This patch adds verification checks for the unit header chain in the .debug_info section.
Specifically, for each unit in the .debug_info section, the verifier checks that:
The unit length is valid (i.e. the unit can actually fit in the .debug_info section)
The dwarf version of the unit is valid
The address size is valid (4 or 8)
The unit type (if the unit is in dwarf5) is valid
The debug_abbrev_offset is valid
llvm-svn: 307975
Summary:
This fixes type indices for SDK or CRT static archives. Previously we'd
try to look next to the archive object file path, which would not exist
on the local machine.
Also error out if we can't resolve a type server record. Hypothetically
we can recover from this error by discarding debug info for this object,
but that is not yet implemented.
Reviewers: ruiu, amccarth
Subscribers: aprantl, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D35369
llvm-svn: 307946
Code to convert MachO - specific section debug section names to standard DWARF v5
section names was in the wrong place.
Differential Revision: https://reviews.llvm.org/D35321
llvm-svn: 307872
Doing so is leaking an implementation detail.
I have an implementation that uses the lld infrastructure and doesn't
use a map or object::SectionRef.
llvm-svn: 307846
Summary:
There is a reserved range of type indexes for built-in types (like integers).
This will create a symbol for a built-in type if the caller askes for one by
type index. This is also plumbing for being able to recall symbols by type
index in general, but user-defined types will come in subsequent patches.
Reviewers: rnk, zturner
Subscribers: mgorny, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D35163
llvm-svn: 307834
Avoid duplicating DictScope with hand-written names everywhere. Print
the S_-prefixed symbol kind for every record. This should make it easier
to search for certain kinds of records when debugging PDB linking.
llvm-svn: 307732
I encountered these when linking LLD, which uses atls.lib. Those objects
appear to use these uncommon symbol records:
0x115E S_HEAPALLOCSITE
0x113D S_ENVBLOCK
0x1113 S_GTHREAD32
0x1153 S_FILESTATIC
llvm-svn: 307725
This is part of the continuing effort to increase parity between
LLD and MSVC PDBs. link still doesn't like our PDBs, so the most
obvious thing to check was whether adding an empty publics stream
would get it to do something else. It still fails in the same way
but at least this removes one more variable from the equation.
The next logical step would be to try creating an empty globals
stream.
Differential Revision: https://reviews.llvm.org/D35224
llvm-svn: 307598
Variable was called 'Name' and contained text
name of relocation type. Problem was that
outside of this error handling scope we already
have different 'Name' variable that contains
section name.
Change helps to avoid confusion.
llvm-svn: 307530
1) Don't write a /src/headerblock stream. This appears to be
written conditionally by MSVC, but it's not clear what the
condition is. For now, just remove it since we dont' know
what it is anyway and the particular pdb we've checked in
for the test doesn't have one.
2) Write a valid timestamp for the PDB file signature. This
leads to non-reproducible builds, but it matches the default
behavior of link, so it should be out default as well. If
we need reproducibility, we should add a separate command
line option for it that is off by default.
3) Write an empty FPO stream. MSVC seems to always write an
FPO stream. This change makes the stream directory match
up, although we still need to make the contents of the FPO
stream match.
llvm-svn: 307436
A couple of things were different about our generated PDBs.
1) We were outputting the wrong Version on the PDB Stream.
The version we were setting was newer than what MSVC is setting.
It's not clear what the implications are, but we change LLD
to use PdbImplVC70, as MSVC does.
2) For the optional debug stream indices in the DBI Stream, we
were outputting 0 to mean "the stream is not present". MSVC
outputs uint16_t(-1), which is the "correct" way to specify
that a stream is not present. So we fix that as well.
3) We were setting the PDB Stream signature to 0. This is supposed
to be the result of calling time(nullptr). Although this leads
to non-deterministic builds, a better way to solve that is by
having a command line option explicitly for generating a
reproducible build, and have the default behavior of lld-link
match the default behavior of link.
To test this, I'm making use of the new and improved `pdb diff`
sub command. To make it suitable for writing tests against, I had
to modify the diff subcommand slightly to print less verbose output.
