When we use information only to short-cut deduction or improve it, we
can use OPTIONAL dependences instead of REQUIRED ones to avoid cascading
pessimistic fixpoints.
We also need to track dependences only when we use assumed information,
e.g., we act on assumed liveness information.
It can happen that we have instructions in the ToBeDeletedInsts set
which are deleted earlier already. To avoid dangling pointers we use
weak tracking handles.
When we follow uses, e.g., in AAMemoryBehavior or AANoCapture, we need
to make sure the value is a pointer before we ask for abstract
attributes only valid for pointers. This happens because we follow
pointers through calls that do not capture but may return the value.
We might accidentally ask AAValueSimplify to simplify a void value. That
can lead to very interesting, and very wrong, results. We now handle
this case gracefully.
If alignment was manifested but it is actually only as good as the
data-layout provided one we should not report it as a change.
For testing purposes we still manifest the information.
The utility method RecursivelyDeleteTriviallyDeadInstructions receives
as input a vector of Instructions, where all inputs are valid
instructions. This same vector is used as a scratch storage (per the
header comment) to recursively delete instructions. If an instruction is
added as an operand of multiple other instructions, it may be added twice,
then deleted once, then the second reference in the vector is invalid.
Switch to using a Vector<WeakTrackingVH>.
This change facilitates a clean-up in LoopStrengthReduction.
Summary:
This patch introduces `AAValueConstantRange`, which answers a possible range for integer value in a specific program point.
One of the motivations is propagating existing `range` metadata. (I think we need to change the situation that `range` metadata cannot be put to Argument).
The state is a tuple of `ConstantRange` and it is initialized to (known, assumed) = ([-∞, +∞], empty).
Currently, AAValueConstantRange is created in `getAssumedConstant` method when `AAValueSimplify` returns `nullptr`(worst state).
Supported
- BinaryOperator(add, sub, ...)
- CmpInst(icmp eq, ...)
- !range metadata
`AAValueConstantRange` is not intended to extend to polyhedral range value analysis.
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: phosek, davezarzycki, baziotis, hiraditya, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71620
When we replace instructions with unreachable we delete instructions. We
now avoid dangling pointers to those deleted instructions in the
`ToBeChangedToUnreachableInsts` set. Other modification collections
might need to be updated in the future as well.
If we replace a function with a new one because we rewrite the
signature, dead users may still refer to the old version. With this
patch we reuse the code that deals with dead functions, which the old
versions are, to avoid problems.
An inbounds GEP results in poison if the value is not "inbounds", not in
UB. We accidentally derived nonnull and dereferenceable from these
inbounds GEPs even in the absence of accesses that would make the poison
to UB.
This patch introduces `AAValueConstantRange`, which answers a possible range for integer value in a specific program point.
One of the motivations is propagating existing `range` metadata. (I think we need to change the situation that `range` metadata cannot be put to Argument).
The state is a tuple of `ConstantRange` and it is initialized to (known, assumed) = ([-∞, +∞], empty).
Currently, AAValueConstantRange is created when AAValueSimplify cannot
simplify the value.
Supported
- BinaryOperator(add, sub, ...)
- CmpInst(icmp eq, ...)
- !range metadata
`AAValueConstantRange` is not intended to extend to polyhedral range value analysis.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D71620
As part of the Attributor manifest we want to change the signature of
functions. This patch introduces a fairly generic interface to do so.
As a first, very simple, use case, we remove unused arguments. A second
use case, pointer privatization, will be committed with this patch as
well.
A lot of the code and ideas are taken from argument promotion and we
run all argument promotion tests through this framework as well.
Reviewed By: uenoku
Differential Revision: https://reviews.llvm.org/D68765
Since the information is known we can simply use it at the call site.
This is especially useful for callbacks but also helps regular calls.
The test changes are mechanical.
This is the second step after D67871 to make use of abstract call sites.
In this patch the argument we associate with a abstract call site
argument can be the one in the callback callee instead of the one in the
callback broker.
