewers: martong, a.sidorin, shafik, a_sidorin
Reviewed By: a_sidorin
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D65203
llvm-svn: 368163
Summary:
Instead of traversing inside the TraverseDecl() function.
Previously the attributes were traversed after Travese(Some)Decl
returns.
Logically attributes are properties of particular Decls and should be
traversed alongside other "child" nodes.
None of the tests relied on this behavior, hopefully this is an indication
that the change is relatively safe.
This change started with a discussion on cfe-dev, for details see:
https://lists.llvm.org/pipermail/cfe-dev/2019-July/062899.html
Reviewers: rsmith, gribozavr
Reviewed By: gribozavr
Subscribers: mgorny, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64907
llvm-svn: 368052
We reorder declarations in RecordDecls because they may have another order
in the "to" context than they have in the "from" context. This may happen
e.g when we import a class like this:
struct declToImport {
int a = c + b;
int b = 1;
int c = 2;
};
During the import of `a` we import first the dependencies in sequence,
thus the order would be `c`, `b`, `a`. We will get the normal order by
first removing the already imported members and then adding them in the
order as they apper in the "from" context.
Keeping field order is vital because it determines structure layout.
Reviewers: a_sidorin, shafik
Tags: #clang
Differential Revision: https://reviews.llvm.org/D44100
llvm-svn: 366997
Summary:
We falsely state inequivalence if the template parameter is a
qualified/nonquialified template in the first/second instantiation.
Also, different kinds of TemplateName should be equal if the template
decl (if available) is equal (even if the name kind is different).
Reviewers: a_sidorin, a.sidorin
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64241
llvm-svn: 366818
Summary:
The structural equivalence check reported false eq between lambda classes
with different parameters in their call signature.
The solution is to check the methods for equality too in case of lambda
classes.
Reviewers: a_sidorin, a.sidorin
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64075
llvm-svn: 366332
Summary:
With LLDB we use localUncachedLookup(), however, that fails to find
Decls when a transparent context is involved and the given DC has
external lexical storage. The solution is to use noload_lookup, which
works well with transparent contexts. But, we cannot use only the
noload_lookup since the slow case of localUncachedLookup is still needed
in some other cases.
These other cases are handled in ASTImporterLookupTable, but we cannot
use that with LLDB since that traverses through the AST which initiates
the load of external decls again via DC::decls().
We must avoid loading external decls during the import becuase
ExternalASTSource is implemented with ASTImporter, so external loads
during import results in uncontrolled and faulty import.
Reviewers: shafik, teemperor, jingham, clayborg, a_sidorin, a.sidorin
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits, lldb-commits
Tags: #clang, #lldb
Differential Revision: https://reviews.llvm.org/D61333
llvm-svn: 366325
Summary:
These tests may work with C++14 language constructs in the future
(variable templates and others).
To avoid warnings about language version C++ version constants in the tests
are updated.
Reviewers: martong, a.sidorin
Reviewed By: martong
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64477
llvm-svn: 366061
Summary:
ASTImporter makes now difference between enums with same name in different translation
units if these are not visible outside.
("Scoped enums" are not handled yet.)
Reviewers: martong, a.sidorin, shafik, a_sidorin
Reviewed By: a_sidorin
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D62484
llvm-svn: 365464
Summary:
The current import implementation fails to import the definition of a
lambda class if the lambda class is defined in a function param.
E.g., the lambda class below will be imported without any methods:
```
template <typename F>
void f(F L = [](){}) {}
```
Reviewers: a_sidorin, a.sidorin, shafik
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64073
llvm-svn: 365315
Summary:
Now we store the errors for the Decls in the "to" context too. For
that, however, we have to put these errors in a shared state (among all
the ASTImporter objects which handle the same "to" context but different
"from" contexts).
After a series of imports from different "from" TUs we have a "to" context
which may have erroneous nodes in it. (Remember, the AST is immutable so
there is no way to delete a node once we had created it and we realized
the error later.) All these erroneous nodes are marked in
ASTImporterSharedState::ImportErrors. Clients of the ASTImporter may
use this as an input. E.g. the static analyzer engine may not try to
analyze a function if that is marked as erroneous (it can be queried via
ASTImporterSharedState::getImportDeclErrorIfAny()).
Reviewers: a_sidorin, a.sidorin, shafik
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D62376
llvm-svn: 364785
Summary:
During import of a specific Decl D, it may happen that some AST nodes
had already been created before we recognize an error. In this case we
signal back the error to the caller, but the "to" context remains
polluted with those nodes which had been created. Ideally, those nodes
should not had been created, but that time we did not know about the
error, the error happened later. Since the AST is immutable (most of
the cases we can't remove existing nodes) we choose to mark these nodes
as erroneous.
Here are the steps of the algorithm:
1) We keep track of the nodes which we visit during the import of D: See
ImportPathTy.
2) If a Decl is already imported and it is already on the import path
(we have a cycle) then we copy/store the relevant part of the import
path. We store these cycles for each Decl.
