When entering a basic block, RDA inserts reaching definitions coming
from predecessor blocks (which will be negative numbers) in a rather
peculiar way. If you have incoming reaching definitions -4, -3, -2, -1,
it will insert those. If you have incoming reaching definitions
-1, -2, -3, -4, it will insert -1, -1, -1, -1, as the max is taken
at each step. That's probably not what was intended...
However, RDA only actually cares about the most recent reaching
definition from a predecessor (to calculate clearance), so this
ends up working fine as far as behavior is concerned. It does
waste memory on unnecessary reaching definitions though.
This patch changes the implementation to first compute the most
recent reaching definition in one loop, and then insert only that
one in a separate loop.
Differential Revision: https://reviews.llvm.org/D77508
At the end of a basic block, RDA adjusts all the reaching defs it
found to be relative to the end of the basic block, rather than the
start of it. However, it also does this to registers which don't
have a reaching def, indicated by ReachingDefDefaultVal. This means
that code checking against ReachingDefDefaultVal will not skip them,
and may insert them into the reaching definition list. This is
ultimately harmless, but causes unnecessary work and is logically
not right.
Differential Revision: https://reviews.llvm.org/D77506
Summary:
This patch adds support for emission of following DWARFv5 macro forms
in .debug_macro section.
1. DW_MACRO_start_file
2. DW_MACRO_end_file
3. DW_MACRO_define_strp
4. DW_MACRO_undef_strp.
Reviewed By: dblaikie, ikudrin
Differential Revision: https://reviews.llvm.org/D72828
Summary:
This is a roll forward of D77394 minus AlignmentFromAssumptions (which needs to be addressed separately)
Differences from D77394:
- DebugStr() now prints the alignment value or `None` and no more `Align(x)` or `MaybeAlign(x)`
- This is to keep Warning message consistent (CodeGen/SystemZ/alloca-04.ll)
- Removed a few unneeded headers from Alignment (since it's included everywhere it's better to keep the dependencies to a minimum)
Reviewers: courbet
Subscribers: sdardis, hiraditya, jrtc27, atanasyan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77537
We're ANDing with 1 right after which will cause the SIGN_EXTEND to
be combined to ANY_EXTEND later. Might as well just start with an
ANY_EXTEND.
While there replace create the AND using the getZeroExtendInReg
helper to remove the need to explicitly create the VecOnes constant.
This code is replacing a shift with a new shift on an extended type.
If the shift amount type can't represent the maximum shift amount
for the new type, the amount needs to be extended to a type that
can.
Previously, the code just hardcoded a check for 256 bits which
seems to have been an assumption that the original shift amount
was MVT::i8. But that seems more catered to a specific target
like X86 that uses i8 as its legal shift amount type. Other
targets may use different types.
This commit changes the code to look at the real type of the shift
amount and makes sure it has enough bits for the Log2 of the
new type. There are similar checks to this in SelectionDAGBuilder
and LegalizeIntegerTypes.
Previously line table symbol was represented as `DIE::value_iterator`
inside `DwarfCompileUnit` and subsequent function `intStmtList`
was used to create a local `MCSymbol` to initialize it.
This patch removes `DIE::value_iterator` from `DwarfCompileUnit`
and intoduce `MCSymbol` for representing this units symbol for
`debug_line` section. As a result `applyStmtList` is also modified
to utilize this. Further more a helper function `getLineTableStartSym`
is also introduced to get this symbol, this would be used by clients
which need to access this line table, i.e `debug_macro`.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D77489
The newly-created constant zero will need an extra register to hold it
in the current statepoint lowering implementation. Remove it if there
exists one.
Summary:
D77423 started using a dominator tree in WasmEHPrepare, but we deleted
BBs in `prepareThrows` before we used the domtree in `prepareEHPads`,
and those CFG changes were not reflected in the domtree. This uses
`DomTreeUpdater` to make sure we update the domtree every time we delete
BBs from the CFG. This fixes ubsan/msan/expensive_check errors caught in
LLVM buildbots.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77465
Summary:
When we insert a call to the personality function wrapper
(`_Unwind_CallPersonality`) for a catch pad, we store some necessary
info in `__wasm_lpad_context` struct and pass it. One of the info is the
LSDA address for the function. For this, we insert a call to
`wasm.lsda()`, which will be lowered down to the address of LSDA, and
store it in a field in `__wasm_lpad_context`.
There are exceptions to this personality call insertion: catchpads for
`catch (...)` and cleanuppads (for destructors) don't need personality
function calls, because we don't need to figure out whether the current
exception should be caught or not. (They always should.)
