We can use MOVLPS which will load 64 bits, but we need a v4f32
result type. We already have isel patterns for this.
The code here is a little hacky. We can probably improve it with
more isel patterns.
This is similar to using movd which we do for sse2 targets.
I've added a DAG combine for VEXTRACT_STORE to use SimplifyDemandedVectorElts
to clean up some artifacts from type legalization.
Similar to what do for other operations that use a subset of bits.
Allows us to remove a pattern that shrinks a load. Which was
incorrect if the load was volatile.
Summary:
We already sorted the blocks when fixing up a set of mutual
loop entries, however, there can be multiple sets of such
mutual loop entries, and the order we encounter them
should not be random, so sort them too.
Fixes https://bugs.llvm.org/show_bug.cgi?id=44982
Patch by Alon Zakai (kripken)
Reviewers: aheejin, sbc100, dschuff
Subscribers: mgrang, sunfish, hiraditya, jgravelle-google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74999
This reverts commit 977cd661cf.
It breaks OpenCL testing. OpenCL Runtime is using PT_LOAD information
to calculate memory for global variables. This commit should be relanded once
the OpenCL runtime stops relying on PT_LOAD information for calculating global
variable memory size.
Differential Revision: https://reviews.llvm.org/D74995
Add support for DestructiveBinaryComm DestructiveInstType, as well as the lowering code to expand the new Pseudos into the final movprfx+instruction pairs.
Differential Revision: https://reviews.llvm.org/D73711
This moves all the logic of converting LLVM Triples to
MachO::CPU_(SUB_)TYPE from the specific target (Target)AsmBackend to
more convenient functions in lib/BinaryFormat.
This also gets rid of the separate two X86AsmBackend classes.
The previous attempt was to add it to libObject, but that adds an
unnecessary dependency to libObject from all the targets.
Differential Revision: https://reviews.llvm.org/D74808
isPrefix was added to support the patches to align branches.
it relies on a switch over instruction names.
This moves those opcodes to a new format so the information is
tablegen and we can just check for a specific value in some bits
in TSFlags instead.
I've left the other function in place for now so that the
existing patches in phabricator will still work. I'll work with
the owner to get them migrated.
Summary:
Added register + immediate and register + register addressing modes for the following intrinsics:
1. Masked load and stores:
* Sign and zero extended load and truncated stores.
* No extension or truncation.
2. Masked non-temporal load and store.
Reviewers: andwar, efriedma
Subscribers: cameron.mcinally, sdesmalen, tschuett, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74254
The legalizer helper functions are unusably awkward to perform the 3-5
part legalization. This needs to be widened, scalarized, lowered, and
we should avoid creating vector extends and truncates. Manually do all
of this and expand.
I tried to use some of the new tablegen features to avoid creating
different operand list permutations, but I still don't see a way to
programmatically build a source pattern dag.
Also add GlobalISel tests, which now all import successfully.
Some of the fneg fold tests are incorrect, which need to be fixed in a
future commit
G_SHUFFLE_VECTOR is legal since it theoretically may help match op_sel
for VOP3P instructions. Expand it in some other way in case it doesn't
fold into the use instructions.
A cost query for a vector instruction should return a cost even without
target vector support, and not trigger an assert.
VectorCombine does this with an input containing source code vectors.
Review: Ulrich Weigand
We don't use this, and matching from the def doesn't make much sense.
There are multiple tablegen bugs with default operand
handling. undef_tied_input should work to handle the vdst_in
correctly, but this breaks the operand register class constraint which
it should be able to infer.
We should try the generated matchers before the manual selection. This
means the patterns are now handling the common cases, but the manual
selection code is not yet dead. It's still handling the non-s32/s64
cases (like v2s16 and v2s32). Currently tablegen doesn't have a nice
way to have a single pattern that covers multiple types.
We have patterns for s_pack* selection, but they assume the inputs are
a build_vector with 16-bit inputs, not a truncating build
vector. Since there's still outstanding work for how to handle
mismatched result and source element vector operations, and since I'm
trying a different packed vector strategy than SelectionDAG, just
manually select this for now.