3) When we recognize an error during the import of D then we set up this
error to all Decls in the stored cycles for D and we clear the stored
cycles.
Reviewers: a_sidorin, a.sidorin, shafik
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D62375
llvm-svn: 364771
Summary:
During analysis of one project we failed to import one
CXXDestructorDecl. But since we did not propagate the error in
importDeclContext we had a CXXRecordDecl without a destructor. Then the
analyzer engine had a CallEvent where the nonexistent dtor was requested
(crash).
Solution is to propagate the errors we have during importing a
DeclContext.
Reviewers: a_sidorin, a.sidorin, shafik
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63603
llvm-svn: 364752
Summary:
We add a new member which is a mapping from the already-imported
declarations in the "from" context to the error status of the import of
that declaration. This map contains only the declarations that were not
correctly imported. The same declaration may or may not be included in
ImportedDecls. This map is updated continuously during imports and never
cleared (like ImportedDecls). In Import(Decl*) we use this mapping, so
if there was a previous failed import we return with the existing error.
We add/remove from the Lookuptable in consistency with ImportedFromDecls.
When we map a decl in the 'to' context to something in the 'from'
context then and only then we add it to the lookup table. When we
remove a mapping then and only then we remove it from the lookup table.
This patch is the first in a series of patches whose aim is to further
strengthen the error handling in ASTImporter.
Reviewers: a_sidorin, a.sidorin, shafik
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D62373
llvm-svn: 364279
Summary:
In most cases the FriendDecl contains the declaration of the befriended
class as a child node, so it is discovered during the recursive
visitation. However, there are cases when the befriended class is not a
child, thus it must be fetched explicitly from the FriendDecl, and only
then can we add it to the lookup table.
(Note, this does affect only CTU and does not affect LLDB, because we
cannot and do not use the ASTImporterLookupTable in LLDB.)
Reviewers: a_sidorin, a.sidorin, shafik
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D62064
llvm-svn: 363062
Summary:
ASTImporter makes now difference between classes with same name in different
translation units if these are not visible outside. These classes are not linked
into one decl chain.
Reviewers: martong, a.sidorin, shafik
Reviewed By: shafik
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D62312
llvm-svn: 361752
Summary:
This is the final phase of the refactoring towards using llvm::Expected
and llvm::Error in the ASTImporter API.
This involves the following:
- remove old Import functions which returned with a pointer,
- use the Import_New functions (which return with Err or Expected) everywhere
and handle their return value
- rename Import_New functions to Import
This affects both Clang and LLDB.
Reviewers: shafik, teemperor, aprantl, a_sidorin, balazske, a.sidorin
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits, lldb-commits
Tags: #clang, #lldb
Differential Revision: https://reviews.llvm.org/D61438
llvm-svn: 360760
This caused Clang to start erroring on the following:
struct S {
template <typename = int> explicit S();
};
struct T : S {};
struct U : T {
U();
};
U::U() {}
$ clang -c /tmp/x.cc
/tmp/x.cc:10:4: error: call to implicitly-deleted default constructor of 'T'
U::U() {}
^
/tmp/x.cc:5:12: note: default constructor of 'T' is implicitly deleted
because base class 'S' has no default constructor
struct T : S {};
^
1 error generated.
See discussion on the cfe-commits email thread.
This also reverts the follow-ups r359966 and r359968.
> this patch adds support for the explicit bool specifier.
>
> Changes:
> - The parsing for the explicit(bool) specifier was added in ParseDecl.cpp.
> - The storage of the explicit specifier was changed. the explicit specifier was stored as a boolean value in the FunctionDeclBitfields and in the DeclSpec class. now it is stored as a PointerIntPair<Expr*, 2> with a flag and a potential expression in CXXConstructorDecl, CXXDeductionGuideDecl, CXXConversionDecl and in the DeclSpec class.
> - Following the AST change, Serialization, ASTMatchers, ASTComparator and ASTPrinter were adapted.
> - Template instantiation was adapted to instantiate the potential expressions of the explicit(bool) specifier When instantiating their associated declaration.
> - The Add*Candidate functions were adapted, they now take a Boolean indicating if the context allowing explicit constructor or conversion function and this boolean is used to remove invalid overloads that required template instantiation to be detected.
> - Test for Semantic and Serialization were added.
>
> This patch is not yet complete. I still need to check that interaction with CTAD and deduction guides is correct. and add more tests for AST operations. But I wanted first feedback.
> Perhaps this patch should be spited in smaller patches, but making each patch testable as a standalone may be tricky.
>
> Patch by Tyker
>
> Differential Revision: https://reviews.llvm.org/D60934
llvm-svn: 360024
this patch adds support for the explicit bool specifier.
Changes:
- The parsing for the explicit(bool) specifier was added in ParseDecl.cpp.
- The storage of the explicit specifier was changed. the explicit specifier was stored as a boolean value in the FunctionDeclBitfields and in the DeclSpec class. now it is stored as a PointerIntPair<Expr*, 2> with a flag and a potential expression in CXXConstructorDecl, CXXDeductionGuideDecl, CXXConversionDecl and in the DeclSpec class.