There was a little optimization to `wasm.lsda()` call insertion. Because
the LSDA address is the same throughout a function, we don't need to
insert a store of `wasm.lsda()` return value in every catchpad. For
example:
```
try {
foo();
} catch (int) {
// wasm.lsda() call and a store are inserted here, like, in
// pseudocode,
// %lsda = wasm.lsda();
// store %lsda to a field in __wasm_lpad_context
try {
foo();
} catch (int) {
// We don't need to insert the wasm.lsda() and store again, because
// to arrive here, we have already stored the LSDA address to
// __wasm_lpad_context in the outer catch.
}
}
```
So the previous algorithm checked if the current catch has a parent EH
pad, we didn't insert a call to `wasm.lsda()` and its store.
But this was incorrect, because what if the outer catch is `catch (...)`
or a cleanuppad?
```
try {
foo();
} catch (...) {
// wasm.lsda() call and a store are NOT inserted here
try {
foo();
} catch (int) {
// We need wasm.lsda() here!
}
}
```
In this case we need to insert `wasm.lsda()` in the inner catchpad,
because the outer catchpad does not have one.
To minimize the number of inserted `wasm.lsda()` calls and stores, we
need a way to figure out whether we have encountered `wasm.lsda()` call
in any of EH pads that dominates the current EH pad. To figure that
out, we now visit EH pads in BFS order in the dominator tree so that we
visit parent BBs first before visiting its child BBs in the domtree.
We keep a set named `ExecutedLSDA`, which basically means "Do we have
`wasm.lsda()` either in the current EH pad or any of its parent EH
pads in the dominator tree?". This is to prevent scanning the domtree up
to the root in the worst case every time we examine an EH pad: each EH
pad only needs to examine its immediate parent EH pad.
- If any of its parent EH pads in the domtree has `wasm.lsda()`, this
means we don't need `wasm.lsda()` in the current EH pad. We also insert
the current EH pad in `ExecutedLSDA` set.
- If none of its parent EH pad has `wasm.lsda()`
- If the current EH pad is a `catch (...)` or a cleanuppad, done.
- If the current EH pad is neither a `catch (...)` nor a cleanuppad,
add `wasm.lsda()` and the store in the current EH pad, and add the
current EH pad to `ExecutedLSDA` set.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77423
Summary:
For current architect, we always require setContainingCsect to be
called on every MCSymbol got used in XCOFF context.
This is very hard to achieve because symbols gets created everywhere
and other MCSymbol types(ELF, COFF) do not have similar rules.
It's very easy to miss setting the containing csect, and we would
need to add a lot of XCOFF specialized code around some common code area.
This patch intendeds to do
1. Rely on getFragment().getParent() to get csect from labels.
2. Only use get/setRepresentedCsect (was get/setContainingCsect)
if symbol itself represents a csect.
Reviewers: DiggerLin, hubert.reinterpretcast, daltenty
Differential Revision: https://reviews.llvm.org/D77080
Summary: I think it would be better to require the alignment to be >= 1. It is currently confusing to allow both values.
Reviewers: courbet
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77372
isGCValue should detect whether the deopt value is a GC pointer.
Currently it checks by finding the value in SI.Bases and SI.Ptrs.
However these data structures contain only those values which
have corresponding gc.relocate call. So we can miss GC value if it
does not have gc.relocate call (dead after the call).
Check GC strategy whether pointer is GC one or consider any pointer
to be GC one conservatively.
Reviewers: reames, dantrushin
Reviewed By: reames
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D77130
When compiling AMDGPUDisassembler.cpp in a stage 1 trunk build with
CMAKE_BUILD_TYPE=RelWithDebInfo LLVM_USE_SANITIZER=Address LiveDebugVariables
accounts for 21.5% wall clock time. This fix reduces that to 1.2% by switching
out a linked list lookup with a map lookup.
Note that the linked list is still used to group UserValues by vreg. The vreg
lookups don't cause any problems in this pathological case.
This is the same idea as D68816, which was reverted, except that it is a less
intrusive fix.
Reviewed By: vsk
Differential Revision: https://reviews.llvm.org/D77226
The legalizer has a tendency to lose DebugLoc's when expanding or
combining instructions. The verifier that detected these isn't ready
for upstreaming yet but this patch fixes the cases that came up when
applying it to our out-of-tree backend's CodeGen tests.