There are few differences from the DAG handling. First, the DAG
handling uses a primitive selection pattern instead of custom
legalizing it. Because of this, this makes use of source modifiers
while the DAG does not.
Also instead of promoting f16, try to use the f16 log/exp. There's no
f16 fmul_legacy, so widen just for the multiply, although I'm not sure
that's the best solution.
This looked through copies to find the source modifiers, which may
have been SGPR->VGPR copies added to avoid potential constant bus
violations. Re-insert a copy to a VGPR if this happens.
Remove some cumbersome Darwin specific logic for updating the frame
offsets of the condition-register spill slots. The containing function has an
early return if the subtarget is not ELF based which makes the Darwin logic
dead.
The (overloaded) intrinsic is llvm.hexagon.V6.pred.typecast[.128B]. The
types of the operand and the return value are HVX boolean vector types.
For each cast, there needs to be a corresponding intrinsic declared,
with different suffixes appended to the name, e.g.
; cast <128 x i1> to <32 x i1>
declare <32 x i1> @llvm.hexagon.V6.pred.typecast.128B.s1(<128 x i1>)
; cast <32 x i1> to <64 x i1>
declare <64 x i1> @llvm.hexagon.V6.pred.typecast.128B.s2(<32 x i1>)
etc.
At this point in the code we know that Op1 or Op2 is
all ones. Y points to the other operand. In the case that
Op2 is zero, Op1 must be all ones and Y is Op2. The OR
ORs Y into Res. But if Y is 0 the OR will be folded away by
getNode so we don't need to check for it.
The combineSelect code was casting to i64 without any check that
i64 was legal. This can break after type legalization.
It also required splitting the mmx register on 32-bit targets.
It's not clear that this makes sense. Instead switch to using
a cmov pseudo like we do for XMM/YMM/ZMM.
VK1 was being used as the output of the copy to regclass, but it
should be VK2/VK4. Shouldn't matter in practice though since
VK1/VK2/VK4/VK8/VK16 are all identicaly and just have different VTs.
The code at https://reviews.llvm.org/D74808 has broken builds that are
configured with -DBUILD_SHARED_LIBS=On.
This patch adds the correct library dependencies.
The motivating case is seen in "splat4_v8f32_load_store" and based on code in PR42024:
https://bugs.llvm.org/show_bug.cgi?id=42024
(I haven't stepped through the v8i32 sibling test yet to see why that diverged.)
There are other potential improvements visible like allowing scalarization or vector
narrowing.
Differential Revision: https://reviews.llvm.org/D74909
This moves all the logic of converting LLVM Triples to
MachO::CPU_(SUB_)TYPE from the specific target (Target)AsmBackend to
more convenient functions in libObject.
This also gets rid of the separate two X86AsmBackend classes.
Differential Revision: https://reviews.llvm.org/D74808
There's a lot of old leftover code in LowerBRCOND. Especially
the detecting or AND or OR of X86ISD::SETCC nodes. Those were
needed before LegalizeDAG was changed to visit nodes before
their operands.
It also relied on reversing the output of LowerSETCC to find the
flags producing node to use for the X86ISD::BRCOND node.
Rather than using LowerSETCC this patch uses emitFlagsForSetcc to
handle the integer ISD::SETCC case. This gives the flag producer
and the comparison code to use directly. I've removed the addTest
flag and just produce a X86ISD::BRCOND and return immediately.
Floating point ISD::SETCC case is just an X86ISD::FCMP with special
care for OEQ and UNE derived from the previous code. I've left
f128 out so it will emit a test. And LowerSETCC will be called
later to produce a libcall and X86ISD::SETCC. We have combines
that can merge the test and X86ISD::SETCC.
We need to handle two cases for overflow ops. Either they are used
directly or they have a seteq 0 or setne 1 to invert the overflow.
The old code did not handle the setne 1 case, but I think some
other combines were making up for it.
If we fail to find a condition, we'll wrap an AND with 1 on the
original condition and tell emitFlagsForSetcc to emit a compare
with 0. This will pickup the LowerAndToBT and or the EmitTest case.