Previously it would always print | <column> | <value1> | <value2> |
which is quite verbose, and the values are fragile. All we really
want to know is "did we produce the same value as link?" So I added
command line options to print a single character representing the
result status (different, identical, equivalent), and another to
hide the value display. Note that just inspecting the diff output
used to write the test, you can see some things that are obviously
wrong. That is just reflective of the fact that this is the state
of affairs today, not that we're asserting that this is "correct".
We can use this as a starting point to discover differences, fix
them, and update the test.
Differential Revision: https://reviews.llvm.org/D35086
llvm-svn: 307422
We're getting to the point that some MS tools (e.g. DIA) can recognize
our PDBs but others (e.g. link.exe) cannot. I think the way forward is
to improve our tooling to help us find differences more easily. For
example, if we can compile the same program with clang-cl and cl and
have a tool tell us all the places where the PDBs differ, this could
tell us what we're doing wrong. It's tricky though, because there are a
lot of "benign" differences in a PDB. For example, if the string table
in one PDB consists of "foo" followed by "bar" and in the other PDB it
consists of "bar" followed by "foo", this is not necessarily a critical
difference, as long as the uses of these strings also refer to the
correct location. On the other hand, if the second PDB doesn't even
contain the string "foo" at all, this is a critical difference.
diff mode has been in llvm-pdbutil for quite a while, but because of the
above challenge along with some others, it's been hard to make it
useful. I think this patch addresses that. It looks for all the same
things, but it now prints the output in tabular format (carefully
formatted and aligned into tables and fields), and it highlights
critical differences in red, non-critical differences in yellow, and
identical fields in green. This makes it easy to spot the places we
differ, and the general concept of outputting arbitrary fields in
tabular format can be extended to provide analysis into many of the
different types of information that show up in a PDB.
Differential Revision: https://reviews.llvm.org/D35039
llvm-svn: 307421
Based strictly on the name, this seems to have something to do
width edit & continue. The goal of this patch has nothing to do
with supporting edit and continue though. msvc link.exe writes
very basic information into this area even when *not* compiling
with support for E&C, and so the goal here is to bring lld-link
to parity. Since we cannot know what assumptions standard tools
make about the content of PDB files, we need to be as close as
possible.
This ECNames data structure is a standard PDB string hash table.
link.exe puts a single string into this hash table, which is the
full path to the PDB file on disk. It then references this string
from the module descriptor for the compiler generated `* Linker *`
module.
With this patch, lld-link will generate the exact same sequence of
bytes as MSVC link for this subsection for a given object file
input (as reported by `llvm-pdbutil bytes -ec`).
llvm-svn: 307356
Type records have a unique type index, but symbol records do
not. Instead, symbol records refer to other symbol records
by referencing their offset in the symbol stream. In a sense
this is the analogue of the TypeIndex, but we are not printing
it in the dumper. Printing it not only gives us more useful
information when manually investigating the contents of a PDB,
but also allows us to write better tests by enabling us to
verify that fields that reference other symbol records do
so correctly.
Differential Revision: https://reviews.llvm.org/D34906
llvm-svn: 306890
Previously we had the -type-index option which would dump the record of
a single, but we had no way to follow the dependency graph backwards and
also dump all dependent types.
Having this option makes test-writing better, because we can limit the
test to only those records that are of importance for the thing we're
trying to test, which allows us to use things like CHECK-NEXT to reduce
fragility.
Differential Revision: https://reviews.llvm.org/D34899
llvm-svn: 306852
This patch verifies the number of atoms, the validity of the form for each atom, as well as the validity of the
hashdata. For hashdata, we're verifying that the hashdata offset is correct and that the offset in the .debug_info for
each DIE in the hashdata is also valid.
llvm-svn: 306735
Requires callers to directly associate relocations with a DataExtractor
used to read data from a DWARF section, which helps a callee not make
assumptions about which section it is reading.
This is the next step in reducing DWARFFormValue's dependence on DWARFUnit.
Differential Revision: https://reviews.llvm.org/D34704
llvm-svn: 306699
Because of mistake introduced in r306517,
wrong variable ("name" instead of "Name") was used
in error message.
As a result it reported section name instead of
relocation name.
