Summary:
This simplifies writing predicates for pattern fragments that are
automatically re-associated or commuted.
For example, a followup patch adds patterns for fragments of the form
(add (shl $x, $y), $z) to the AMDGPU backend. Such patterns are
automatically commuted to (add $z, (shl $x, $y)), which makes it basically
impossible to refer to $x, $y, and $z generically in the PredicateCode.
With this change, the PredicateCode can refer to $x, $y, and $z simply
as `Operands[i]`.
Test confirmed that there are no changes to any of the generated files
when building all (non-experimental) targets.
Change-Id: I61c00ace7eed42c1d4edc4c5351174b56b77a79c
Reviewers: arsenm, rampitec, RKSimon, craig.topper, hfinkel, uweigand
Subscribers: wdng, tpr, llvm-commits
Differential Revision: https://reviews.llvm.org/D51994
llvm-svn: 347992
Summary:
We already support this for scalars, but it was explicitly disabled for vectors. In the updated test cases this allows us to see the upper bits are zero to use less multiply instructions to emulate a 64 bit multiply.
This should help with this ispc issue that a coworker pointed me to https://github.com/ispc/ispc/issues/1362
Reviewers: spatel, efriedma, RKSimon, arsenm
Reviewed By: spatel
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D54725
llvm-svn: 347287
Previous version used type erasure through a `void* (*)()` pointer,
which triggered gcc warning and implied a lot of reinterpret_cast.
This version should make it harder to hit ourselves in the foot.
Differential revision: https://reviews.llvm.org/D54203
llvm-svn: 346522
Summary:
This adds support for LSDA (exception table) generation for wasm EH.
Wasm EH mostly follows the structure of Itanium-style exception tables,
with one exception: a call site table entry in wasm EH corresponds to
not a call site but a landing pad.
In wasm EH, the VM is responsible for stack unwinding. After an
exception occurs and the stack is unwound, the control flow is
transferred to wasm 'catch' instruction by the VM, after which the
personality function is called from the compiler-generated code. (Refer
to WasmEHPrepare pass for more information on this part.)
This patch:
- Changes wasm.landingpad.index intrinsic to take a token argument, to
make this 1:1 match with a catchpad instruction
- Stores landingpad index info and catch type info MachineFunction in
before instruction selection
- Lowers wasm.lsda intrinsic to an MCSymbol pointing to the start of an
exception table
- Adds WasmException class with overridden methods for table generation
- Adds support for LSDA section in Wasm object writer
Reviewers: dschuff, sbc100, rnk
Subscribers: mgorny, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D52748
llvm-svn: 345345
Summary:
This adds support for LSDA (exception table) generation for wasm EH.
Wasm EH mostly follows the structure of Itanium-style exception tables,
with one exception: a call site table entry in wasm EH corresponds to
not a call site but a landing pad.
In wasm EH, the VM is responsible for stack unwinding. After an
exception occurs and the stack is unwound, the control flow is
transferred to wasm 'catch' instruction by the VM, after which the
personality function is called from the compiler-generated code. (Refer
to WasmEHPrepare pass for more information on this part.)
This patch:
- Changes wasm.landingpad.index intrinsic to take a token argument, to
make this 1:1 match with a catchpad instruction
- Stores landingpad index info and catch type info MachineFunction in
before instruction selection
- Lowers wasm.lsda intrinsic to an MCSymbol pointing to the start of an
exception table
- Adds WasmException class with overridden methods for table generation
- Adds support for LSDA section in Wasm object writer
Reviewers: dschuff, sbc100, rnk
Subscribers: mgorny, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D52748
llvm-svn: 344575
by `getTerminator()` calls instead be declared as `Instruction`.
This is the biggest remaining chunk of the usage of `getTerminator()`
that insists on the narrow type and so is an easy batch of updates.
Several files saw more extensive updates where this would cascade to
requiring API updates within the file to use `Instruction` instead of
`TerminatorInst`. All of these were trivial in nature (pervasively using
`Instruction` instead just worked).
llvm-svn: 344502
VerifyDAGDiverence costs compilation time, avoid running it in non-debug
builds.
Differential Revision: https://reviews.llvm.org/D52454
llvm-svn: 343086
Summary:
This is patch 1 of the new DivergenceAnalysis (https://reviews.llvm.org/D50433).
The purpose of this patch is to free up the name DivergenceAnalysis for the new generic
implementation. The generic implementation class will be shared by specialized
divergence analysis classes.
Patch by: Simon Moll
Reviewed By: nhaehnle
Subscribers: jvesely, jholewinski, arsenm, nhaehnle, mgorny, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D50434
Change-Id: Ie8146b11be2c50d5312f30e11c7a3036a15b48cb
llvm-svn: 341071
This is a bit awkward in a handful of places where we didn't even have
an instruction and now we have to see if we can build one. But on the
whole, this seems like a win and at worst a reasonable cost for removing
`TerminatorInst`.