I kept the isTruncWithZeroHighBitsInput call, but we might be able
to fold that in to emitFlagsForSetcc.
Differential Revision: https://reviews.llvm.org/D74750
Only handle power of 2 element count for simplicity. Not sure what to do with vXf64->vXf16 fp_round to avoid double rounding
Differential Revision: https://reviews.llvm.org/D74886
Marking a section as ALLOC tells the ELF loader to load the section into memory.
As we do not want to load the notes into VRAM, the flag should not be there.
Differential Revision: https://reviews.llvm.org/D74600
GetDemandedBits mostly just calls SimplifyMultipleUseDemandedBits now, but it does a very blunt constant simplification that SimplifyMultipleUseDemandedBits avoids.
If we need to demand bits from constants we should handle this through ShrinkDemandedConstant/targetShrinkDemandedConstant.
@arsenm confirmed that the sign extended immediates are better for code size.
Differential Revision: https://reviews.llvm.org/D74857
Summary:
This patch adds two families of ACLE intrinsics: vqdmullbq and
vqdmulltq (including vector-vector and vector-scalar variants) and the
corresponding LLVM IR intrinsics llvm.arm.mve.vqdmull and
llvm.arm.mve.vqdmull.predicated.
Reviewers: simon_tatham, MarkMurrayARM, dmgreen, ostannard
Reviewed By: MarkMurrayARM
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D74845
Summary:
The instruction at `DefI` can sometimes be destroyed by
`rematerializeCheapDef`, so it should not be used after calling that
function. The fix is to use `Insert` instead when examining additional
multivalue stackifications. `Insert` is the address of the new
defining instruction after all moves and rematerializations have taken
place.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74875
We probably want this, and I've meant to turn this on for a long
time. SC actually emits a special case to early-out for a 1
denominator, which perhaps should also be considered.
It uses VGPR_32.RegTypes which includes 16 bit types. As a
result DS_WRITE_B32 may be generated for "store i16" which
is a bug. The only reason we do not hit it now is relative
patterns complexity and sorting. Should DS_WRITE_B16 pattern
complexity become higher and the bug appears.
Differential Revision: https://reviews.llvm.org/D74868
This commit removes the artificial types <512 x i1> and <1024 x i1>
from HVX intrinsics, and makes v512i1 and v1024i1 no longer legal on
Hexagon.
It may cause existing bitcode files to become invalid.
* Converting between vector predicates and vector registers must be
done explicitly via vandvrt/vandqrt instructions (their intrinsics),
i.e. (for 64-byte mode):
%Q = call <64 x i1> @llvm.hexagon.V6.vandvrt(<16 x i32> %V, i32 -1)
%V = call <16 x i32> @llvm.hexagon.V6.vandqrt(<64 x i1> %Q, i32 -1)
The conversion intrinsics are:
declare <64 x i1> @llvm.hexagon.V6.vandvrt(<16 x i32>, i32)
declare <128 x i1> @llvm.hexagon.V6.vandvrt.128B(<32 x i32>, i32)
declare <16 x i32> @llvm.hexagon.V6.vandqrt(<64 x i1>, i32)
declare <32 x i32> @llvm.hexagon.V6.vandqrt.128B(<128 x i1>, i32)
They are all pure.
* Vector predicate values cannot be loaded/stored directly. This directly
reflects the architecture restriction. Loading and storing or vector
predicates must be done indirectly via vector registers and explicit
conversions via vandvrt/vandqrt instructions.
We only need to split after type legalization. If we're before
we can just use a wide store and type legalization will split it.
Add a v128i1 test to exercise it post type legalization.
Summary:
Some predicated MVE intrinsics return a vector with element size
different from the input vector element size. In this case the
predicate must type correspond to the output vector type.
The following intrinsics use the incorrect predicate type:
* llvm.arm.mve.mull.int.predicated
* llvm.arm.mve.mull.poly.predicated
* llvm.arm.mve.vshll.imm.predicated
This patch fixes the issue.