This file still needs cleanup to match LLVM coding style
and more tests I think.
llvm-svn: 306677
Instead of creating symbols directly in the findChildren methods of the native
symbol implementations, they will rely on the NativeSession to act as a factory
for these types. This lets NativeSession cache the NativeRawSymbols in its
new symbol cache and makes that cache the source of unique IDs for the symbols.
Right now, this affects only NativeCompilandSymbols. There's no external
change yet, so I think the existing tests are still sufficient. Coming soon
are patches to extend this to built-in types and enums.
llvm-svn: 306610
With fix in include folder character case:
#include "llvm/Codegen/AsmPrinter.h" -> #include "llvm/CodeGen/AsmPrinter.h"
Original commit message:
Change introduces error reporting policy for DWARFContextInMemory.
New callback provided by client is able to handle error on it's
side and return Halt or Continue.
That allows to either keep current behavior when parser prints all errors
but continues parsing object or implement something very different, like
stop parsing on a first error and report an error in a client style.
Differential revision: https://reviews.llvm.org/D34328
llvm-svn: 306517
Change introduces error reporting policy for DWARFContextInMemory.
New callback provided by client is able to handle error on it's
side and return Halt or Continue.
That allows to either keep current behavior when parser prints all errors
but continues parsing object or implement something very different, like
stop parsing on a first error and report an error in a client style.
Differential revision: https://reviews.llvm.org/D34328
llvm-svn: 306512
Some forms have sizes that depend on the DWARF version, DWARF format
(32/64-bit), or the size of an address. Collect these into a struct
to simplify passing them around. Require callers to provide one when
they query a form's size.
Differential Revision: http://reviews.llvm.org/D34570
llvm-svn: 306315
If you dump a pdb to yaml, and then round-trip it back to a pdb,
and run cvdump -l <file> on the new pdb, cvdump will generate
output such as this.
*** LINES
** Module: "d:\src\llvm\test\DebugInfo\PDB\Inputs\empty.obj"
Error: Line number corrupted: invalid file id 0
<Unknown> (MD5), 0001:00000010-0000001A, line/addr pairs = 3
5 00000010 6 00000013 7 00000018
Note the error message about the corrupted line number.
It turns out that the problem is that cvdump cannot find the
/names stream (e.g. the global string table), and the reason it
can't find the /names stream is because it doesn't understand
the NameMap that we serialize which tells pdb consumers which
stream has the string table.
Some experimentation shows that if we add items to the hash
table in a specific order before serializing it, cvdump can read
it. This suggests that either we're using the wrong hash function,
or we're serializing something incorrectly, but it will take some
deeper investigation to figure out how / why. For now, this at
least allows cvdump to read our line information (and incidentally,
produces an identical byte sequence to what Microsoft tools
produce when writing the named stream map).
Differential Revision: https://reviews.llvm.org/D34491
llvm-svn: 306233
This patch dumps the raw bytes of the pdb name map which contains
the mapping of stream name to stream index for the string table
and other reserved streams.
llvm-svn: 306148
The goal here is to make it possible to display absolute
file offsets when dumping byets from an MSF. The problem is
that when dumping bytes from an MSF, often the bytes will
cross a block boundary and encounter a discontinuity. We
can't use the normal formatBinary() function for this because
this would just treat the sequence as entirely ascending, and
not account out-of-order blocks.
This patch adds a formatMsfData() function to our printer, and
then uses this function to improve the output of the -stream-data
command line option for dumping bytes from a particular stream.
Test coverage is also expanded to make sure to include all possible
scenarios of offsets, sizes, and crossing block boundaries.
llvm-svn: 306141
All NativeRawSymbols will have a unique symbol ID (retrievable via
getSymIndexId). For now, these are initialized to 0, but soon the
NativeSession will be responsible for creating the raw symbols, and it will
assign unique IDs.
The symbol cache in the NativeSession will also require the ability to clone
raw symbols, so I've provided implementations for that as well.
llvm-svn: 306042
There doesn't seem to be a compelling reason why this method should be const
other than it was possible with the DIA implementation. The native session
is going to act as a symbol factory and cache. This could be acheived with
mutable (and the existing const_cast), but it seems cleaner to accept that
this method affects the state of the session.