- Following the AST change, Serialization, ASTMatchers, ASTComparator and ASTPrinter were adapted.
- Template instantiation was adapted to instantiate the potential expressions of the explicit(bool) specifier When instantiating their associated declaration.
- The Add*Candidate functions were adapted, they now take a Boolean indicating if the context allowing explicit constructor or conversion function and this boolean is used to remove invalid overloads that required template instantiation to be detected.
- Test for Semantic and Serialization were added.
This patch is not yet complete. I still need to check that interaction with CTAD and deduction guides is correct. and add more tests for AST operations. But I wanted first feedback.
Perhaps this patch should be spited in smaller patches, but making each patch testable as a standalone may be tricky.
Patch by Tyker
Differential Revision: https://reviews.llvm.org/D60934
llvm-svn: 359949
Summary:
We are currently implementing support in LLDB that reconstructs the STL templates from
the target program in the expression evaluator. This reconstruction happens during the
import process from our debug info AST into the expression evaluation AST, which means
we need a way to intercept the ASTImporter import process.
This patch adds an protected ImportImpl method that we can overwrite in LLDB to implement
our special importing logic (which is essentially just looking into a C++ module that is attached to
the target context). Because ImportImpl has to call MapImported/AddToLookup for the decls it
creates, this patch also exposes those via a new unified method and checks that we call it when
importing decls.
Reviewers: martong, balazske, a.sidorin, shafik, a_sidorin
Reviewed By: martong, a_sidorin
Subscribers: rnkovacs, cfe-commits, lldb-commits, aprantl
Tags: #clang
Differential Revision: https://reviews.llvm.org/D59485
llvm-svn: 359502
ObjCPropertyDecl should use the category interface as a context similar to what is done for methods.
Previously category methods would be printed as `::property`; now they are printed as `Class::property`.
llvm-svn: 357720
FileManager constructs a VFS in its constructor if it isn't passed one,
and there's no way to reset it. Make that contract clear by returning a
reference from its accessor.
https://reviews.llvm.org/D59388
llvm-svn: 357038
Summary: rL356570 introduced a test which only passes with the default openmp library, libomp, and fails with other openmp libraries, such as libgomp. Explicitly choose libomp.
Reviewers: lebedev.ri
Subscribers: guansong, jdoerfert, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D59609
llvm-svn: 356614
Summary:
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf, page 3:
```
structured block
For C/C++, an executable statement, possibly compound, with a single entry at the
top and a single exit at the bottom, or an OpenMP construct.
COMMENT: See Section 2.1 on page 38 for restrictions on structured
blocks.
```
```
2.1 Directive Format
Some executable directives include a structured block. A structured block:
• may contain infinite loops where the point of exit is never reached;
• may halt due to an IEEE exception;
• may contain calls to exit(), _Exit(), quick_exit(), abort() or functions with a
_Noreturn specifier (in C) or a noreturn attribute (in C/C++);
• may be an expression statement, iteration statement, selection statement, or try block, provided
that the corresponding compound statement obtained by enclosing it in { and } would be a
structured block; and
Restrictions
Restrictions to structured blocks are as follows:
• Entry to a structured block must not be the result of a branch.
• The point of exit cannot be a branch out of the structured block.
C / C++
• The point of entry to a structured block must not be a call to setjmp().
• longjmp() and throw() must not violate the entry/exit criteria.
```
Of particular note here is the fact that OpenMP structured blocks are as-if `noexcept`,
in the same sense as with the normal `noexcept` functions in C++.
I.e. if throw happens, and it attempts to travel out of the `noexcept` function
(here: out of the current structured-block), then the program terminates.
Now, one of course can say that since it is explicitly prohibited by the Specification,
then any and all programs that violate this Specification contain undefined behavior,
and are unspecified, and thus no one should care about them. Just don't write broken code /s
But i'm not sure this is a reasonable approach.
I have personally had oss-fuzz issues of this origin - exception thrown inside
of an OpenMP structured-block that is not caught, thus causing program termination.
This issue isn't all that hard to catch, it's not any particularly different from
diagnosing the same situation with the normal `noexcept` function.
Now, clang static analyzer does not presently model exceptions.
But clang-tidy has a simplisic [[ https://clang.llvm.org/extra/clang-tidy/checks/bugprone-exception-escape.html | bugprone-exception-escape ]] check,
and it is even refactored as a `ExceptionAnalyzer` class for reuse.
So it would be trivial to use that analyzer to check for
exceptions escaping out of OpenMP structured blocks. (D59466)
All that sounds too great to be true. Indeed, there is a caveat.
Presently, it's practically impossible to do. To check a OpenMP structured block
you need to somehow 'get' the OpenMP structured block, and you can't because
it's simply not modelled in AST. `CapturedStmt`/`CapturedDecl` is not it's representation.
Now, it is of course possible to write e.g. some AST matcher that would e.g.
match every OpenMP executable directive, and then return the whatever `Stmt` is
the structured block of said executable directive, if any.