Reviewers: simon_tatham, dmgreen, ostannard, MarkMurrayARM
Reviewed By: MarkMurrayARM
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D74838
On PowerPC we will soon need to use pcrel to indicate PC Relative addressing.
Renamed the Hexagon specific variant kind to a non target specific VK so that
it can be used on both Hexagon and PowerPC.
Differential Revision: https://reviews.llvm.org/D74788
Check that no Q-regs are live out of the loop, unless the instruction
within the loop is predicated on the vctp.
Differential Revision: https://reviews.llvm.org/D72713
Similar to VADDV and VADDLV that have been added recently, this adds
lowering and patterns for VMLAV, VMLAVA, VMLALV and VMLALVA. They
perform the same roles as the add's, just folding a mul into the same
instruction (and so taking two inputs). As such, they need to be lowered
in the same way as the types are often not legal.
Differential Revision: https://reviews.llvm.org/D74390
This is part of the work to remove SelectionDAG::GetDemandedBits and just use SimplifyMultipleUseDemandedBits.
Recent experiments raised some v_cvt_f32_ubyte*_e32 regressions, so I've added some additional abilities to performCvtF32UByteNCombine to help unpack byte data more aggressively.
We still don't remove all OR(SHL,SRL) patterns as some of the regenerated nodes don't get combined again, but we are getting closer.
Differential Revision: https://reviews.llvm.org/D74786
Following on from the extra VADDV lowering, this extends things to
handle VADDLV which allows summing values into a pair of i32 registers,
together treated as a i64. This needs to be done in DAGCombine too as
the types are otherwise illegal, which is a fairly simple addition on
top of the existing code.
There is also a VADDLVA instruction handled here, that adds the incoming
values from the two general purpose registers. As opposed to the
non-long version where we could just add patterns for add(x, VADDV), the
long version needs to handle this early before the i64 has being split
into too many pieces.
Differential Revision: https://reviews.llvm.org/D74224
Custom legalize non-power-of-2 and unaligned load and store for MIPS32r5
and older, custom legalize non-power-of-2 load and store for MIPS32r6.
Don't attempt to combine non power of 2 loads or unaligned loads when
subtarget doesn't support them (MIPS32r5 and older).
Differential Revision: https://reviews.llvm.org/D74625
Improve legality checks for load and store, 4 byte scalar
load and store are now legal for all subtargets.
During regbank selection 4 byte unaligned loads and stores
for MIPS32r5 and older get mapped to gprb.
Select 4 byte unaligned loads and stores for MIPS32r5.
Fix tests that unintentionally had unaligned load or store.
Differential Revision: https://reviews.llvm.org/D74624
On some targets, like SPARC, forming overflow ops is only profitable if
the math result is used: https://godbolt.org/z/DxSmdB
This patch adds a new MathUsed parameter to allow the targets
to make the decision and defaults to only allowing it
if the math result is used. That is the conservative choice.
This patch also updates AArch64ISelLowering, X86ISelLowering,
ARMISelLowering.h, SystemZISelLowering.h to allow forming overflow
ops if the math result is not used. On those targets using the
overflow intrinsic for the overflow check only generates better code.
Reviewers: nikic, RKSimon, lebedev.ri, spatel
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D74722
We already make use of the VADDV vector reduction instruction for cases
where the input and the output start out at the same type. The MVE
instruction however will sum into an i32, so if we are summing a v16i8
into an i32, we can still use the same instructions. In terms of IR,
this looks like a sext of a legal type (v16i8) into a very illegal type
(v16i32) and a vecreduce.add of that into the result. This means we have
to catch the pattern early in a DAG combine, producing a target VADDVs/u
node, where the signedness is now important.
This is the first part, handling VADDV and VADDVA. There are also
VADDVL/VADDVLA instructions, which are interesting because they sum into
a 64bit value. And VMLAV and VMLALV, which are interesting because they
also do a multiply of two values. It may look a little odd in places as
a result.
On it's own this will probably not do very much, as the vectorizer will
not produce this IR yet.
Differential Revision: https://reviews.llvm.org/D74218
Consider large operands in G_MERGE_VALUES and G_UNMERGE_VALUES as
Ambiguous during regbank selection.