All of this is part of the removal of `TerminatorInst` from the
`Instruction` type hierarchy.
llvm-svn: 340701
`MachineMemOperand` pointers attached to `MachineSDNodes` and instead
have the `SelectionDAG` fully manage the memory for this array.
Prior to this change, the memory management was deeply confusing here --
The way the MI was built relied on the `SelectionDAG` allocating memory
for these arrays of pointers using the `MachineFunction`'s allocator so
that the raw pointer to the array could be blindly copied into an
eventual `MachineInstr`. This creates a hard coupling between how
`MachineInstr`s allocate their array of `MachineMemOperand` pointers and
how the `MachineSDNode` does.
This change is motivated in large part by a change I am making to how
`MachineFunction` allocates these pointers, but it seems like a layering
improvement as well.
This would run the risk of increasing allocations overall, but I've
implemented an optimization that should avoid that by storing a single
`MachineMemOperand` pointer directly instead of allocating anything.
This is expected to be a net win because the vast majority of uses of
these only need a single pointer.
As a side-effect, this makes the API for updating a `MachineSDNode` and
a `MachineInstr` reasonably different which seems nice to avoid
unexpected coupling of these two layers. We can map between them, but we
shouldn't be *surprised* at where that occurs. =]
Differential Revision: https://reviews.llvm.org/D50680
llvm-svn: 339740
This re-applies r336929 with a fix to accomodate for the Mips target
scheduling multiple SelectionDAG instances into the pass pipeline.
PrologEpilogInserter and StackColoring depend on the StackProtector analysis
being alive from the point it is run until PEI, which requires that they are all
scheduled in the same FunctionPassManager. Inserting a (machine) ModulePass
between StackProtector and PEI results in these passes being in separate
FunctionPassManagers and the StackProtector is not available for PEI.
PEI and StackColoring don't use much information from the StackProtector pass,
so transfering the required information to MachineFrameInfo is cleaner than
keeping the StackProtector pass around. This commit moves the SSP layout
information to MFI instead of keeping it in the pass.
This patch set (D37580, D37581, D37582, D37583, D37584, D37585, D37586, D37587)
is a first draft of the pagerando implementation described in
http://lists.llvm.org/pipermail/llvm-dev/2017-June/113794.html.
Patch by Stephen Crane <sjc@immunant.com>
Differential Revision: https://reviews.llvm.org/D49256
llvm-svn: 336964
PrologEpilogInserter and StackColoring depend on the StackProtector analysis
being alive from the point it is run until PEI, which requires that they are all
scheduled in the same FunctionPassManager. Inserting a (machine) ModulePass
between StackProtector and PEI results in these passes being in separate
FunctionPassManagers and the StackProtector is not available for PEI.
PEI and StackColoring don't use much information from the StackProtector pass,
so transfering the required information to MachineFrameInfo is cleaner than
keeping the StackProtector pass around. This commit moves the SSP layout
information to MFI instead of keeping it in the pass.
This patch set (D37580, D37581, D37582, D37583, D37584, D37585, D37586, D37587)
is a first draft of the pagerando implementation described in
http://lists.llvm.org/pipermail/llvm-dev/2017-June/113794.html.
Patch by Stephen Crane <sjc@immunant.com>
Differential Revision: https://reviews.llvm.org/D49256
llvm-svn: 336929
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
Inspired by r331508, I did a grep and found these.
Mostly just change from dyn_cast to cast. Some cases also showed a dyn_cast result being converted to bool, so those I changed to isa.
llvm-svn: 331577
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
Currently EVT is in the IR layer only because of Function.cpp needing a very small piece of the functionality of EVT::getEVTString(). The rest of EVT is used in codegen making CodeGen a better place for it.
The previous code converted a Type* to EVT and then called getEVTString. This was only expected to handle the primitive types from Type*. Since there only a few primitive types, we can just print them as strings directly.
Differential Revision: https://reviews.llvm.org/D45017
llvm-svn: 328806
This is used by llvm tblgen as well as by LLVM Targets, so the only
common place is Support for now. (maybe we need another target for these
sorts of things - but for now I'm at least making them correct & we can
make them better if/when people have strong feelings)
llvm-svn: 328395
As in SystemZ backend, correctly propagate node ids when inserting new
unselected nodes into the DAG during instruction Seleciton for X86
target.
Fixes PR36865.
Reviewers: jyknight, craig.topper
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D44797
llvm-svn: 328233
Summary:
Local values are constants, global addresses, and stack addresses that
can't be folded into the instruction that uses them. For example, when
storing the address of a global variable into memory, we need to
materialize that address into a register.