Caveat: We cannot allow no-alias arguments for problematic callbacks:
As described in [1], adding no-alias (or restrict) to arguments could
break synchronization as the synchronization effect, e.g., a barrier,
does not "alias" with the pointer anymore. This disables no-alias
annotation for potentially problematic arguments until we implement the
fix described in [1].
Reviewed By: uenoku
Differential Revision: https://reviews.llvm.org/D68008
[1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel,
International Workshop on OpenMP 2018,
http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
Especially for callbacks, annotating the call site arguments is
important. Doing so exposed a too strong dependence of AAMemoryBehavior
on AANoCapture since we handle the case of potentially captured pointers
explicitly.
The changes to the tests are all mechanical.
Summary: This patch makes `AAValueSimplify` use `changeUsesAfterManifest` in `manifest`. This will invoke simple folding after the manifest.
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: hiraditya, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71972
A branch is considered UB if it depends on an undefined / uninitialized value.
At this point this handles simple UB branches in the form: `br i1 undef, ...`
We query `AAValueSimplify` to get a value for the branch condition, so the branch
can be more complicated than just: `br i1 undef, ...`.
Patch By: Stefanos Baziotis (@baziotis)
Reviewers: jdoerfert, sstefan1, uenoku
Reviewed By: uenoku
Differential Revision: https://reviews.llvm.org/D71799
Summary: Calling `changeToUnreachable` in `manifest` from different places might cause really unpredictable problems. As other deleting functions are doing, we need to change these instructions after all `manifest`.
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71910
Summary:
As discussed in D71799, we have found that it is more useful to reach an optimistic fixpoint in AAValueSimpify when the value is constant or undef.
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: baziotis, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71852
Summary:
Follow-up on: https://reviews.llvm.org/D71435
We basically use `checkForAllInstructions` to loop through all the instructions in a function that access memory through a pointer: load, store, atomicrmw, atomiccmpxchg
Note that we can now use the `getPointerOperand()` that gets us the pointer operand for an instruction that belongs to the aforementioned set.
Question: This function returns `nullptr` if the instruction is `volatile`. Why?
Guess: Because if it is volatile, we don't want to do any transformation to it.
Another subtle point is that I had to add AtomicRMW, AtomicCmpXchg to `initializeInformationCache()`. Following `checkAllInstructions()` path, that
seemed the most reasonable place to add it and correct the fact that these instructions were ignored (they were not in `OpcodeInstMap` etc.). Is that ok?
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert, sstefan1
Subscribers: hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71787
_Eventually_, this attribute will be assigned to a function if it
contains undefined behavior. As a first small step, I tried to make it
loop through the load instructions in a function (eventually, the plan
is to check if a load instructions causes undefined behavior, because
e.g. dereferences a null pointer - Also eventually, this won't happen in
initialize() but in updateImpl()).
Patch By: Stefanos Baziotis (@baziotis)
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D71435
The Attributor is always kept formatted so diffs are cleaner.
Sometime we get out of sync for various reasons so we need to format the
file once in a while.
This was part of D70767. When we replace the value of (call/invoke)
instructions we do not want to disturb the old call graph so we will
only replace instruction uses until we get rid of the old PM.
Accepted as part of D70767.
When we reason about the pointer argument that is byval we actually
reason about a local copy of the value passed at the call site. This was
not the case before and we wrongly introduced attributes based on the
surrounding function.
AAMemoryBehaviorArgument, AAMemoryBehaviorCallSiteArgument and
AANoCaptureCallSiteArgument are made aware of byval now. The code
to skip "subsuming positions" for reasoning follows a common pattern and
we should refactor it. A TODO was added.
Discovered by @efriedma as part of D69748.
Summary: Remove `Worklist` iteration and make use `checkForAllUses`. There is no test chage.
Reviewers: sstefan1, jdoerfert
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71352
Summary:
This patch introduces the deduction based on load/store instructions whose pointer operand is a non-inbounds GEP instruction.
For example if we have,
```
void f(int *u){
u[0] = 0;
u[1] = 1;
u[2] = 2;
}
```
then u must be dereferenceable(12).