Introducing new InstType AmbiguousWithMergeOrUnmerge which will
allow us to recognize whether to narrow scalar or use s64:fprb.
This change exposed a bug when reusing data from TypeInfoForMF.
Thus when Instr is about to get destroyed (using narrow scalar)
clear its data in TypeInfoForMF. Internal data is saved based on
Instr's address, and it will no longer be valid.
Add detailed asserts for InstType and operand size.
Generate generic instructions instead of MIPS target instructions
during argument lowering and custom legalizer.
Select G_UNMERGE_VALUES and G_MERGE_VALUES when proper banks are
selected: {s32:gprb, s32:gprb, s64:fprb} for G_UNMERGE_VALUES and
{s64:fprb, s32:gprb, s32:gprb} for G_MERGE_VALUES.
Update tests. One improvement is when floating point argument in
gpr(or two gprs) gets passed to another function through gpr
unnecessary fpr-to-gpr moves are no longer generated.
Differential Revision: https://reviews.llvm.org/D74623
LoweSELECT will detect the constant inputs and convert to scalar
selects, but we can do it directly here.
I might remove some of the code from LowerSELECT and move it to
DAG combine so doing this explicitly will make us less dependent
on it happening in lowering.
Summary:
Extends the multivalue call infrastructure to tail calls, removes all
legacy calls specialized for particular result types, and removes the
CallIndirectFixup pass, since all indirect call arguments are now
fixed up directly in the post-insertion hook.
In order to keep supporting pretty-printed defs and uses in test
expectations, MCInstLower now inserts an immediate containing the
number of defs for each call and call_indirect. The InstPrinter is
updated to query this immediate if it is present and determine which
MCOperands are defs and uses accordingly.
Depends on D72902.
Reviewers: aheejin
Subscribers: dschuff, mgorny, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74192
Summary:
There is still room for improvement in the handling of multivalue
nodes in both passes, but the current algorithm is at least correct
and optimizes some simpler cases. In order to make future
optimizations of these passes easier and build confidence that the
current algorithms are correct, this CL also adds a script that
automatically and exhaustively generates interesting multivalue test
cases.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72902
Essentially, fold OrderedBasicBlock into BasicBlock, and make it
auto-invalidate the instruction ordering when new instructions are
added. Notably, we don't need to invalidate it when removing
instructions, which is helpful when a pass mostly delete dead
instructions rather than transforming them.
The downside is that Instruction grows from 56 bytes to 64 bytes. The
resulting LLVM code is substantially simpler and automatically handles
invalidation, which makes me think that this is the right speed and size
tradeoff.
The important change is in SymbolTableTraitsImpl.h, where the numbering
is invalidated. Everything else should be straightforward.
We probably want to implement a fancier re-numbering scheme so that
local updates don't invalidate the ordering, but I plan for that to be
future work, maybe for someone else.
Reviewed By: lattner, vsk, fhahn, dexonsmith
Differential Revision: https://reviews.llvm.org/D51664
Summary:
Unlike normal calls, call_indirects have immediate arguments that
caused a MachineVerifier failure without a small tweak to loosen the
verifier's requirements for variadicOpsAreDefs instructions.
One nice thing about the new call_indirects is that they do not need
to participate in the PCALL_INDIRECT mechanism because their post-isel
hook handles moving the function pointer argument and adding the flags
and typeindex arguments itself.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74191
This reverts commit 649aba93a2, now that
the approach started there has been shown to be workable in the patch
series culminating in https://reviews.llvm.org/D74192.
Summary:
This patch adds a new MVE intrinsics family, `vbrsrq`: vector bit
reverse and shift right. The intrinsics are compiled into the VBRSR
instruction. Two new LLVM IR intrinsics were also added: arm.mve.vbrsr
and arm.mve.vbrsr.predicated.
Reviewers: simon_tatham, dmgreen, ostannard, MarkMurrayARM
Reviewed By: simon_tatham
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D74721
Create preprocessor defines for callee saved floating-point register spill
slots, vector register spill slots, and both 32-bit and 64-bit general
purpose register spill slots. This is an NFC refactor to prepare for
adding ABI compliant callee saves and restores for AIX.