FastISel doesn't want to materialize any given local value more than
once, so it generates all local value materialization code at
EmitStartPt, which always dominates the current insertion point. This
allows it to maintain a map of local value registers, and it knows that
the local value area will always dominate the current insertion point.
The downside is that local value instructions are always emitted without
a source location. This is done to prevent jumpy line tables, but it
means that the local value area will be considered part of the previous
statement. Consider this C code:
call1(); // line 1
++global; // line 2
++global; // line 3
call2(&global, &local); // line 4
Today we end up with assembly and line tables like this:
.loc 1 1
callq call1
leaq global(%rip), %rdi
leaq local(%rsp), %rsi
.loc 1 2
addq $1, global(%rip)
.loc 1 3
addq $1, global(%rip)
.loc 1 4
callq call2
The LEA instructions in the local value area have no source location and
are treated as being on line 1. Stepping through the code in a debugger
and correlating it with the assembly won't make much sense, because
these materializations are only required for line 4.
This is actually problematic for the VS debugger "set next statement"
feature, which effectively assumes that there are no registers live
across statement boundaries. By sinking the local value code into the
statement and fixing up the source location, we can make that feature
work. This was filed as https://bugs.llvm.org/show_bug.cgi?id=35975 and
https://crbug.com/793819.
This change is obviously not enough to make this feature work reliably
in all cases, but I felt that it was worth doing anyway because it
usually generates smaller, more comprehensible -O0 code. I measured a
0.12% regression in code generation time with LLC on the sqlite3
amalgamation, so I think this is worth doing.
There are some special cases worth calling out in the commit message:
1. local values materialized for phis
2. local values used by no-op casts
3. dead local value code
Local values can be materialized for phis, and this does not show up as
a vreg use in MachineRegisterInfo. In this case, if there are no other
uses, this patch sinks the value to the first terminator, EH label, or
the end of the BB if nothing else exists.
Local values may also be used by no-op casts, which adds the register to
the RegFixups table. Without reversing the RegFixups map direction, we
don't have enough information to sink these instructions.
Lastly, if the local value register has no other uses, we can delete it.
This comes up when fastisel tries two instruction selection approaches
and the first materializes the value but fails and the second succeeds
without using the local value.
Reviewers: aprantl, dblaikie, qcolombet, MatzeB, vsk, echristo
Subscribers: dotdash, chandlerc, hans, sdardis, amccarth, javed.absar, zturner, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D43093
llvm-svn: 327581
r327171 "Improve Dependency analysis when doing multi-node Instruction Selection"
r328170 "[DAG] Enforce stricter NodeId invariant during Instruction selection"
Reverting patch as NodeId invariant change is causing pathological
increases in compile time on PPC
llvm-svn: 327197
Relanding after fixing NodeId Invariant.
Cleanup cycle/validity checks in ISel (IsLegalToFold,
HandleMergeInputChains) and X86 (isFusableLoadOpStore). Now do a full
search for cycles / dependencies pruning the search when topological
property of NodeId allows.
As part of this propogate the NodeId-based cutoffs to narrow
hasPreprocessorHelper searches.
Reviewers: craig.topper, bogner
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D41293
llvm-svn: 327171
Instruction Selection makes use of the topological ordering of nodes
by node id (a node's operands have smaller node id than it) when doing
cycle detection. During selection we may violate this property as a
selection of multiple nodes may induce a use dependence (and thus a
node id restriction) between two unrelated nodes. If a selected node
has an unselected successor this may allow us to miss a cycle in
detection an invalid selection.
This patch fixes this by marking all unselected successors of a
selected node have negated node id. We avoid pruning on such negative
ids but still can reconstruct the original id for pruning.
In-tree targets have been updated to replace DAG-level replacements
with ISel-level ones which enforce this property.
This preemptively fixes PR36312 before triggering commit r324359 relands
Reviewers: craig.topper, bogner, jyknight
Subscribers: arsenm, nhaehnle, javed.absar, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D43198
llvm-svn: 327170
Sadly, r324359 caused at least PR36312. There is a patch out for review
but it seems to be taking a bit and we've already had these crashers in
tree for too long. We're hitting this PR in real code now and are
blocked on shipping new compilers as a consequence so I'm reverting us
back to green.
Sorry for the churn due to the stacked changes that I had to revert. =/
llvm-svn: 325420
Travel all chains paths to first non-tokenfactor node can be
exponential work. Add simple redundency check to avoid this.
Fixes PR36264.
llvm-svn: 324491
Instruction Selection
Cleanup cycle/validity checks in ISel (IsLegalToFold,
HandleMergeInputChains) and X86 (isFusableLoadOpStore). Now do a full
search for cycles / dependencies pruning the search when topological
property of NodeId allows.