This patch is inspired by D64258
Reviewers: jdoerfert, spatel, hfinkel, RKSimon, sstefan1, xbolva00, dtemirbulatov
Reviewed By: jdoerfert
Subscribers: jfb, lebedev.ri, xbolva00, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70714
Summary:
This patch enables us to track GEP instruction in align deduction.
If a pointer `B` is defined as `A+Offset` and known to have alignment `C`, there exists some integer Q such that
```
A + Offset = C * Q = B
```
So we can say that the maximum power of two which is a divisor of gcd(Offset, C) is an alignment.
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: lebedev.ri, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70392
Summary: Working towards Johannes's suggestion for fixme, in Attributor's Noalias attribute deduction.
(ii) Check whether the value is captured in the scope using AANoCapture.
FIXME: This is conservative though, it is better to look at CFG and
// check only uses possibly executed before this call site.
A Reachability abstract attribute answers the question "does execution at point A potentially reach point B". If this question is answered with false for all other uses of the value that might be captured, we know it is not *yet* captured and can continue with the noalias deduction. Currently, information AAReachability provides is completely pessimistic.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: uenoku, sstefan1, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D70233
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
Summary:
This patch introduces align attribute deduction for callsite argument, function argument, function returned and floating value based on must-be-executed-context.
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69797
Summary: A helper function to get argument number of a arg operand Use.
Reviewers: jdoerfert, uenoku
Subscribers: hiraditya, lebedev.ri, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66844
Dependences between two abstract attributes SRC and TRG come naturally in
two flavors:
Either (1) "some" information of SRC is *required* for TRG to derive
information, or (2) SRC is just an *optional* way for TRG to derive
information.
While it is not strictly necessary to distinguish these types
explicitly, it can help us to converge faster, in terms of iterations,
and also cut down the number of `AbstractAttribute::update` calls.
As far as I can tell, we only use optional dependences for liveness so
far but that might change in the future. With this change the Attributor
can be informed about the "dependence class" and it will perform
appropriate actions when an Attribute is set to an invalid state, thus
one that cannot be used by others to derive information from.
BlockAddress users will not "call" the function so they do not qualify
as call sites in the first place. When we delete a function with
BlockAddress users we need to first remove the body so they are properly
discarded.
When we replace constant returns at the call site we did issue a cast in
the hopes it would be a no-op if the types are equal. Turns out that is
not the case and we have to check it ourselves first.
Reused an IPConstantProp test for coverage. No functional change to the
test wrt. IPConstantProp.
Even if the invoked function may-return, we can replace it with a call
and branch if it is nounwind. We had almost everything in place to do
this but did not which actually caused a crash when we removed the
landingpad from the actually dead unwind block.
Exposed by the IPConstantProp tests.
We did merge "known" and "assumed" liveness information into a single
set which caused various kinds of problems, especially because we did
not properly record when something was actually known. With this patch
we properly track the "known" bit and distinguish dead ends we know from
the ones we still need to explore in future updates.
We gave up on `noreturn` if `willreturn` was known for a while but we
now again try to always derive `noreturn`. This is useful because a
function that is `noreturn` + `willreturn` is basically dead as
executing it would lead to undefined behavior (UB).
This came up in the IPConstantProp cases where a function only contained
a unreachable but was not marked `noreturn` which caused missed
opportunities down the line.
In D69605 only the "cases" of a switch were handled but if none matched
we did not make the default case life. This is fixed now and properly
tested (with code from IPConstantProp/user-with-multiple-uses.ll).
We cannot simply replace arguments that carry attributes like `nest`,
`inalloca`, `sret`, and `byval`. Except for the last one, which we can
replace if it is not written, we bail for now.
Trying to deduce information for declarations and calls sites of
declarations is not useful in practice but only for testing. Add a flag
that disables this by default but also enable it in the tests.
The misc.ll test will verify the flag "works" as expected.
We cannot look at the subsuming positions and take their nocapture bit
as shown with the two tests for which we derived nocapture on the call
site argument and readonly on the argument of the second before.