But i said //practically//. This isn't practical for the following reasons:
1. This **will** bitrot. That matcher will need to be kept up-to-date,
and refreshed with every new OpenMP spec version.
2. Every single piece of code that would want that knowledge would need to
have such matcher. Well, okay, if it is an AST matcher, it could be shared.
But then you still have `RecursiveASTVisitor` and friends.
`2 > 1`, so now you have code duplication.
So it would be reasonable (and is fully within clang AST spirit) to not
force every single consumer to do that work, but instead store that knowledge
in the correct, and appropriate place - AST, class structure.
Now, there is another hoop we need to get through.
It isn't fully obvious //how// to model this.
The best solution would of course be to simply add a `OMPStructuredBlock` transparent
node. It would be optimal, it would give us two properties:
* Given this `OMPExecutableDirective`, what's it OpenMP structured block?
* It is trivial to check whether the `Stmt*` is a OpenMP structured block (`isa<OMPStructuredBlock>(ptr)`)
But OpenMP structured block isn't **necessarily** the first, direct child of `OMP*Directive`.
(even ignoring the clang's `CapturedStmt`/`CapturedDecl` that were inserted inbetween).
So i'm not sure whether or not we could re-create AST statements after they were already created?
There would be other costs to a new AST node: https://bugs.llvm.org/show_bug.cgi?id=40563#c12
```
1. You will need to break the representation of loops. The body should be replaced by the "structured block" entity.
2. You will need to support serialization/deserialization.
3. You will need to support template instantiation.
4. You will need to support codegen and take this new construct to account in each OpenMP directive.
```
Instead, there **is** an functionally-equivalent, alternative solution, consisting of two parts.
Part 1:
* Add a member function `isStandaloneDirective()` to the `OMPExecutableDirective` class,
that will tell whether this directive is stand-alone or not, as per the spec.
We need it because we can't just check for the existance of associated statements,
see code comment.
* Add a member function `getStructuredBlock()` to the OMPExecutableDirective` class itself,
that assert that this is not a stand-alone directive, and either return the correct loop body
if this is a loop-like directive, or the captured statement.
This way, given an `OMPExecutableDirective`, we can get it's structured block.
Also, since the knowledge is ingrained into the clang OpenMP implementation,
it will not cause any duplication, and //hopefully// won't bitrot.
Great we achieved 1 of 2 properties of `OMPStructuredBlock` approach.
Thus, there is a second part needed:
* How can we check whether a given `Stmt*` is `OMPStructuredBlock`?
Well, we can't really, in general. I can see this workaround:
```
class FunctionASTVisitor : public RecursiveASTVisitor<FunctionASTVisitor> {
using Base = RecursiveASTVisitor<FunctionASTVisitor>;
public:
bool VisitOMPExecDir(OMPExecDir *D) {
OmpStructuredStmts.emplace_back(D.getStructuredStmt());
}
bool VisitSOMETHINGELSE(???) {
if(InOmpStructuredStmt)
HI!
}
bool TraverseStmt(Stmt *Node) {
if (!Node)
return Base::TraverseStmt(Node);
if (OmpStructuredStmts.back() == Node)
++InOmpStructuredStmt;
Base::TraverseStmt(Node);
if (OmpStructuredStmts.back() == Node) {
OmpStructuredStmts.pop_back();
--InOmpStructuredStmt;
}
return true;
}
std::vector<Stmt*> OmpStructuredStmts;
int InOmpStructuredStmt = 0;
};
```
But i really don't see using it in practice.
It's just too intrusive; and again, requires knowledge duplication.
.. but no. The solution lies right on the ground.
Why don't we simply store this `i'm a openmp structured block` in the bitfield of the `Stmt` itself?
This does not appear to have any impact on the memory footprint of the clang AST,
since it's just a single extra bit in the bitfield. At least the static assertions don't fail.
Thus, indeed, we can achieve both of the properties without a new AST node.
We can cheaply set that bit right in sema, at the end of `Sema::ActOnOpenMPExecutableDirective()`,
by just calling the `getStructuredBlock()` that we just added.
Test coverage that demonstrates all this has been added.
This isn't as great with serialization though. Most of it does not use abbrevs,
so we do end up paying the full price (4 bytes?) instead of a single bit.
That price, of course, can be reclaimed by using abbrevs.
In fact, i suspect that //might// not just reclaim these bytes, but pack these PCH significantly.
I'm not seeing a third solution. If there is one, it would be interesting to hear about it.
("just don't write code that would require `isa<OMPStructuredBlock>(ptr)`" is not a solution.)
Fixes [[ https://bugs.llvm.org/show_bug.cgi?id=40563 | PR40563 ]].
Reviewers: ABataev, rjmccall, hfinkel, rsmith, riccibruno, gribozavr
Reviewed By: ABataev, gribozavr
Subscribers: mgorny, aaron.ballman, steveire, guansong, jfb, jdoerfert, cfe-commits
Tags: #clang, #openmp
Differential Revision: https://reviews.llvm.org/D59214
llvm-svn: 356570
Summary:
Redecl chains of function template specializations are not handled well
currently. We want to handle them similarly to functions, i.e. try to
keep the structure of the original AST as much as possible. The aim is
to not squash a prototype with a definition, rather we create both and
put them in a redecl chain.