As part of this propogate the NodeId-based cutoffs to narrow
hasPreprocessorHelper searches.
Reviewers: craig.topper, bogner
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D41293
llvm-svn: 324359
Summary:
In Instruction Selection UpdateChains replaces all matched Nodes'
chain references including interior token factors and deletes them.
This may allow nodes which depend on these interior nodes but are not
part of the set of matched nodes to be left with a dangling dependence.
Avoid this by doing the replacement for matched non-TokenFactor nodes.
Fixes PR36164.
Reviewers: jonpa, RKSimon, bogner
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D42754
llvm-svn: 323977
Summary:
Instruction Selection preserves relative orders of all nodes save
TokenFactors which we treat specially. As a result Node Ids for
TokenFactors may violate the topological ordering and should not be
considered as valid pruning candidates in predecessor search.
Fixes PR35316.
Reviewers: RKSimon, hfinkel
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D42701
llvm-svn: 323880
Previously some targets printed their own message at the start of Select to indicate what they were selecting. For the targets that didn't, it means there was no print of the root node before any custom handling in the target executed. So if the target did something custom and never called SelectNodeCommon, no print would be made. For the targets that did print a message in Select, if they didn't custom handle a node SelectNodeCommon would reprint the root node before walking the isel table.
It seems better to just print the message before the call to Select so all targets behave the same. And then remove the root node printing from SelectNodeCommon and just leave a message that says we're starting the table search.
There were also some oddities in blank line behavior. Usually due to a \n after a call to SelectionDAGNode::dump which already inserted a new line.
llvm-svn: 323551
Apparently checking the pass structure isn't enough to ensure that we don't fall
back to FastISel, as it's set up as part of the SelectionDAGISel.
llvm-svn: 323369
Ingredients in this patch:
1. Add HANDLE_LIBCALL defs for finite mathlib functions that correspond to LLVM intrinsics.
2. Plumbing to send TargetLibraryInfo down to SelectionDAGLegalize.
3. Relaxed math and library checking in SelectionDAGLegalize::ConvertNodeToLibcall() to choose finite libcalls.
There was a bug about determining the availability of the finite calls that should be fixed with:
rL322010
Not in this patch:
This doesn't resolve the question/bug of clang creating the intrinsic IR in the first place.
There's likely follow-up work needed to support the long double variants better.
There's room for improvement to reduce the code duplication.
Create finite calls that don't originate from a corresponding intrinsic or DAG node?
Differential Revision: https://reviews.llvm.org/D41338
llvm-svn: 322087
When intrinsics are allowed to have mem operands, there
are two ways this can happen. First is an intrinsic
that is marked has having a mem operand, but is not handled
by getTgtMemIntrinsic.
The second way can occur even for intrinsics which do not
have a mem operand. It seems the selector table does
some kind of sorting based on the opcode, and the
mem ref recording can happen in the same scope for
intrinsics that both do and do not have mem refs.
I haven't been able to figure out exactly why this happens
(although it happens even with the matcher optimizations disabled).
I'm not sure if it's worth trying to avoid hitting this for
these nodes since I think it's still reasonable to handle
this in case getTgtMemIntrinic is not implemented.
llvm-svn: 321208
Introduces the AddrFI "addressing mode", which is necessary simply because
it's not possible to write a pattern that directly matches a frameindex.
Ensure callee-saved registers are accessed relative to the stackpointer. This
is necessary as callee-saved register spills are performed before the frame
pointer is set.
Move HexagonDAGToDAGISel::isOrEquivalentToAdd to SelectionDAGISel, so we can
make use of it in the RISC-V backend.
Differential Revision: https://reviews.llvm.org/D39848
llvm-svn: 320353
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
Summary:
1/ Operand folding during complex pattern matching for LEAs has been extended, such that it promotes Scale to
accommodate similar operand appearing in the DAG e.g.
T1 = A + B
T2 = T1 + 10
T3 = T2 + A
For above DAG rooted at T3, X86AddressMode will now look like
Base = B , Index = A , Scale = 2 , Disp = 10
2/ During OptimizeLEAPass down the pipeline factorization is now performed over LEAs so that if there is an opportunity
then complex LEAs (having 3 operands) could be factored out e.g.
leal 1(%rax,%rcx,1), %rdx
leal 1(%rax,%rcx,2), %rcx
will be factored as following
leal 1(%rax,%rcx,1), %rdx
leal (%rdx,%rcx) , %edx
3/ Aggressive operand folding for AM based selection for LEAs is sensitive to loops, thus avoiding creation of any complex LEAs within a loop.
4/ Simplify LEA converts (lea (BASE,1,INDEX,0) --> add (BASE, INDEX) which offers better through put.
PR32755 will be taken care of by this pathc.