This change eliminates an existing const_cast.
llvm-svn: 306041
Summary:
The main complexity in adding symbol records is that we need to
"relocate" all the type indices. Type indices do not have anything like
relocations, an opaque data structure describing where to find existing
type indices for fixups. The linker just has to "know" where the type
references are in the symbol records. I added an overload of
`discoverTypeIndices` that works on symbol records, and it seems to be
able to link the standard library.
Reviewers: zturner, ruiu
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D34432
llvm-svn: 305933
There were certain fields that we didn't know how to write, as
well as various padding bytes that we would ignore. This leads
to garbage data in the PDB. While not strictly necessary, we
should initialize these bytes to something meaningful, as it
makes for easier binary comparison between PDBs.
llvm-svn: 305819
Summary:
This is a first step towards getting line info to show up in VS and
windbg. So far, only llvm-pdbutil can parse the PDBs that we produce.
cvdump doesn't like something about our file checksum tables. I'll have
to dig into that next.
This patch adds a new DebugSubsectionRecordBuilder which takes bytes
directly from some other producer, such as a linker, and sticks it into
the PDB. Line tables only need to be relocated. No data needs to be
rewritten.
File checksums and string tables, on the other hand, need to be re-done.
Reviewers: zturner, ruiu
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D34257
llvm-svn: 305713
Merge the functionality into the random access type collection.
This class was only being used in 2 places, so getting rid of it
simplifies the code.
llvm-svn: 305653
Suppose we had a type index offsets array with a boundary at type index
N. Then you request the name of the type with index N+1, and that name
requires the name of index N-1 (think a parameter list, for example). We
didn't handle this, and we would print something like (<unknown UDT>,
<unknown UDT>).
The fix for this is not entirely trivial, and speaks to a larger
problem. I think we need to kill TypeDatabase, or at the very least kill
TypeDatabaseVisitor. We need a thing that doesn't do any caching
whatsoever, just given a type index it can compute the type name "the
slow way". The reason for the bug is that we don't have anything like
that. Everything goes through the type database, and if we've visited a
record, then we're "done". It doesn't know how to do the expensive thing
of re-visiting dependent records if they've not yet been visited.
What I've done here is more or less copied the code (albeit greatly
simplified) from TypeDatabaseVisitor, but wrapped it in an interface
that just returns a std::string. The logic of caching the name is now in
LazyRandomTypeCollection. Eventually I'd like to move the record
database here as well and the visited record bitfield here as well, at
which point we can actually just delete TypeDatabase. I don't see any
reason for it if a "sequential" collection is just a special case of a
random access collection with an empty partial offsets array.
Differential Revision: https://reviews.llvm.org/D34297
llvm-svn: 305612
The verifier should not output any message in such a case.
Added test case with no .apple_name section in the file to verify new functionality.
Made existing test case more specific.
llvm-svn: 305597
This resubmits commit c0c249e9f2ef83e1d1e5f166b50673d92f3579d7.
It was broken due to some weird template issues, which have
since been fixed.
llvm-svn: 305517
This reverts commit 83ea17ebf2106859a51fbc2a86031b44d33696ad.
This is failing due to some strange template problems, so reverting
until it can be straightened out.
llvm-svn: 305505
After some internal discussions, we agreed that the raw output style had
outlived its usefulness. It was originally created before we had even
thought of dumping to YAML, and it was intended to give us some insight
into the internals of a PDB file. Now we have YAML mode which does
almost exactly this but is more powerful in that it can round-trip back
to a PDB, which the raw mode could not do. So the raw mode had become
purely a maintenance burden.
One option was to just delete it. However, its original goal was to be
as readable as possible while staying close to the "metal" - i.e.
presenting the output in a way that maps directly to the underlying file
format. We don't actually need that last requirement anymore since it's
covered by the yaml mode, so we could repurpose "raw" mode to actually
just be as readable as possible.
This patch implements about 80% of the functionality previously in raw
mode, but in a completely different style that is more akin to what
cvdump outputs. Records are very compressed, often times appearing on
just one line. One nice thing about this is that it makes full record
matching easier, because you can grep for indices, names, and leaf types
on a single line often.
