The comment initially matched the code, but the code was incorrect
and was fixed after the initial revert back back when it was introduced,
but the comment was never updated.
llvm-svn: 368701
This introduced a false positive MemorySanitizer warning about use of
uninitialized memory in a vectorized crc function in Chromium. That suggests
maybe something is not right with this transformation. See
https://crbug.com/992853#c7 for a reproducer.
This also reverts the follow-up commits r368307 and r368308 which
depended on this.
> This patch attempts to peek through vectors based on the demanded bits/elt of a particular ISD::EXTRACT_VECTOR_ELT node, allowing us to avoid dependencies on ops that have no impact on the extract.
>
> In particular this helps remove some unnecessary scalar->vector->scalar patterns.
>
> The wasm shift patterns are annoying - @tlively has indicated that the wasm vector shift codegen are to be refactored in the near-term and isn't considered a major issue.
>
> Differential Revision: https://reviews.llvm.org/D65887
llvm-svn: 368660
This patch attempts to peek through vectors based on the demanded bits/elt of a particular ISD::EXTRACT_VECTOR_ELT node, allowing us to avoid dependencies on ops that have no impact on the extract.
In particular this helps remove some unnecessary scalar->vector->scalar patterns.
The wasm shift patterns are annoying - @tlively has indicated that the wasm vector shift codegen are to be refactored in the near-term and isn't considered a major issue.
Differential Revision: https://reviews.llvm.org/D65887
llvm-svn: 368276
In particular this helps the SSE vector shift cvttps2dq+add+shl pattern by avoiding the need for zeros in shuffle style extensions to vXi32 types as we'll be shifting out those bits anyway
llvm-svn: 368155
https://reviews.llvm.org/D65698
This adds a KnownBits analysis pass for GISel. This was done as a
pass (compared to static functions) so that we can add other features
such as caching queries(within a pass and across passes) in the future.
This patch only adds the basic pass boiler plate, and implements a lazy
non caching knownbits implementation (ported from SelectionDAG). I've
also hooked up the AArch64PreLegalizerCombiner pass to use this - there
should be no compile time regression as the analysis is lazy.
llvm-svn: 368065
Summary:
The SimplifyDemandedVectorElts function can replace with undef
when no elements are demanded, but due to how it interacts with
TargetLoweringOpts, it can only do this when the node has
no other users.
Remove a now unneeded DAG combine from the X86 backend.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65713
llvm-svn: 367788
This allows us to peek through BITCASTs, attempt to simplify the source operand, and then bitcast back.
This reapplies rL367091 which was reverted at rL367118 - we were inconsistently peeking through the bitcasts to the source value.
Fixes PR42777
llvm-svn: 367174
If anything called the recursive isKnownNeverNaN/computeKnownBits/ComputeNumSignBits/SimplifyDemandedBits/SimplifyMultipleUseDemandedBits with an incorrect depth then we could continue to recurse if we'd already exceeded the depth limit.
This replaces the limit check (Depth == 6) with a (Depth >= 6) to make sure that we don't circumvent it.
This causes a couple of regressions as a mixture of calls (SimplifyMultipleUseDemandedBits + combineX86ShufflesRecursively) were calling with depths that were already over the limit. I've fixed SimplifyMultipleUseDemandedBits to not do this. combineX86ShufflesRecursively is trickier as we get a lot of regressions if we reduce its own limit from 8 to 6 (it also starts at Depth == 1 instead of Depth == 0 like the others....) - I'll see what I can do in future patches.
llvm-svn: 367171
We're getting reports of massive compile time increases because SimplifyMultipleUseDemandedBits was losing track of the depth and not earlying-out. No repro yet, but consider this a pre-emptive commit.
llvm-svn: 367169
Summary:
This was originally reported in D62818.
https://rise4fun.com/Alive/oPH
InstCombine does the opposite fold, in hope that `C l>>/<< Y` expression
will be hoisted out of a loop if `Y` is invariant and `X` is not.
But as it is seen from the diffs here, if it didn't get hoisted,
the produced assembly is almost universally worse.
Much like with my recent "hoist add/sub by/from const" patches,
we should get almost universal win if we hoist constant,
there is almost always an "and/test by imm" instruction,
but "shift of imm" not so much, so we may avoid having to
materialize the immediate, and thus need one less register.
And since we now shift not by constant, but by something else,
the live-range of that something else may reduce.