Previous patch revisions : r313343 , r314886
Reviewers: lsaba, RKSimon, craig.topper, qcolombet, jmolloy, jbhateja
Reviewed By: lsaba, RKSimon, jbhateja
Subscribers: jmolloy, spatel, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D35014
llvm-svn: 319543
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
processDbgDeclares assumes pointer size is the same for different addr spaces.
It uses pointer size for addr space 0 for all pointers, which causes assertion
in stripAndAccumulateInBoundsConstantOffsets for amdgcn---amdgiz since
pointer in addr space 5 has different size than in addr space 0.
This patch fixes that.
Differential Revision: https://reviews.llvm.org/D40085
llvm-svn: 318370
This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
llvm-svn: 317647
Similar to how llvm::salvagDebugInfo hooks into InstCombine, this adds
a hook that can be invoked before an SDNode that is associated with an
SDDbgValue is erased to capture the effect of the deleted node in a
DIExpression.
The motivating example is an SDDebugValue attached to an ADD operation
that gets folded into a LOAD+OFFSET operation.
rdar://problem/32121503
llvm-svn: 316525
It broke the Chromium / SQLite build; see PR34830.
> Summary:
> 1/ Operand folding during complex pattern matching for LEAs has been
> extended, such that it promotes Scale to accommodate similar operand
> appearing in the DAG.
> e.g.
> T1 = A + B
> T2 = T1 + 10
> T3 = T2 + A
> For above DAG rooted at T3, X86AddressMode will no look like
> Base = B , Index = A , Scale = 2 , Disp = 10
>
> 2/ During OptimizeLEAPass down the pipeline factorization is now performed over LEAs
> so that if there is an opportunity then complex LEAs (having 3 operands)
> could be factored out.
> e.g.
> leal 1(%rax,%rcx,1), %rdx
> leal 1(%rax,%rcx,2), %rcx
> will be factored as following
> leal 1(%rax,%rcx,1), %rdx
> leal (%rdx,%rcx) , %edx
>
> 3/ Aggressive operand folding for AM based selection for LEAs is sensitive to loops,
> thus avoiding creation of any complex LEAs within a loop.
>
> Reviewers: lsaba, RKSimon, craig.topper, qcolombet, jmolloy
>
> Reviewed By: lsaba
>
> Subscribers: jmolloy, spatel, igorb, llvm-commits
>
> Differential Revision: https://reviews.llvm.org/D35014
llvm-svn: 314919
Summary:
1/ Operand folding during complex pattern matching for LEAs has been
extended, such that it promotes Scale to accommodate similar operand
appearing in the DAG.
e.g.
T1 = A + B
T2 = T1 + 10
T3 = T2 + A
For above DAG rooted at T3, X86AddressMode will no look like
Base = B , Index = A , Scale = 2 , Disp = 10
2/ During OptimizeLEAPass down the pipeline factorization is now performed over LEAs
so that if there is an opportunity then complex LEAs (having 3 operands)
could be factored out.
e.g.
leal 1(%rax,%rcx,1), %rdx
leal 1(%rax,%rcx,2), %rcx
will be factored as following
leal 1(%rax,%rcx,1), %rdx
leal (%rdx,%rcx) , %edx
3/ Aggressive operand folding for AM based selection for LEAs is sensitive to loops,
thus avoiding creation of any complex LEAs within a loop.
Reviewers: lsaba, RKSimon, craig.topper, qcolombet, jmolloy
Reviewed By: lsaba
Subscribers: jmolloy, spatel, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D35014
llvm-svn: 314886
Add support for passing SwiftError through a register on the Windows x64
calling convention. This allows the use of swifterror attributes on
parameters which is used by the swift front end for the `Error`
parameter. This partially enables building the swift standard library
for Windows x86_64.
llvm-svn: 313791
This caused PR34629: asserts firing when building Chromium. It also broke some
buildbots building test-suite as reported on the commit thread.
> Summary:
> 1/ Operand folding during complex pattern matching for LEAs has been
> extended, such that it promotes Scale to accommodate similar operand
> appearing in the DAG.
> e.g.
> T1 = A + B
> T2 = T1 + 10
> T3 = T2 + A
> For above DAG rooted at T3, X86AddressMode will no look like
> Base = B , Index = A , Scale = 2 , Disp = 10
>
> 2/ During OptimizeLEAPass down the pipeline factorization is now performed over LEAs
> so that if there is an opportunity then complex LEAs (having 3 operands)
> could be factored out.
> e.g.
> leal 1(%rax,%rcx,1), %rdx
> leal 1(%rax,%rcx,2), %rcx
> will be factored as following
> leal 1(%rax,%rcx,1), %rdx
> leal (%rdx,%rcx) , %edx
>
> 3/ Aggressive operand folding for AM based selection for LEAs is sensitive to loops,
> thus avoiding creation of any complex LEAs within a loop.