Implement TargetLowering callback mayBeEmittedAsTailCall for riscv in CodeGenPrepare,
which will duplicate return instructions to enable tailcall optimization.
Differential Revision: https://reviews.llvm.org/D73699
Summary:
Making `Scale` a `TypeSize` in AArch64InstrInfo::getMemOpInfo,
has the effect that all places where this information is used
(notably, TargetInstrInfo::getMemOperandWithOffset) will need
to consider Scale - and derived, Offset - possibly being scalable.
This patch adds a new operand `bool &OffsetIsScalable` to
TargetInstrInfo::getMemOperandWithOffset and fixes up all
the places where this function is used, to consider the
offset possibly being scalable.
In most cases, this means bailing out because the algorithm does not
(or cannot) support scalable offsets in places where it does some
form of alias checking for example.
Reviewers: rovka, efriedma, kristof.beyls
Reviewed By: efriedma
Subscribers: wuzish, kerbowa, MatzeB, arsenm, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, javed.absar, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72758
Summary:
Codegen and tests for thread-local storage.
This implements only the general dynamic model due to limitations in nld 2.26.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D74718
This patch upstreams support for the AArch64 Armv8-A cpu Cortex-A34.
In detail adding support for:
- mcpu option in clang
- AArch64 Target Features in clang
- llvm AArch64 TargetParser definitions
details of the cpu can be found here:
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a34
Reviewers: SjoerdMeijer
Reviewed By: SjoerdMeijer
Subscribers: SjoerdMeijer, kristof.beyls, hiraditya, cfe-commits,
llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D74483
Change-Id: Ida101fc544ca183a0a0e61a1277c8957855fde0b
This patch enables the debug entry values feature.
- Remove the (CC1) experimental -femit-debug-entry-values option
- Enable it for x86, arm and aarch64 targets
- Resolve the test failures
- Leave the llc experimental option for targets that do not
support the CallSiteInfo yet
Differential Revision: https://reviews.llvm.org/D73534
Summary:
These are in some sense the inverse of vmovl[bt]q: they take a vector
of n wide elements and truncate each to half its width. So they only
write half a vector's worth of output data, and therefore they also
take an 'inactive' parameter to provide the other half of the data in
the output vector. So vmovnb overwrites the even lanes of 'inactive'
with the narrowed values from the main input, and vmovnt overwrites
the odd lanes.
LLVM had existing codegen which generates these MVE instructions in
response to IR that takes two vectors of wide elements, or two vectors
of narrow ones. But in this case, we have one vector of each. So my
clang codegen strategy is to narrow the input vector of wide elements
by simply reinterpreting it as the output type, and then we have two
narrow vectors and can represent the operation as a vector shuffle
that interleaves lanes from both of them.
Even so, not all the cases I needed ended up being selected as a
single MVE instruction, so I've added a couple more patterns that spot
combinations of the 'MVEvmovn' and 'ARMvrev32' SDNodes which can be
generated as a VMOVN instruction with operands swapped.
This commit adds the unpredicated forms only.
Reviewers: dmgreen, miyuki, MarkMurrayARM, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D74337
Summary:
These intrinsics take a vector of 2n elements, and return a vector of
n wider elements obtained by sign- or zero-extending every other
element of the input vector. They're represented in IR as a
shufflevector that extracts the odd or even elements of the input,
followed by a sext or zext.
Existing LLVM codegen already matches this pattern and generates the
VMOVLB instruction (which widens the even-index input lanes). But no
existing isel rule was generating VMOVLT, so I've added some. However,
the new rules currently only work in little-endian MVE, because the
pattern they expect from isel lowering includes a bitconvert which
doesn't have the right semantics in big-endian.
The output of one existing codegen test is improved by those new
rules.
This commit adds the unpredicated forms only.