Reviewers: a_sidorin, shafik, a.sidorin
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D58668
llvm-svn: 356455
Summary:
Redecl chains of class template specializations are not handled well
currently. We want to handle them similarly to functions, i.e. try to
keep the structure of the original AST as much as possible. The aim is
to not squash a prototype with a definition, rather we create both and
put them in a redecl chain.
Reviewers: a_sidorin, shafik, a.sidorin
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, jdoerfert, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D58673
llvm-svn: 356452
Summary:
Import type location in case of TypeSpec and TypeSpecWithTemplate.
Without this fix the imported NespedNameSpecifierLoc will have an
invalid begin location.
Reviewers: a.sidorin, shafik, a_sidorin, martong
Reviewed By: a_sidorin
Subscribers: rnkovacs, jdoerfert, dkrupp, martong, Szelethus, gamesh411, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D55358
llvm-svn: 356151
Summary:
Member expressions with explicit template arguments were not imported
correctly: the DeclRefExpr was missing. This patch fixes.
Reviewers: a_sidorin, shafik, a.sidorin
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D58830
llvm-svn: 355596
Summary:
Redecl chains of function templates are not handled well currently. We
want to handle them similarly to functions, i.e. try to keep the
structure of the original AST as much as possible. The aim is to not
squash a prototype with a definition, rather we create both and put them
in a redecl chain.
Reviewers: a_sidorin, shafik, a.sidorin
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D58494
llvm-svn: 355593
Summary:
Redecl chains of classes and class templates are not handled well
currently. We want to handle them similarly to functions, i.e. try to
keep the structure of the original AST as much as possible. The aim is
to not squash a prototype with a definition, rather we create both and
put them in a redecl chain.
Reviewers: a_sidorin, shafik, a.sidorin
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, jdoerfert, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D58502
llvm-svn: 355390
Summary:
This allows ASTs to be merged when they contain ChooseExpr (the GNU
__builtin_choose_expr construction). This is needed, for example, for
cross-CTU analysis of C code that makes use of __builtin_choose_expr.
The node is already supported in the AST, but it didn't have a matcher
in ASTMatchers. So, this change adds the matcher and adds support to
ASTImporter.
This was originally reviewed and approved in
https://reviews.llvm.org/D58292 and submitted as r354832. It was
reverted in r354839 due to failures on the Windows CI builds.
This version fixes the test failures on Windows, which were caused by
differences in template expansion between versions of clang on different
OSes. The version of clang built with MSVC and running on Windows never
expands the template in the C++ test in ImportExpr.ImportChooseExpr in
clang/unittests/AST/ASTImporter.cpp, but the version on Linux does for
the empty arguments and -fms-compatibility.
So, this version of the patch drops the C++ test for
__builtin_choose_expr, since that version was written to catch
regressions of the logic for isConditionTrue() in the AST import code
for ChooseExpr, and those regressions are also caught by
ASTImporterOptionSpecificTestBase.ImportChooseExpr, which does work on
Windows.
Reviewers: shafik, a_sidorin, martong, aaron.ballman, rnk, a.sidorin
Subscribers: cfe-commits, jdoerfert, rnkovacs, aaron.ballman
Tags: #clang
Differential Revision: https://reviews.llvm.org/D58663
llvm-svn: 354916
Summary:
This allows ASTs to be merged when they contain ChooseExpr (the GNU
__builtin_choose_expr construction). This is needed, for example, for
cross-CTU analysis of C code that makes use of __builtin_choose_expr.
The node is already supported in the AST, but it didn't have a matcher
in ASTMatchers. So, this change adds the matcher and adds support to
ASTImporter.
Reviewers: shafik, a_sidorin, martong, aaron.ballman
Subscribers: aaron.ballman, rnkovacs, jdoerfert, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D58292
llvm-svn: 354832
Summary:
This patch unifies all those tests which check the correctness of the
redecl chains. Previously we had several structurally very similar test
cases for each language construct (class, function, variable, function
template, ...).
We still use value-parameterized tests for the different AST
compatibility switches (-fdelayed-template-parsing, -fms-compatibility).
Gtest makes it possible to have either value-parameterized or
type-parameterized fixtures. However, we cannot have both value- and
type-parameterized test fixtures. So we use a value-parameterized test
fixture in the gtest sense. We intend to mimic gtest's type-parameters
via the type template parameter. We manually instantiate the different
tests with the each types.
After this patch I am planning to put the "generic redecl chain" related
tests into their own separate test file (in another patch).
Reviewers: a_sidorin, shafik, a.sidorin
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Differential Revision: https://reviews.llvm.org/D57236
llvm-svn: 354259
Summary:
Previously only the fields were imported. Now every Decl is imported.
This way the destructor decl is not missing after import.