>
> Reviewers: lsaba, RKSimon, craig.topper, qcolombet
>
> Reviewed By: lsaba
>
> Subscribers: spatel, igorb, llvm-commits
>
> Differential Revision: https://reviews.llvm.org/D35014
llvm-svn: 313376
Summary:
1/ Operand folding during complex pattern matching for LEAs has been
extended, such that it promotes Scale to accommodate similar operand
appearing in the DAG.
e.g.
T1 = A + B
T2 = T1 + 10
T3 = T2 + A
For above DAG rooted at T3, X86AddressMode will no look like
Base = B , Index = A , Scale = 2 , Disp = 10
2/ During OptimizeLEAPass down the pipeline factorization is now performed over LEAs
so that if there is an opportunity then complex LEAs (having 3 operands)
could be factored out.
e.g.
leal 1(%rax,%rcx,1), %rdx
leal 1(%rax,%rcx,2), %rcx
will be factored as following
leal 1(%rax,%rcx,1), %rdx
leal (%rdx,%rcx) , %edx
3/ Aggressive operand folding for AM based selection for LEAs is sensitive to loops,
thus avoiding creation of any complex LEAs within a loop.
Reviewers: lsaba, RKSimon, craig.topper, qcolombet
Reviewed By: lsaba
Subscribers: spatel, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D35014
llvm-svn: 313343
Summary:
This intrinsic represents a label with a list of associated metadata
strings. It is modelled as reading and writing inaccessible memory so
that it won't be removed as dead code. I think the intention is that the
annotation strings should appear at most once in the debug info, so I
marked it noduplicate. We are allowed to inline code with annotations as
long as we strip the annotation, but that can be done later.
Reviewers: majnemer
Subscribers: eraman, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D36904
llvm-svn: 312569
The NewNodesMustHaveLegalTypes flag is set to false at the beginning of CodeGenAndEmitDAG, and set to true after legalizing types.
But before calling CodeGenAndEmitDAG we build the DAG for the basic block.
So for the first basic block NewNodesMustHaveLegalTypes would be 'false' during the SDAG building, and for all other basic blocks it would be 'true'.
This patch sets the flag to false before SDAG building each basic block.
Differential Revision:
https://reviews.llvm.org/D33435
llvm-svn: 310239
Summary:
We are crashing in LLC at O0 when gc intrinsics are present in the block.
The reason being FastISel performs basic block ISel by modifying GC.relocates
to be the first instruction in the block. This can cause us to visit the GC
relocate before it's corresponding GC.statepoint is visited, which is incorrect.
When we lower the statepoint, we record the base and derived pointers, along
with the gc.relocates. After this we can visit the gc.relocate.
This patch avoids fastISel from incorrectly creating the block with gc.relocate
as the first instruction.
Reviewers: qcolombet, skatkov, qikon, reames
Reviewed by: skatkov
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34421
llvm-svn: 307084
The code assumed that we process instructions in basic block order. FastISel
processes instructions in reverse basic block order. We need to pre-assign
virtual registers before selecting otherwise we get def-use relationships wrong.
This only affects code with swifterror registers.
rdar://32659327
llvm-svn: 305484
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
Running `llc -verify-dom-info` on the attached testcase results in a
crash in the verifier, due to a stale dominator tree.
i.e.
DominatorTree is not up to date!
Computed:
=============================--------------------------------
Inorder Dominator Tree:
[1] %safe_mod_func_uint8_t_u_u.exit.i.i.i {0,7}
[2] %lor.lhs.false.i61.i.i.i {1,2}
[2] %safe_mod_func_int8_t_s_s.exit.i.i.i {3,6}
[3] %safe_div_func_int64_t_s_s.exit66.i.i.i {4,5}
Actual:
=============================--------------------------------
Inorder Dominator Tree:
[1] %safe_mod_func_uint8_t_u_u.exit.i.i.i {0,9}
[2] %lor.lhs.false.i61.i.i.i {1,2}
[2] %safe_mod_func_int8_t_s_s.exit.i.i.i {3,8}
[3] %safe_div_func_int64_t_s_s.exit66.i.i.i {4,5}
[3] %safe_mod_func_int8_t_s_s.exit.i.i.i.lor.lhs.false.i61.i.i.i_crit_edge {6,7}
This is because in `SelectionDAGIsel` we split critical edges without
updating the corresponding dominator for the function (and we claim
in `MachineFunctionPass::getAnalysisUsage()` that the domtree is preserved).
We could either stop preserving the domtree in `getAnalysisUsage`
or tell `splitCriticalEdge()` to update it.
As the second option is easy to implement, that's the one I chose.