This pattern comes up a few more times in this file and probably in
the backends too but I'd prefer to fix the others separately (and
preferably when the lost-location verifier detects them).
Summary:
Currently, the comparison argument used for ATOMIC_CMP_XCHG is legalised
with GetPromotedInteger, which leaves the upper bits of the value
undefind. Since this is used for comparing in an LR/SC loop with a
full-width comparison, we must sign extend it. We introduce a new
getExtendForAtomicCmpSwapArg to complement getExtendForAtomicOps, since
many targets have compare-and-swap instructions (or pseudos) that
correctly handle an any-extend input, and the existing function
determines the extension of the result, whereas we are concerned with
the input.
This is related to https://reviews.llvm.org/D58829, which solved the
issue for ATOMIC_CMP_SWAP_WITH_SUCCESS, but not the simpler
ATOMIC_CMP_SWAP.
Reviewers: asb, lenary, efriedma
Reviewed By: asb
Subscribers: arichardson, hiraditya, rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, jfb, PkmX, jocewei, psnobl, benna, Jim, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, evandro, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74453
Currently, DAG combiner uses (fmul (rsqrt x) x) to estimate square
root of x. However, this method would return NaN if x is +Inf, which
is incorrect.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D76853
Summary: These were templated due to SelectionDAG using int masks for shuffles and IR using unsigned masks for shuffles. But now that D72467 has landed we have an int mask version of IRBuilder::CreateShuffleVector. So just use int instead of a template
Reviewers: spatel, efriedma, RKSimon
Reviewed By: efriedma
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D77183
Instead, represent the mask as out-of-line data in the instruction. This
should be more efficient in the places that currently use
getShuffleVector(), and paves the way for further changes to add new
shuffles for scalable vectors.
This doesn't change the syntax in textual IR. And I don't currently plan
to change the bitcode encoding in this patch, although we'll probably
need to do something once we extend shufflevector for scalable types.
I expect that once this is finished, we can then replace the raw "mask"
with something more appropriate for scalable vectors. Not sure exactly
what this looks like at the moment, but there are a few different ways
we could handle it. Maybe we could try to describe specific shuffles.
Or maybe we could define it in terms of a function to convert a fixed-length
array into an appropriate scalable vector, using a "step", or something
like that.
Differential Revision: https://reviews.llvm.org/D72467
The attached test case is simplified from tcmalloc. Both function calls should be optimized as tailcall. But llvm can only optimize the first call. The second call can't be optimized because function dupRetToEnableTailCallOpts failed to duplicate ret into block case2.
There 2 problems blocked the duplication:
1 Intrinsic call llvm.assume is not handled by dupRetToEnableTailCallOpts.
2 The control flow is more complex than expected, dupRetToEnableTailCallOpts can only duplicate ret into its predecessor, but here we have an intermediate block between call and ret.
The solutions:
1 Since CodeGenPrepare is already at the end of LLVM IR phase, we can simply delete the intrinsic call to llvm.assume.
2 A general solution to the complex control flow is hard, but for this case, after exit2 is duplicated into case1, exit2 is the only successor of exit1 and exit1 is the only predecessor of exit2, so they can be combined through eliminateFallThrough. But this function is called too late, there is no more dupRetToEnableTailCallOpts after it. We can add an earlier call to eliminateFallThrough to solve it.
Differential Revision: https://reviews.llvm.org/D76539
Summary:
In method SelectionDAGBuilder::LowerStatepoint, array SI.GCTransitionArgs
is initialized from wrong part of ImmutableStatepoint class.
We copy gc args instead of transitions args.
Reviewers: reames, skatkov
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77075
When we have
```
a = G_OR x, x
```
or
```
b = G_AND y, y
```
We can drop the G_OR/G_AND and just use x/y respectively.
Also update arm64-fallback.ll because there was an or in there which hits this
transformation.
Differential Revision: https://reviews.llvm.org/D77105
Implement identity combines for operations like the following:
```
%a = G_SUB %b, 0
```
This can just be replaced with %b.
Over CTMark, this gives some minor size improvements at -O3.
Differential Revision: https://reviews.llvm.org/D76640
This reverts commit b3297ef051.
This change is incorrect. The current semantic of null in the IR is a
pointer with the bitvalue 0. It is not a cast from an integer 0, so
this should preserve the pointer type.
Summary:
This code was throwing away the opcode for a boolean, which was then
reconstructing the opcode from that boolean. Just pass the opcode, and
forget the boolean.
Reviewers: srhines
Reviewed By: srhines
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77100