Reviewers: dmgreen, miyuki, MarkMurrayARM, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D74336
Summary:
When we start putting instances of `ARMVectorRegCast` in complex isel
patterns, it will be awkward that they're often turned into the more
standard `bitconvert` in little-endian mode. We'd rather not have to
write separate isel patterns for the two endiannesses, matching
different but equivalent cast operations.
This change aims to fix that awkwardness in advance, by turning the
Tablegen record `ARMVectorRegCast` from a simple `SDNode` instance
into a `PatFrags` that can match either kind of cast – with a
predicate that prevents it matching a bitconvert in the big-endian
case, where bitconvert isn't semantically identical.
No existing code generation should be affected by this change, but it
will enable the patterns introduced by D74336 to work in both
endiannesses.
Reviewers: dmgreen
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74716
Summary:
vclzq maps nicely to the existing target-independent @llvm.ctlz IR
intrinsic. But vclsq ('count leading sign bits') has no corresponding
target-independent intrinsic, so I've made up @llvm.arm.mve.vcls.
This commit adds the unpredicated forms only.
Reviewers: dmgreen, miyuki, MarkMurrayARM, ostannard
Reviewed By: miyuki
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D74335
Summary:
This adds the unpredicated forms of six different MVE intrinsics which
all round a vector of floating-point numbers to integer values,
leaving them still in FP format, differing only in rounding mode and
exception settings.
Five of them map to existing target-independent intrinsics in LLVM IR,
such as @llvm.trunc and @llvm.rint. The sixth, mapping to the `vrintn`
instruction, is done by inventing a target-specific intrinsic.
(`vrintn` behaves the same as `vrintx` in terms of the output value:
the side effects on the FPSCR flags are the only difference between
the two. But ACLE specifies separate user-callable intrinsics for the
two, so the side effects matter enough to make sure we generate the
right one of the two instructions in each case.)
Reviewers: dmgreen, miyuki, MarkMurrayARM, ostannard
Reviewed By: miyuki
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D74333
This helps this transform occur earlier so we can fold the not
with setcc. If we delay it until after type legalization we might
have introduced instructions to widen the mask if the vselect was
widened. This can prevent the not from making it to the setcc.
We could of course add more DAG combines to handle that, but
moving this earlier is easier.
AMDGPUCodeGenPrepare expands this most of the time, but not always. We
will always at least need a fallback option here. This is the 3rd
implementation of the same expansion in the backend. Eventually I
would like to eliminate the IR expansion (and the DAG version
obviously).
Currently the new legalizer path produces a better result, since the
IR expansion results in extra operations which need to be combined
out. Notably, the IR expansion results in multiplies by 0.
mutateStrictFPToFP can delete the node and replace it with another with the same
value which can later cause problems, and returning the result of
mutateStrictFPToFP doesn't work because SelectionDAGLegalize expects that the
returned value has the same number of results as the original. Instead handle
things by doing the mutation manually.
Differential Revision: https://reviews.llvm.org/D74726
Summary:
This patch adds vector-scalar variants to the following families of
MVE intrinsics:
* vaddq
* vsubq
* vmulq
* vqaddq
* vqsubq
* vhaddq
* vhsubq
* vqdmulhq
* vqrdmulhq
The vector-scalar variants perform a splat operation on the scalar
operand and then perform the same operations as their vector-vector
counterparts. Code generation is done accordingly (using LLVM IR 'insert'
and 'shuffle' operations which are later converted into an ARMvdup
SDNode).
Reviewers: simon_tatham, dmgreen, MarkMurrayARM, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D74620
D73835 will make IRBuilder no longer trivially copyable. This patch
deletes the copy constructor in advance, to separate out the breakage.
Currently, the IRBuilder copy constructor is usually used by accident,
not by intention. In rG7c362b25d7a9 I've fixed a number of cases where
functions accepted IRBuilder rather than IRBuilder &, thus performing
an unnecessary copy. In rG5f7b92b1b4d6 I've fixed cases where an
IRBuilder was copied, while an InsertPointGuard should have been used
instead.
The only non-trivial use of the copy constructor is the
getIRBForDbgInsertion() helper, for which I separated construction and
setting of the insertion point in this patch.