Patch by balazske (Balázs Kéri)
Reviewers: a.sidorin, shafik
Reviewed By: shafik
Subscribers: balazske, cfe-commits, Szelethus, martong, dkrupp
Tags: #clang
Differential Revision: https://reviews.llvm.org/D57740
llvm-svn: 354120
Summary:
During import of a global variable with external visibility the lookup
will find variables (with the same name) but with static visibility.
Clearly, we cannot put them into the same redecl chain. The same is
true in case of functions. In this fix we filter the lookup results and
consider only those which have the same visibility as the decl we
currently import.
We consider two decls in two anonymous namsepaces to have the same
visibility only if they are imported from the very same translation
unit.
Reviewers: a_sidorin, shafik, a.sidorin
Reviewed By: shafik
Subscribers: jdoerfert, balazske, rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D57232
llvm-svn: 354027
Summary:
We add a new test to show that redecl chains are not handled properly
amongst namespaces. We cannot pass this test now, so this is disabled.
Subsequent patches will make this test pass.
Reviewers: a_sidorin, shafik, a.sidorin
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D57901
llvm-svn: 353684
Summary:
This is to check that operators are handled properly in
`ASTImporterSpecificLookup`. Note, this lookup table is not used in LLDB, only
in CTU.
Reviewers: a_sidorin, shafik, a.sidorin
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D57905
llvm-svn: 353505
Summary: Operators kind was not checked, so we reported e.g. op- to be equal with op+
Reviewers: shafik, a_sidorin, aaron.ballman
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D57902
llvm-svn: 353504
Summary:
Currently `TestImportBase` is derived from `ParameterizedTestsFixture`
which explicitly states that the gtest parameter can be only an
`ArgVector`. This is a limitation when we want to create tests which may
have different parameters.
E.g. we would like to create tests where we can combine different test
parameters. So, for example we'd like gtest to be able to provide
parameters of `<std::tuple<ArgVector, const char *>` instead of a simple
`ArgVector`.
Reviewers: a_sidorin, shafik, a.sidorin
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Differential Revision: https://reviews.llvm.org/D57322
llvm-svn: 353425
Summary:
When importing classes we may add a CXXMethodDecl more than once to a CXXRecordDecl when handling overrides. This patch will fix the cases we currently know about and handle the case where we are only dealing with declarations.
Differential Revision: https://reviews.llvm.org/D56936
llvm-svn: 352436
Summary:
New tests added to verify equivalency of templates when their
parameters are different.
Reviewers: a_sidorin, shafik
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Differential Revision: https://reviews.llvm.org/D57235
llvm-svn: 352345
Fix remaining unittest errors caused by
__attribute__((no_caller_saved_registers))
Related commit which caused the buildbots to fail:
rL352050
llvm-svn: 352060
Summary:
FunctionType::ExtInfo holds such properties of a function which are needed
mostly for code gen. We should not compare these bits when checking for
structural equivalency.
Checking ExtInfo caused false ODR errors during CTU analysis (of tmux).
Reviewers: a_sidorin, a.sidorin, shafik
Subscribers: rnkovacs, dkrupp, Szelethus, cfe-commits
Differential Revision: https://reviews.llvm.org/D53699
llvm-svn: 352050
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
This fixes ASTContext's parent map for nodes in such classes (e.g. operator()).
https://bugs.llvm.org/show_bug.cgi?id=39949
This also changes the observed shape of the AST for implicit RAVs.
- this includes AST MatchFinder: cxxRecordDecl() now matches lambda classes,
functionDecl() matches the call operator, and the parent chain is body -> call
operator -> lambda class -> lambdaexpr rather than body -> lambdaexpr.
- this appears not to matter for the ASTImporterLookupTable builder
- this doesn't matter for the other RAVs in-tree.
In order to do this, we remove the TraverseLambdaBody hook. The problem is it's
hard/weird to ensure this hook is called when traversing via the implicit class.
There were just two users of this hook in-tree, who use it to skip bodies.
I replaced these with explicitly traversing the captures only. Another approach
would be recording the bodies when the lambda is visited, and then recognizing
them later.
I'd be open to suggestion on how to preserve this hook, instead.
Reviewers: aaron.ballman, JonasToth
Subscribers: cfe-commits, rsmith, jdennett
Differential Revision: https://reviews.llvm.org/D56444
llvm-svn: 351047
Summary:
There are certain cases when normal C/C++ lookup (localUncachedLookup)
does not find AST nodes. E.g.:
Example 1:
template <class T>
struct X {
friend void foo(); // this is never found in the DC of the TU.
};
Example 2:
// The fwd decl to Foo is not found in the lookupPtr of the DC of the
// translation unit decl.
struct A { struct Foo *p; };
In these cases we create a new node instead of returning with the old one.
To fix it we create a new lookup table which holds every node and we are
not interested in any C++ specific visibility considerations.
Simply, we must know if there is an existing Decl in a given DC.