Before we did not follow casts and geps when we looked at the users of a
pointer in the pointers must-be-executed-context. This caused us to fail
to determine if it was accessed for sure. With this change we follow
such users now.
The above extension exposed problems in getKnownNonNullAndDerefBytesForUse
which did not always check what the base pointer was. We also did not
handle negative offsets as conservative as we have to without explicit
loop handling. Finally, we should not derive a huge number if we access
a pointer that was traversed backwards first.
The problems exposed by this functional change are already tested in the
existing test cases as is the functional change.
Differential Revision: https://reviews.llvm.org/D69647
Summary:
In order to get context sensitivity from isKnownNonZero we need to
provide a context instruction *and* a dominator tree. The latter is
passed now to which actually allows to remove some initialization code.
Tests taken from PR43833.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69595
Summary:
If control is transferred to a successor is the key question when it
comes to liveness. The new implementation puts that question in the
focus and thereby providing a clean way to assume certain CFG edges are
dead or instructions will not transfer control.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69605
Summary:
This patch introduces liveness (AAIsDead) for all positions, thus for
all kinds of values. For now, we say an instruction is dead if it would
be removed assuming all users are dead. A call site return is different
as we just look at the users. If all call site returns have been
eliminated, the return values can return undef instead of their original
value, eliminating uses.
We try to recursively delete dead instructions now and we introduce a
simple check interface for use-traversal.
This is the idea tried out in D68626 but implemented in the right way.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68925
Deleting blocks will require us to deal with dead edges, e.g.,
`br i1 false, label %live, label %dead`
explicitly. For now we just clear the blocks and move on.
This will be revisited once we actually fold branches.
Summary:
If there is a unique free of the allocated that has to be reached from
the malloc, we can apply the heap-2-stack transformation even if the
pointer escapes.
Reviewers: hfinkel, sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68958
If an attribute did not query any optimistic (=non-fixed) information to
justify its state, we know the attribute state will not change anymore.
Thus, we can indicate an optimistic fixpoint.
We pretended IRPosition came either as mutable or immutable objects
while they are basically always immutable, with a single (existing)
unfortunate exceptions. This patch cleans up the uses to deal with the
immutable version.
To make IntegerState more flexible but also less error prone we split it
up into (1) incrementing, (2) decrementing, and (3) bit-tracking states.
This adds functionality compared to before and disallows misuse, e.g.,
"incrementing" updates on a bit-tracking state.
Part of the change is a single operator in the base class which
simplifies helper functions that deal with states.
There are certain functional changes but all of which should actually be
corrections.
AAReturnedValues, AAMemoryBehavior, and AANoUnwind, can provide
information that helps during the tracking or even justifies no-capture.
We now use this information and enable no-capture in some test cases
designed a long while a ago for these cases.
llvm-svn: 375382
No-return and will-return are exclusive, assuming the latter is more
prominent we can avoid updates of the former unless will-return is not
known for sure.
llvm-svn: 374739
Even if an argument is captured, we cannot have an effect the function
does not have. This is fine except for the special case of `inalloca` as
it does not behave by the rules.
TODO: Maybe the special rule for `inalloca` is wrong after all.
llvm-svn: 374736
Summary:
This changes "CHECK" check lines to "ATTRIBUTOR" check lines where
necessary and also fixes the now exposed, mostly minor, problems.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68929
llvm-svn: 374735
Before, we eagerly split blocks even if it was not necessary, e.g., they
had a single unreachable instruction and only a single predecessor.
llvm-svn: 374703
We do not yet perform h2s because we know something is free'ed but we do
it because we know the pointer does not escape. Storing the pointer
allows it to escape so we have to prevent that.
llvm-svn: 374699
H2S did apply to mallocs of non-constant sizes if the uses were OK. This
is now forbidden through reording of the "good" and "bad" cases in the
conditional.
llvm-svn: 374698
The check for naked/optnone was insufficient for different reasons. We
now check before we initialize an abstract attribute and we do it for
all abstract attributes.
llvm-svn: 374694