Special care needs to be applied not to disturb x86 `BT` / hexagon `tstbit`
instruction pattern. And to not get into endless combine loop.
Reviewers: RKSimon, efriedma, t.p.northover, craig.topper, spatel, arsenm
Reviewed By: spatel
Subscribers: hiraditya, MaskRay, wuzish, xbolva00, nikic, nemanjai, jvesely, wdng, nhaehnle, javed.absar, tpr, kristof.beyls, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62871
llvm-svn: 366955
If all the demanded elts are from one operand and are inline, then we can use the operand directly.
The changes are mainly from SSE41 targets which has blendvpd but not cmpgtq, allowing the v2i64 comparison to be simplified as we only need the signbit from alternate v4i32 elements.
llvm-svn: 366817
This patch introduces the DAG version of SimplifyMultipleUseDemandedBits, which attempts to peek through ops (mainly and/or/xor so far) that don't contribute to the demandedbits/elts of a node - which means we can do this even in cases where we have multiple uses of an op, which normally requires us to demanded all bits/elts. The intention is to remove a similar instruction - SelectionDAG::GetDemandedBits - once SimplifyMultipleUseDemandedBits has matured.
The InstCombine version of SimplifyMultipleUseDemandedBits can constant fold which I haven't added here yet, and so far I've only wired this up to some basic binops (and/or/xor/add/sub/mul) to demonstrate its use.
We do see a couple of regressions that need to be addressed:
AMDGPU unsigned dot product codegen retains an AND mask (for ZERO_EXTEND) that it previously removed (but otherwise the dotproduct codegen is a lot better).
X86/AVX2 has poor handling of vector ANY_EXTEND/ANY_EXTEND_VECTOR_INREG - it prematurely gets converted to ZERO_EXTEND_VECTOR_INREG.
The code owners have confirmed its ok for these cases to fixed up in future patches.
Differential Revision: https://reviews.llvm.org/D63281
llvm-svn: 366799
Summary:
Four things here:
1. Generalize the fold to handle non-splat divisors. Reasonably trivial.
2. Unban power-of-two divisors. I don't see any reason why they should
be illegal.
* There is no ban in Hacker's Delight
* I think the ban came from the same bug that caused the miscompile
in the base patch - in `floor((2^W - 1) / D)` we were dividing by
`D0` instead of `D`, and we **were** ensuring that `D0` is not `1`,
which made sense.
3. Unban `1` divisors. I no longer believe Hacker's Delight actually says
that the fold is invalid for `D = 0`. Further considerations:
* We know that
* `(X u% 1) == 0` can be constant-folded to `1`,
* `(X u% 1) != 0` can be constant-folded to `0`,
* Also, we know that
* `X u<= -1` can be constant-folded to `1`,
* `X u> -1` can be constant-folded to `0`,
* https://godbolt.org/z/7jnZJXhttps://rise4fun.com/Alive/oF6p
* We know will end up with the following:
`(setule/setugt (rotr (mul N, P), K), Q)`
* Therefore, for given new DAG nodes and comparison predicates
(`ule`/`ugt`), we will still produce the correct answer if:
`Q` is a all-ones constant; and both `P` and `K` are *anything*
other than `undef`.
* The fold will indeed produce `Q = all-ones`.
4. Try to re-splat the `P` and `K` vectors - we don't care about
their values for the lanes where divisor was `1`.
Reviewers: RKSimon, hermord, craig.topper, spatel, xbolva00
Reviewed By: RKSimon
Subscribers: hiraditya, javed.absar, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63963
llvm-svn: 366637
If we have:
R = sub X, Y
P = cmp Y, X
...then flipping the operands in the compare instruction can allow using a subtract that sets compare flags.
Motivated by diffs in D58875 - not sure if this changes anything there,
but this seems like a good thing independent of that.
There's a more involved version of this transform already in IR (in instcombine
although that seems misplaced to me) - see "swapMayExposeCSEOpportunities()".
Differential Revision: https://reviews.llvm.org/D63958
llvm-svn: 365711
Don't do this locally, computeKnownBits does this better (and can handle non-constant cases as well).
A next step would be to actually simplify non-constant elements - building on what we already do in SimplifyDemandedVectorElts.
llvm-svn: 365309
The SDAGBuilder behavior stems from the days when we didn't have fast
math flags available in SDAG. We do now and doing the transformation in
the legalizer has the advantage that it also works for vector types.
llvm-svn: 364743
Summary:
I'm submitting a new revision since i don't understand how to reclaim/reopen/take over the existing one, D50222.