Differential Revision: https://reviews.llvm.org/D74693
The way fallback to SelectionDAG works is somewhat surprising to
me. When the fallback path is enabled, the entire set of SelectionDAG
selector passes is added to the pass pipeline, and each one needs to
check if the function was selected. This results in the surprising
behavior of running SIFixSGPRCopies for example, but only if
-global-isel-abort=2 is used.
SIAddIMGInitPass is also added in addInstSelector, but I'm not sure
why we have this pass or if it should be added somewhere else for
GlobalISel.
Produce an unmerge to a narrower type and introduce a narrower shift
if needed. I wasn't sure if there was a better way to parameterize the
target's preferred shift type for the GICombineRule, so manually call
the combine helper.
Summary:
This patch adds assembly-level support for a new Arm M-profile
architecture extension, Custom Datapath Extension (CDE).
A brief description of the extension is available at
https://developer.arm.com/architectures/instruction-sets/custom-instructions
The latest specification for CDE is currently a beta release and is
available at
https://static.docs.arm.com/ddi0607/aa/DDI0607A_a_armv8m_arm_supplement_cde.pdf
CDE allows chip vendors to add custom CPU instructions. The CDE
instructions re-use the same encoding space as existing coprocessor
instructions (such as MRC, MCR, CDP etc.). Each coprocessor in range
cp0-cp7 can be configured as either general purpose (GCP) or custom
datapath (CDEv1). This configuration is defined by the CPU vendor and
is provided to LLVM using 8 subtarget features: cdecp0 ... cdecp7.
The semantics of CDE instructions are implementation-defined, but the
instructions are guaranteed to be pure (that is, they are stateless,
they do not access memory or any registers except their explicit
inputs/outputs).
CDE requires the CPU to support at least Armv8.0-M mainline
architecture. CDE includes 3 sets of instructions:
* Instructions that operate on general purpose registers and NZCV
flags
* Instructions that operate on the S or D register file (require
either FP or MVE extension)
* Instructions that operate on the Q register file, require MVE
The user-facing names that can be specified on the command line are
the same as the 8 subtarget feature names. For example:
$ clang -target arm-none-none-eabi -march=armv8m.main+cdecp0+cdecp3
tells the compiler that the coprocessors 0 and 3 are configured as
CDEv1 and the remaining coprocessors are configured as GCP (which is
the default).
Reviewers: simon_tatham, ostannard, dmgreen, eli.friedman
Reviewed By: simon_tatham
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D74044
While looking at the output on real sized programs, there is a lot of
extra SGPR spilling compared to the DAG path. This seems to largely be
from all constants being SGPRs in the entry block.
Summary:
This patch implements the part of the calling convention
where SVE Vectors are passed by reference. This means the
caller must allocate stack space for these objects and
pass the address to the callee.
Reviewers: efriedma, rovka, cameron.mcinally, c-rhodes, rengolin
Reviewed By: efriedma
Subscribers: tschuett, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71216
Try to handle arbitrary scalar BFEs by packing the operands. The DAG
gives up on non-constant arguments. We're still missing any constant
folding, so we end up with pretty ugly code most of the time. Also
handle the 64-bit scalar case, which the DAG doesn't try to do.
Summary:
Implements the @llvm.aarch64.sve.index intrinsic, which
takes a scalar base and step value.
This patch also adds the printSImm function to AArch64InstPrinter
to ensure that immediates of type i8 & i16 are printed correctly.
Reviewers: sdesmalen, andwar, efriedma, dancgr, cameron.mcinally, rengolin
Reviewed By: cameron.mcinally
Subscribers: tatyana-krasnukha, tschuett, kristof.beyls, hiraditya, rkruppe, arphaman, psnobl, cfe-commits, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74550
We have the InstAlias rules for 32-bit rotate but missing the 64-bit one.
Rotate left immediate rotlwi ra,rs,n rlwinm ra,rs,n,0,31
Rotate left rotlw ra,rs,rb rlwnm ra,rs,rb,0,31
Differential Revision: https://reviews.llvm.org/D72676