Differential Revision: https://reviews.llvm.org/D33800
llvm-svn: 304742
The recursive implementation of findNonImmUse may overflow stack
on extremely long use chains. This patch replaces it with an equivalent
iterative implementation.
Reviewed By: bogner
Differential Revision: https://reviews.llvm.org/D33775
llvm-svn: 304522
Before r247167, the pass manager builder controlled which AA
implementations were used, exporting them all in the AliasAnalysis
analysis group.
Now, AAResultsWrapperPass always uses BasicAA, but still uses other AA
implementations if made available in the pass pipeline.
But regardless, SDAGISel is required at O0, and really doesn't need to
be doing fancy optimizations based on useful AA results.
Don't require AA at CodeGenOpt::None, and only use it otherwise.
This does have a functional impact (and one testcase is pessimized
because we can't reuse a load). But I think that's desirable no matter
what.
Note that this alone doesn't result in less DT computations: TwoAddress
was previously able to reuse the DT we computed for SDAG. That will be
fixed separately.
Differential Revision: https://reviews.llvm.org/D32766
llvm-svn: 302611
Summary:
For inalloca functions, this is a very common code pattern:
%argpack = type <{ i32, i32, i32 }>
define void @f(%argpack* inalloca %args) {
entry:
%a = getelementptr inbounds %argpack, %argpack* %args, i32 0, i32 0
%b = getelementptr inbounds %argpack, %argpack* %args, i32 0, i32 1
%c = getelementptr inbounds %argpack, %argpack* %args, i32 0, i32 2
tail call void @llvm.dbg.declare(metadata i32* %a, ... "a")
tail call void @llvm.dbg.declare(metadata i32* %c, ... "b")
tail call void @llvm.dbg.declare(metadata i32* %b, ... "c")
Even though these GEPs can be simplified to a constant offset from EBP
or RSP, we don't do that at -O0, and each GEP is computed into a
register. Registers used to compute argument addresses are typically
spilled and clobbered very quickly after the initial computation, so
live debug variable tracking loses information very quickly if we use
DBG_VALUE instructions.
This change moves processing of dbg.declare between argument lowering
and basic block isel, so that we can ask if an argument has a frame
index or not. If the argument lives in a register as is the case for
byval arguments on some targets, then we don't put it in the side table
and during ISel we emit DBG_VALUE instructions.
Reviewers: aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32980
llvm-svn: 302483
Adds a new method finalizeLowering to TargetLoweringBase. This is in
preparation for an upcoming commit.
This function is meant for target specific adjustments to
MachineFrameInfo or register reservations.
Move the freezeRegisters() and the hasCopyImplyingStackAdjustment()
handling into the new function to prove the concept. As an added bonus
GlobalISel no longer missed the hasCopyImplyingStackAdjustment()
handling with this.
Differential Revision: https://reviews.llvm.org/D32621
llvm-svn: 301679
This patch replaces the separate APInts for KnownZero/KnownOne with a single KnownBits struct. This is similar to what was done to ValueTracking's version recently.
This is largely a mechanical transformation from KnownZero to Known.Zero.
Differential Revision: https://reviews.llvm.org/D32569
llvm-svn: 301620
This patch uses various APInt methods to reduce the number of temporary APInts. These were all found while working through converting SelectionDAG's computeKnownBits to also use the KnownBits struct recently added to the ValueTracking version.
llvm-svn: 301618
In the long-term, we want to replace statistics with something
finer-grained that lets us gather per-function data.
Remarks are that replacement.
Create an ORE instance in SelectionDAGISel, and pass it to
SelectionDAG.
SelectionDAG was used so that we can emit remarks from all
SelectionDAG-related code, including TargetLowering and DAGCombiner.
This isn't used in the current patch but Adam tells me he's interested
for the fp-contract combines.
Use the ORE instance to emit FastISel failures as remarks (instead of
the mix of dbgs() dumps and statistics that we currently have).
Eventually, we want to have an API that tells us whether remarks are
enabled (http://llvm.org/PR32352) so that we don't emit expensive
remarks (in this case, dumping IR) when it's not needed. For now, use
'isEnabled' as a crude replacement.
This does mean that the replacement for '-fast-isel-verbose' is now
'-pass-remarks-missed=isel'. Additionally, clang users also need to
enable remark diagnostics, using '-Rpass-missed=isel'.
This also removes '-fast-isel-verbose2': there are no static statistics
that we want to only enable in asserts builds, so we can always use
the remarks regardless of the build type.
Differential Revision: https://reviews.llvm.org/D31405
llvm-svn: 299093
When checking if chain node is foldable, make sure the intermediate nodes have a single use across all results not just the result that was used to reach the chain node.