There is no such action in "Add Action" menu...
This implements an optimization described in Hacker's Delight 10-17: when `C` is constant,
the result of `X % C == 0` can be computed more cheaply without actually calculating the remainder.
The motivation is discussed here: https://bugs.llvm.org/show_bug.cgi?id=35479.
This is a recommit, the original commit rL364563 was reverted in rL364568
because test-suite detected miscompile - the new comparison constant 'Q'
was being computed incorrectly (we divided by `D0` instead of `D`).
Original patch D50222 by @hermord (Dmytro Shynkevych)
Notes:
- In principle, it's possible to also handle the `X % C1 == C2` case, as discussed on bugzilla.
This seems to require an extra branch on overflow, so I refrained from implementing this for now.
- An explicit check for when the `REM` can be reduced to just its LHS is included:
the `X % C` == 0 optimization breaks `test1` in `test/CodeGen/X86/jump_sign.ll` otherwise.
I hadn't managed to find a better way to not generate worse output in this case.
- The `test/CodeGen/X86/jump_sign.ll` regresses, and is being fixed by a followup patch D63390.
Reviewers: RKSimon, craig.topper, spatel, hermord, xbolva00
Reviewed By: RKSimon, xbolva00
Subscribers: dexonsmith, kristina, xbolva00, javed.absar, llvm-commits, hermord
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63391
llvm-svn: 364600
Summary:
I'm submitting a new revision since i don't understand how to reclaim/reopen/take over the existing one, D50222.
There is no such action in "Add Action" menu...
Original patch D50222 by @hermord (Dmytro Shynkevych)
This implements an optimization described in Hacker's Delight 10-17: when `C` is constant,
the result of `X % C == 0` can be computed more cheaply without actually calculating the remainder.
The motivation is discussed here: https://bugs.llvm.org/show_bug.cgi?id=35479.
Original patch author: @hermord (Dmytro Shynkevych)!
Notes:
- In principle, it's possible to also handle the `X % C1 == C2` case, as discussed on bugzilla.
This seems to require an extra branch on overflow, so I refrained from implementing this for now.
- An explicit check for when the `REM` can be reduced to just its LHS is included:
the `X % C` == 0 optimization breaks `test1` in `test/CodeGen/X86/jump_sign.ll` otherwise.
I hadn't managed to find a better way to not generate worse output in this case.
- The `test/CodeGen/X86/jump_sign.ll` regresses, and is being fixed by a followup patch D63390.
Reviewers: RKSimon, craig.topper, spatel, hermord, xbolva00
Reviewed By: RKSimon, xbolva00
Subscribers: xbolva00, javed.absar, llvm-commits, hermord
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63391
llvm-svn: 364563
Change the generic ctpop expansion to more efficiently handle a
check for not-a-power-of-two value:
(ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
This is the inverted predicate sibling pattern that was added with:
D63004
This should have been done before I changed IR canonicalization to
favor this form with:
rL364246
...so if this requires revert/changing, the earlier commit may also
need to modified.
llvm-svn: 364319
Simplify ZERO_EXTEND_VECTOR_INREG if the extended bits are not required.
Matches what we already do for ZERO_EXTEND.
Reapplies rL363850 but now with legality checks added at rL364290
llvm-svn: 364303
This should not cause any visible change in output, but it's
more efficient because we were producing non-canonical 'sub x, 1'
and 'setcc ugt x, 0'. As mentioned in the TODO, we should also
be handling the inverse predicate.
llvm-svn: 364302
Simplify SIGN_EXTEND_VECTOR_INREG if the extended bits are not required/known zero.
Matches what we already do for SIGN_EXTEND.
Reapplies rL363802 but now with legality checks added at rL364290
llvm-svn: 364299
As part of the fix for rL364264 + rL364272 - limit the *_EXTEND conversion to !TLO.LegalOperations || isOperationLegal cases.
We'll improve X86 legality in future commits.
llvm-svn: 364290
Summary:
This addresses the regression that is being exposed by D50222 in `test/CodeGen/X86/jump_sign.ll`
The missing fold, at least partially, looks trivial:
https://rise4fun.com/Alive/Zsln
i.e. if we are comparing with zero, and comparing the `urem`-by-non-power-of-two,
and the `urem` is of something that may at most have a single bit set (or no bits set at all),
the `urem` is not needed.