Reviewers: a_sidorin, a.sidorin
Subscribers: mgorny, rnkovacs, dkrupp, Szelethus, cfe-commits
Differential Revision: https://reviews.llvm.org/D53708
llvm-svn: 349351
Summary:
The crux of the issue that is being fixed is that lookup could not find
previous decls of a friend class. The solution involves making the
friend declarations visible in their decl context (i.e. adding them to
the lookup table).
Also, we simplify `VisitRecordDecl` greatly.
This fix involves two other repairs (without these the unittests fail):
(1) We could not handle the addition of injected class types properly
when a redecl chain was involved, now this is fixed.
(2) DeclContext::removeDecl failed if the lookup table in Vector form
did not contain the to be removed element. This caused troubles in
ASTImporter::ImportDeclContext. This is also fixed.
Reviewers: a_sidorin, balazske, a.sidorin
Subscribers: rnkovacs, dkrupp, Szelethus, cfe-commits
Differential Revision: https://reviews.llvm.org/D53655
llvm-svn: 349349
This is a more thorough fix of rC348911.
The story about -DBUILD_SHARED_LIBS=on build after rC348907 (Move PCHContainerOperations from Frontend to Serialization) is:
1. libclangSerialization.so defines PCHContainerReader dtor, ...
2. clangFrontend and clangTooling define classes inheriting from PCHContainerReader, thus their DSOs have undefined references on PCHContainerReader dtor
3. Components depending on either clangFrontend or clangTooling cannot be linked unless they have explicit dependency on clangSerialization due to the default linker option -z defs. The explicit dependency could be avoided if libclang{Frontend,Tooling}.so had these undefined references.
This patch adds the explicit dependency on clangSerialization to make them build.
llvm-svn: 348915
Summary:
When we already have an incomplete underlying type of a typedef in the
"To" context, and the "From" context has the same typedef, but the
underlying type is complete, then the imported type should be complete.
Fixes an assertion in CTU analysis of Xerces:
Assertion `DD && "queried property of class with no definition"' failed.
This assert is happening in the analyzer engine, because that attempts
to query an underlying type of a typedef, which happens to be
incomplete.
Reviewers: a_sidorin, a.sidorin
Subscribers: rnkovacs, dkrupp, Szelethus, cfe-commits
Differential Revision: https://reviews.llvm.org/D53693
llvm-svn: 347648
Summary:
If one definition is currently being defined, we do not compare for
equality and we assume that the decls are equal.
Reviewers: a_sidorin, a.sidorin, shafik
Reviewed By: a_sidorin
Subscribers: gamesh411, shafik, rnkovacs, dkrupp, Szelethus, cfe-commits
Differential Revision: https://reviews.llvm.org/D53697
llvm-svn: 347564
Summary:
The goal is to allow analyses such as clang-tidy checks to run on a
subset of the AST, e.g. "only on main-file decls" for interactive tools.
Today, these become "problematically global" by running RecursiveASTVisitors
rooted at the TUDecl, or by navigating up via ASTContext::getParent().
The scope is restricted using a set of top-level-decls that RecursiveASTVisitors
should be rooted at. This also applies to the visitor that populates the
parent map, and so the top-level-decls are considered to have no parents.
This patch makes the traversal scope a mutable property of ASTContext.
The more obvious way to do this is to pass the top-level decls to
relevant functions directly, but this has some problems:
- it's error-prone: accidentally mixing restricted and unrestricted
scopes is a performance trap. Interleaving multiple analyses is
common (many clang-tidy checks run matchers or RAVs from matcher callbacks)
- it doesn't map well to the actual use cases, where we really do want
*all* traversals to be restricted.
- it involves a lot of plumbing in parts of the code that don't care
about traversals.
This approach was tried out in D54259 and D54261, I wanted to like it
but it feels pretty awful in practice.
Caveats: to get scope-limiting behavior of RecursiveASTVisitors, callers
have to call the new TraverseAST(Ctx) function instead of TraverseDecl(TU).
I think this is an improvement to the API regardless.
Reviewers: klimek, ioeric
Subscribers: mgorny, cfe-commits
Differential Revision: https://reviews.llvm.org/D54309
llvm-svn: 346847
Summary:
Compound literals, enums, file-scoped arrays, etc. require their
initializers and size specifiers to be constant. Wrap the initializer
expressions in a ConstantExpr so that we can easily check for this later
on.
Reviewers: rsmith, shafik
Reviewed By: rsmith
Subscribers: cfe-commits, jyknight, nickdesaulniers
Differential Revision: https://reviews.llvm.org/D53921
llvm-svn: 346455
Summary:
If one definition is currently being defined, we do not compare for
equality and we assume that the decls are equal.
Reviewers: a_sidorin
Subscribers: rnkovacs, dkrupp, Szelethus, cfe-commits
Differential Revision: https://reviews.llvm.org/D53697
llvm-svn: 345760
There are multiple reasons why field structures can be imported
in wrong order. The simplest is the ability of field initializers
and method bodies to refer fields not in order they are listed in.
Unfortunately, there is no clean solution for that currently
so I'm leaving a FIXME.
Differential Revision: https://reviews.llvm.org/D44100
llvm-svn: 345545
Summary:
The goal of this change is to make the ASTImporter::Import functions return
llvm::Expected instead of the imported type.