This recovers a test case that was severely broken by r296476, my making sure we don't create ADD/ADC that loads and stores when there is also a flag dependency.
llvm-svn: 297698
This patch causes compile times for some patterns to explode. I have
a (large, unreduced) test case that slows down by more than 20x and
several test cases slow down by 2x. I'm sending some of the test cases
directly to Nirav and following up with more details in the review log,
but this should unblock anyone else hitting this.
llvm-svn: 296862
Summary:
Avoids tons of prologue boilerplate when arguments are passed in memory
and left in memory. This can happen in a debug build or in a release
build when an argument alloca is escaped. This will dramatically affect
the code size of x86 debug builds, because X86 fast isel doesn't handle
arguments passed in memory at all. It only handles the x86_64 case of up
to 6 basic register parameters.
This is implemented by analyzing the entry block before ISel to identify
copy elision candidates. A copy elision candidate is an argument that is
used to fully initialize an alloca before any other possibly escaping
uses of that alloca. If an argument is a copy elision candidate, we set
a flag on the InputArg. If the the target generates loads from a fixed
stack object that matches the size and alignment requirements of the
alloca, the SelectionDAG builder will delete the stack object created
for the alloca and replace it with the fixed stack object. The load is
left behind to satisfy any remaining uses of the argument value. The
store is now dead and is therefore elided. The fixed stack object is
also marked as mutable, as it may now be modified by the user, and it
would be invalid to rematerialize the initial load from it.
Supersedes D28388
Fixes PR26328
Reviewers: chandlerc, MatzeB, qcolombet, inglorion, hans
Subscribers: igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D29668
llvm-svn: 296683
When SDAGISel (top-down) selects a tail-call, it skips the remainder
of the block.
If, before that, FastISel (bottom-up) selected some of the (no-op) next
few instructions, we can end up with dead instructions following the
terminator (selected by SDAGISel).
We need to erase them, as we know they aren't necessary (in addition to
being incorrect).
We already do this when FastISel falls back on the tail-call itself.
Also remove the FastISel-emitted code if we fallback on the
instructions between the tail-call and the return.
llvm-svn: 296552
This recovers a test case that was severely broken by r296476, my making sure we don't create ADD/ADC that loads and stores when there is also a flag dependency.
llvm-svn: 296486
To help assist in debugging ISEL or to prioritize GlobalISel backend
work, this patch adds two more tables to <Target>GenISelDAGISel.inc -
one which contains the patterns that are used during selection and the
other containing include source location of the patterns
Enabled through CMake varialbe LLVM_ENABLE_DAGISEL_COV
llvm-svn: 295081
This is consistent with what we do for GlobalISel. That way, it is easy
to see whether or not FastISel is able to fully select a function.
At some point we may want to switch that to an optimization remark.
llvm-svn: 294970
The patch comes in 2 parts:
1 - it makes use of the SelectionDAG::NewNodesMustHaveLegalTypes flag to tell when it can safely constant fold illegal types.
2 - it correctly resets SelectionDAG::NewNodesMustHaveLegalTypes at the start of each call to SelectionDAGISel::CodeGenAndEmitDAG so all the pre-legalization stages can make use of it - not just the first basic block that gets handled.
Fix for PR30760
Differential Revision: https://reviews.llvm.org/D29568
llvm-svn: 294749
Summary:
With -debug, we aren't dumping the DAG after legalizing vector ops. In particular, on X86 with AVX1 only, we don't dump the DAG after we split 256-bit integer ops into pairs of 128-bit ADDs since this occurs during vector legalization.
I'm only dumping if the legalize vector ops changes something since we don't print anything during legalize vector ops. So this dump shows up right after the first type-legalization dump happens. So if nothing changed this second dump is unnecessary.
Having said that though, I think we should probably fix legalize vector ops to log what its doing.
Reviewers: RKSimon, eli.friedman, spatel, arsenm, chandlerc
Reviewed By: RKSimon
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D29554
llvm-svn: 294711
Hoist entry block code for arguments and swift error values out of the
basic block instruction selection loop. Lowering arguments once up front
seems much more readable than doing it conditionally inside the loop. It
also makes it clear that argument lowering can update StaticAllocaMap
because no instructions have been selected yet.
Also use range-based for loops where possible.
llvm-svn: 294329
ISD::DELETED_NODE && "NodeToMatch was removed partway through
selection"' failed.
NodeToMatch can be modified during matching, but code does not handle
this situation.
Differential Revision: https://reviews.llvm.org/D29292
llvm-svn: 294003
Previously, we would hit UB (or the ISD::DELETED_NODE assert) if we
happened to replace a node during UpdateChains, because it would be
left in the list we were iterating over. This nulls out the pointer
when that happens so that we can avoid the issue.
Fixes llvm.org/PR31710
llvm-svn: 293522