See the tests for some examples of what the new output looks like.
Note that this patch actually regresses the functionality of raw mode in
a few areas, but only because the patch was already unreasonably large
and going 100% would have been even worse. Specifically, this patch is
missing:
The ability to dump module debug subsections (checksums, lines, etc)
The ability to dump section headers
Aside from that everything is here. While goign through the tests fixing
them all up, I found many duplicate tests. They've been deleted. In
subsequent patches I will go through and re-add the missing
functionality.
Differential Revision: https://reviews.llvm.org/D34191
llvm-svn: 305495
This was originally reverted because of some non-deterministic
failures on certain buildbots. Luckily ASAN eventually caught
this as a stack-use-after-scope, so the fix is included in
this patch.
llvm-svn: 305393
This is causing failures on linux bots with an invalid stream
read. It doesn't repro in any configuration on Windows, so
reverting until I have a chance to investigate on Linux.
llvm-svn: 305371
This allows us to use yaml2obj and obj2yaml to round-trip CodeView
symbol and type information without having to manually specify the bytes
of the section. This makes for much easier to maintain tests. See the
tests under lld/COFF in this patch for example. Before they just said
SectionData: <blob> whereas now we can use meaningful record
descriptions. Note that it still supports the SectionData yaml field,
which could be useful for initializing a section to invalid bytes for
testing, for example.
Differential Revision: https://reviews.llvm.org/D34127
llvm-svn: 305366
This patch adds code which verifies that each bucket in the .apple_names
accelerator table is either empty or has a valid hash index.
Differential Revision: https://reviews.llvm.org/D34177
llvm-svn: 305344
Summary:
Expose the module descriptor index and fill it in for section
contributions.
Reviewers: zturner
Subscribers: llvm-commits, ruiu, hiraditya
Differential Revision: https://reviews.llvm.org/D34126
llvm-svn: 305296
The last fix required the user to manually add the required
feature. This caused an LLD test to fail because I failed to
update LLD. In practice we can hide this logic so it can just
be transparently added when we write the PDB.
llvm-svn: 305236
Older PDBs don't have this. Its presence is detected by using
the various "feature" flags that come at the end of the PDB
Stream. Detect this, and don't try to dump the ID stream if the
features tells us it's not present.
llvm-svn: 305235
Static data members were causing a problem because I mistakenly
assumed all members would affect a class's layout and so the
Layout member would be non-null.
llvm-svn: 305229
Previously extractors tried to be stateless with any additional
context information needed in order to parse items being passed
in via the extraction method. This led to quite cumbersome
implementation challenges and awkwardness of use. This patch
brings back support for stateful extractors, making the
implementation and usage simpler.
llvm-svn: 305093
Summary:
RelocOffset is a 32-bit value, but we previously truncated it to 16 bits.
Fixes PR33335.
Reviewers: zturner, hiraditya!
Reviewed By: zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33968
llvm-svn: 305043
This adds support for Symbols, StringTable, and FrameData subsection
types. Even though these subsections rarely if ever appear in a PDB
file (they are usually in object files), there's no theoretical reason
why they *couldn't* appear in a PDB. The real issue though is that in
order to add support for dumping and writing them (which will be useful
for object files), we need a way to test them. And since there is no
support for reading and writing them to / from object files yet, making
PDB support them is the best way to both add support for the underlying
format and add support for tests at the same time. Later, when we go
to add support for reading / writing them from object files, we'll need
only minimal changes in the underlying read/write code.
llvm-svn: 305037
This is the same change for the YAML Output style applied to the
raw output style. Previously we would queue up all subsections
until every one had been read, and then output them in a pre-
determined order. This was because some subsections need to be
read first in order to properly dump later subsections. This
patch allows them to be dumped in the order they appear.
Differential Revision: https://reviews.llvm.org/D34015
llvm-svn: 305034
Apparently support for /debug:fastlink PDBs isn't part of the
DIA SDK (!), and it was causing llvm-pdbdump to crash because
we weren't checking for a null pointer return value. This
manifests when calling findChildren on the IDiaSymbol, and
it returns E_NOTIMPL.
llvm-svn: 304982
This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
llvm-svn: 304864
This patch introduces a new command line option, called brief, to
llvm-dwarfdump. When -brief is used, the attribute forms for the
.debug_info section will not be emitted to output.