As first part the ASTNodeImporter visit functions are updated to return with
llvm::Expected. Various `import` functions are added to ASTNodeImporter to
simplify the code and have a common place for interface towards ASTImporter
(from ASTNodeImporter). There is some temporary code that is needed before
ASTImporter is updated.
Reviewers: a.sidorin, a_sidorin, xazax.hun
Reviewed By: a_sidorin
Subscribers: dkrupp, Szelethus, rnkovacs, martong, jfb, cfe-commits
Differential Revision: https://reviews.llvm.org/D51633
llvm-svn: 344783
This patch moves the virtual file system form clang to llvm so it can be
used by more projects.
Concretely the patch:
- Moves VirtualFileSystem.{h|cpp} from clang/Basic to llvm/Support.
- Moves the corresponding unit test from clang to llvm.
- Moves the vfs namespace from clang::vfs to llvm::vfs.
- Formats the lines affected by this change, mostly this is the result of
the added llvm namespace.
RFC on the mailing list:
http://lists.llvm.org/pipermail/llvm-dev/2018-October/126657.html
Differential revision: https://reviews.llvm.org/D52783
llvm-svn: 344140
Summary:
The init expression of a VarDecl is overwritten in the "To" context if we
import a VarDecl without an init expression (and with a definition). Please
refer to the added tests, especially InitAndDefinitionAreInDifferentTUs. This
patch fixes the malfunction by importing the whole Decl chain similarly as we
did that in case of FunctionDecls. We handle the init expression similarly to
a definition, alas only one init expression will be in the merged ast.
Reviewers: a_sidorin, xazax.hun, r.stahl, a.sidorin
Subscribers: rnkovacs, dkrupp, cfe-commits
Differential Revision: https://reviews.llvm.org/D51597
llvm-svn: 342384
Summary:
Some `Expr` classes set up default values for the `ExprBits` of `Stmt`. These
default values are then overwritten by the parser sometimes. One example is
`InitListExpr` which sets the value kind to be an rvalue in the ctor. However,
this bit may change after the `InitListExpr` is created. There may be other
expressions similar to `InitListExpr` in this sense, thus the safest solution
is to copy the expression bits.
The lack of copying `ExprBits` causes an assertion in the analyzer engine in a
specific case: Since the value kind is not imported, the analyzer engine
believes that the given InitListExpr is an rvalue, thus it creates a
nonloc::CompoundVal instead of creating memory region (as in case of an lvalue
reference).
Reviewers: a_sidorin, r.stahl, xazax.hun, a.sidorin
Subscribers: rnkovacs, dkrupp, cfe-commits
Differential Revision: https://reviews.llvm.org/D51533
llvm-svn: 341316
Summary:
Currently there are several issues with the import of class template
specializations. (1) Different TUs may have class template specializations
with the same template arguments, but with different set of instantiated
MethodDecls and FieldDecls. In this patch we provide a fix to merge these
methods and fields. (2) Currently, we search the partial template
specializations in the set of simple specializations and we add partial
specializations as simple specializations. This is bad, this patch fixes it.
Reviewers: a_sidorin, xazax.hun, r.stahl
Subscribers: rnkovacs, dkrupp, cfe-commits
Differential Revision: https://reviews.llvm.org/D50451
llvm-svn: 340402
This related to the code as first checked in in r266292 ([ASTImporter]
Implement some expression-related AST node import., 2016-04-14).
llvm-svn: 339731
Summary:
When importing a friend class template declaration,
this declaration should not be merged with any other existing declaration
for the same type. Otherwise the getFriendDecl of the FriendDecl can point
to an other already referenced declaration, this case causes problems.
Additionally the previous decl of class templates is set at import.
Reviewers: a.sidorin, a_sidorin
Reviewed By: a_sidorin
Subscribers: a_sidorin, martong, cfe-commits
Differential Revision: https://reviews.llvm.org/D50516
llvm-svn: 339560
Summary:
Currently we consider one forward declared RecordDecl and another with a
definition equal. We have to do the same in case of enums.
Reviewers: a_sidorin, r.stahl, xazax.hun
Subscribers: rnkovacs, dkrupp, cfe-commits
Differential Revision: https://reviews.llvm.org/D50444
llvm-svn: 339336
Summary:
When checking a class or function the described class or function template
is checked too.
Split StructuralEquivalenceContext::Finish into multiple functions.
Improved test with symmetric check, added new tests.
Reviewers: martong, a.sidorin, a_sidorin, bruno
Reviewed By: martong, a.sidorin
Subscribers: rnkovacs, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D49223
llvm-svn: 339256
Summary:
At equality check of fields without name the index of fields is compared.
At determining the index of a field all fields of the parent context
should be loaded from external source to find the field at all.
Reviewers: a.sidorin, a_sidorin, r.stahl
Reviewed By: a.sidorin
Subscribers: martong, cfe-commits
Differential Revision: https://reviews.llvm.org/D49796
llvm-svn: 339226