Reviewers: RKSimon, craig.topper, xbolva00, spatel
Reviewed By: xbolva00, spatel
Subscribers: xbolva00, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63390
llvm-svn: 364286
This reverts the following patches.
"[TargetLowering] SimplifyDemandedBits SIGN_EXTEND_VECTOR_INREG -> ANY/ZERO_EXTEND_VECTOR_INREG"
"[TargetLowering] SimplifyDemandedBits ZERO_EXTEND_VECTOR_INREG -> ANY_EXTEND_VECTOR_INREG"
"[TargetLowering] SimplifyDemandedBits - add ANY_EXTEND_VECTOR_INREG support"
We can end up with an any_extend_vector_inreg with a 256 bit result type
and a 128 bit result type. This is allowed by the ISD opcode, but the
generic operation legalizer is only able to expand cases where the
total vector width is the same.
The X86 backend creates these mismatched cases for zext_vec_inreg/sext_vec_inreg.
The SimplifyDemandedBits changes are allowing those nodes to become
aext_vec_inreg. For the zext/sext cases, the X86 backend has Custom
handling and never lets them get to the generic legalizer. We need to do the same
for aext_vec_inreg.
llvm-svn: 364264
Other than adding consistent demanded elts handling which was a trivial addition, the other differences in functionality will be added in later patches.
llvm-svn: 363713
Other than adding consistent demanded elts handling which was a trivial addition, the other differences in functionality will be added in later patches.
llvm-svn: 363710
As discussed on D62910, we need to check whether particular types of memory access are allowed, not just their alignment/address-space.
This NFC patch adds a MachineMemOperand::Flags argument to allowsMemoryAccess and allowsMisalignedMemoryAccesses, and wires up calls to pass the relevant flags to them.
If people are happy with this approach I can then update X86TargetLowering::allowsMisalignedMemoryAccesses to handle misaligned NT load/stores.
Differential Revision: https://reviews.llvm.org/D63075
llvm-svn: 363179
Most parts of LLVM don't care whether the byval type is derived from an
explicit Attribute or from the parameter's pointee type, so it makes
sense for the main access function to just return the right value.
The very few users who do care (only BitcodeReader so far) can find out
how it's specified by accessing the Attribute directly.
llvm-svn: 362642
When we switch to opaque pointer types we will need some way to describe
how many bytes a 'byval' parameter should occupy on the stack. This adds
a (for now) optional extra type parameter.
If present, the type must match the pointee type of the argument.
The original commit did not remap byval types when linking modules, which broke
LTO. This version fixes that.
Note to front-end maintainers: if this causes test failures, it's probably
because the "byval" attribute is printed after attributes without any parameter
after this change.
llvm-svn: 362128
When we switch to opaque pointer types we will need some way to describe
how many bytes a 'byval' parameter should occupy on the stack. This adds
a (for now) optional extra type parameter.
If present, the type must match the pointee type of the argument.
Note to front-end maintainers: if this causes test failures, it's probably
because the "byval" attribute is printed after attributes without any parameter
after this change.
llvm-svn: 362012
This patch adds the overridable TargetLowering::getTargetConstantFromLoad function which allows targets to return any constant value loaded by a LoadSDNode node - only X86 makes use of this so far but everything should be in place for other targets.
computeKnownBits then uses this function to improve codegen, notably vector code after legalization.
A future commit will do the same for ComputeNumSignBits but computeKnownBits sees the bigger benefit.
This required a couple of fixes:
* SimplifyDemandedBits must early-out for getTargetConstantFromLoad cases to prevent infinite loops of constant regeneration (similar to what we already do for BUILD_VECTOR).
* Fix a DAGCombiner::visitTRUNCATE issue as we had trunc(shl(v8i32),v8i16) <-> shl(trunc(v8i16),v8i32) infinite loops after legalization on AVX512 targets.
Differential Revision: https://reviews.llvm.org/D61887
llvm-svn: 361620
Add an intrinsic that takes 2 signed integers with the scale of them provided
as the third argument and performs fixed point multiplication on them. The
result is saturated and clamped between the largest and smallest representable
values of the first 2 operands.
This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.