Patch by Spyridoula Gravani!
rdar://problem/21474365
Differential Revision: https://reviews.llvm.org/D33867
llvm-svn: 304844
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
While it's not entirely clear why a compiler or linker might
put this information into an object or PDB file, one has been
spotted in the wild which was causing llvm-pdbdump to crash.
This patch adds support for reading-writing these sections.
Since I don't know how to get one of the native tools to
generate this kind of debug info, the only test here is one
in which we feed YAML into the tool to produce a PDB and
then spit out YAML from the resulting PDB and make sure that
it matches.
llvm-svn: 304738
Previously MappedBlockStream owned its own BumpPtrAllocator that
it would allocate from when a read crossed a block boundary. This
way it could still return the user a contiguous buffer of the
requested size. However, It's not uncommon to open a stream, read
some stuff, close it, and then save the information for later.
After all, since the entire file is mapped into memory, the data
should always be available as long as the file is open.
Of course, the exception to this is when the data isn't *in* the
file, but rather in some buffer that we temporarily allocated to
present this contiguous view. And this buffer would get destroyed
as soon as the strema was closed.
The fix here is to force the user to specify the allocator, this
way it can provide an allocator that has whatever lifetime it
chooses.
Differential Revision: https://reviews.llvm.org/D33858
llvm-svn: 304623
Previously we would expect certain subsections to appear
in a certain order because some subsections would reference
other subsections, but in practice we need to support
arbitrary orderings since some object file and PDB file
producers generate them this way. This also paves the
way for supporting Yaml <-> Object File conversion of
CodeView, since Object Files typically have quite a
large number of subsections in their debug info.
Differential Revision: https://reviews.llvm.org/D33807
llvm-svn: 304588
Object files have symbol records not aligned to any particular
boundary (e.g. 1-byte aligned), while PDB files have symbol
records padded to 4-byte aligned boundaries. Since they share
the same reading / writing code, we have to provide an option to
specify the alignment and propagate it up to the producer or
consumer who knows what the alignment is supposed to be for the
given container type.
Added a test for this by modifying the existing PDB -> YAML -> PDB
round-tripping code to round trip symbol records as well as types.
Differential Revision: https://reviews.llvm.org/D33785
llvm-svn: 304484
This commit introduces a structure that holds all the flags that
control the pretty printing of dwarf output.
Patch by Spyridoula Gravani!
Differential Revision: https://reviews.llvm.org/D33749
llvm-svn: 304446
This is the beginning of an effort to move the codeview yaml
reader / writer into ObjectYAML so that it can be shared.
Currently the only consumer / producer of CodeView YAML is
llvm-pdbdump, but CodeView can exist outside of PDB files, and
indeed is put into object files and passed to the linker to
produce PDB files. Furthermore, there are subtle differences
in the types of records that show up in object file CodeView
vs PDB file CodeView, but they are otherwise 99% the same.
By having this code in ObjectYAML, we can have llvm-pdbdump
reuse this code, while teaching obj2yaml and yaml2obj to use
this syntax for dealing with object files that can contain
CodeView.
This patch only adds support for CodeView type information
to ObjectYAML. Subsequent patches will add support for
CodeView symbol information.
llvm-svn: 304248
This adds implementations for Symbols and FrameData, and renames
the existing codeview::StringTable class to conform to the
DebugSectionStringTable convention.
llvm-svn: 304222
With fix of uninitialized variable.
Original commit message:
This change is intended to use for LLD in D33183.
Problem we have in LLD when building .gdb_index is that we need to know section which address range belongs to.
Previously it was solved on LLD side by providing fake section addresses with use of llvm::LoadedObjectInfo
interface. We assigned file offsets as addressed. Then after obtaining ranges lists, for each range we had to find section ID's.
That not only was slow, but also complicated implementation and was the reason of incorrect behavior when
sections share the same offsets, like D33176 shows.
This patch makes DWARF parsers to return section index as well. That solves problem mentioned above.
Differential revision: https://reviews.llvm.org/D33184
llvm-svn: 304078