Differential Revision: https://reviews.llvm.org/D55720
llvm-svn: 361289
Summary:
The endianess used in the calling convention does not always match the
endianess of the target on all architectures, namely AVR.
When an argument is too large to be legalised by the architecture and is
split for the ABI, a new hook TargetLoweringInfo::shouldSplitFunctionArgumentsAsLittleEndian
is queried to find the endianess that function arguments must be laid
out in.
This approach was recommended by Eli Friedman.
Originally reported in https://github.com/avr-rust/rust/issues/129.
Patch by Carl Peto.
Reviewers: bogner, t.p.northover, RKSimon, niravd, efriedma
Reviewed By: efriedma
Subscribers: JDevlieghere, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62003
llvm-svn: 361222
Fixes issue reported by aemerson on D57348. Vector op legalization
support is added for uaddo, usubo, saddo and ssubo (umulo and smulo
were already supported). As usual, by extracting TargetLowering methods
and calling them from vector op legalization.
Vector op legalization doesn't really deal with multiple result nodes,
so I'm explicitly performing a recursive legalization call on the
result value that is not being legalized.
There are some existing test changes because expansion happens
earlier, so we don't get a DAG combiner run in between anymore.
Differential Revision: https://reviews.llvm.org/D61692
llvm-svn: 361166
Summary:
X86TargetLowering::LowerAsmOperandForConstraint had better support than
TargetLowering::LowerAsmOperandForConstraint for arbitrary depth
getelementpointers for "i", "n", and "s" extended inline assembly
constraints. Hoist its support from the derived class into the base
class.
Link: https://github.com/ClangBuiltLinux/linux/issues/469
Reviewers: echristo, t.p.northover
Reviewed By: t.p.northover
Subscribers: t.p.northover, E5ten, kees, jyknight, nemanjai, javed.absar, eraman, hiraditya, jsji, llvm-commits, void, craig.topper, nathanchance, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61560
llvm-svn: 360604
I've included a new fix in X86RegisterInfo to prevent PR41619 without
reintroducing r359392. We might be able to improve that in the base class
implementation of shouldRewriteCopySrc somehow. But this hopefully enables
forward progress on SimplifyDemandedBits improvements for now.
Original commit message:
This patch adds support for BigBitWidth -> SmallBitWidth bitcasts, splitting the DemandedBits/Elts accordingly.
The AMDGPU backend needed an extra (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) combine to encourage BFE creation, I investigated putting this in DAGComb
but it caused a lot of noise on other targets - some improvements, some regressions.
The X86 changes are all definite wins.
llvm-svn: 360552
Reverts "[X86] Remove (V)MOV64toSDrr/m and (V)MOVDI2SSrr/m. Use 128-bit result MOVD/MOVQ and COPY_TO_REGCLASS instead"
Reverts "[TargetLowering][AMDGPU][X86] Improve SimplifyDemandedBits bitcast handling"
Eric Christopher and Jorge Gorbe Moya reported some issues with these patches to me off list.
Removing the CodeGenOnly instructions has changed how fneg is handled during fast-isel with sse/sse2. We're now emitting fsub -0.0, x instead
moving to the integer domain(in a GPR), xoring the sign bit, and then moving back to xmm. This is because the fast isel table no longer
contains an entry for (f32/f64 bitcast (i32/i64)) so the target independent fneg code fails. The use of fsub changes the behavior of nan with
respect to -O2 codegen which will always use a pxor. NOTE: We still have a difference with double with -m32 since the move to GPR doesn't work
there. I'll file a separate PR for that and add test cases.
Since removing the CodeGenOnly instructions was fixing PR41619, I'm reverting r358887 which exposed that PR. Though I wouldn't be surprised
if that bug can still be hit independent of that.
This should hopefully get Google back to green. I'll work with Simon and other X86 folks to figure out how to move forward again.
llvm-svn: 360066
This was a local static funtion in SelectionDAG, which I've promoted to
TargetLowering so that I can reuse it to estimate the cost of a memory
operation in D59787.
Differential Revision: https://reviews.llvm.org/D59766
llvm-svn: 359543
This patch adds support for BigBitWidth -> SmallBitWidth bitcasts, splitting the DemandedBits/Elts accordingly.
The AMDGPU backend needed an extra (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) combine to encourage BFE creation, I investigated putting this in DAGCombine but it caused a lot of noise on other targets - some improvements, some regressions.
The X86 changes are all definite wins.
Differential Revision: https://reviews.llvm.org/D60462
llvm-svn: 358887
If the upper bits of the SHL result aren't used, we might be able to use a narrower shift. For example, on X86 this can turn a 64-bit into 32-bit enabling a smaller encoding.
Differential Revision: https://reviews.llvm.org/D60358
llvm-svn: 358257
When bitcasting from a source op to a larger bitwidth op, split the demanded bits and OR them on top of one another and demand those merged bits in the SimplifyDemandedBits call on the source op.
llvm-svn: 357992
This helps us relax the extension of a lot of scalar elements before they are inserted into a vector.
Its exposes an issue in DAGCombiner::convertBuildVecZextToZext as some/all the zero-extensions may be relaxed to ANY_EXTEND, so we need to handle that case to avoid a couple of AVX2 VPMOVZX test regressions.
Once this is in it should be easier to fix a number of remaining failures to fold loads into VBROADCAST nodes.
Differential Revision: https://reviews.llvm.org/D59484
llvm-svn: 356989
This is a subset of what was proposed in:
D59006
...and may overlap with test changes from:
D59174
...but it seems like a good general optimization to turn selects
into bitwise-logic when possible because we never know exactly
what can happen at this stage of DAG combining depending on how
the target has defined things.
Differential Revision: https://reviews.llvm.org/D59066
llvm-svn: 356332
First step towards PR40800 - I intend to move the float case in a separate future patch.
I had to tweak the (overly reduced) thumb2 test and the x86 widening test change is annoying (no longer rematerializable) but we should address this separately.
Differential Revision: https://reviews.llvm.org/D59244
llvm-svn: 356040
Expand MULO with constant power of two operand into a shift. The
overflow is checked with (x << shift) >> shift == x, where the right
shift will be logical for umulo and arithmetic for smulo (with
exception for multiplications by signed_min).
Differential Revision: https://reviews.llvm.org/D59041
llvm-svn: 355937
Fixes https://bugs.llvm.org/show_bug.cgi?id=36796.
Implement basic legalizations (PromoteIntRes, PromoteIntOp,
ExpandIntRes, ScalarizeVecOp, WidenVecOp) for VECREDUCE opcodes.
There are more legalizations missing (esp float legalizations),
but there's no way to test them right now, so I'm not adding them.
This also includes a few more changes to make this work somewhat
reasonably:
* Add support for expanding VECREDUCE in SDAG. Usually
experimental.vector.reduce is expanded prior to codegen, but if the
target does have native vector reduce, it may of course still be
necessary to expand due to legalization issues. This uses a shuffle
reduction if possible, followed by a naive scalar reduction.
* Allow the result type of integer VECREDUCE to be larger than the
vector element type. For example we need to be able to reduce a v8i8
into an (nominally) i32 result type on AArch64.
* Use the vector operand type rather than the scalar result type to
determine the action, so we can control exactly which vector types are
supported. Also change the legalize vector op code to handle
operations that only have vector operands, but no vector results, as
is the case for VECREDUCE.
* Default VECREDUCE to Expand. On AArch64 (only target using VECREDUCE),
explicitly specify for which vector types the reductions are supported.
This does not handle anything related to VECREDUCE_STRICT_*.
Differential Revision: https://reviews.llvm.org/D58015
llvm-svn: 355860
Summary:
The description of KnownBits::zext() and
KnownBits::zextOrTrunc() has confusingly been telling
that the operation is equivalent to zero extending the
value we're tracking. That has not been true, instead
the user has been forced to explicitly set the extended
bits as known zero afterwards.
This patch adds a second argument to KnownBits::zext()
and KnownBits::zextOrTrunc() to control if the extended
bits should be considered as known zero or as unknown.
Reviewers: craig.topper, RKSimon
Reviewed By: RKSimon
Subscribers: javed.absar, hiraditya, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58650
llvm-svn: 355099
Second part of https://bugs.llvm.org/show_bug.cgi?id=40442.
This adds an extra UnrollVectorOverflowOp() method to SDAG, because
the general UnrollOverflowOp() method can't deal with multiple results.
Additionally we need to expand UMULO/SMULO during vector op
legalization, as it may result in unrolling, which may need additional
type legalization.
Differential Revision: https://reviews.llvm.org/D57997
llvm-svn: 354513
In preparation for supporting vector expansion.
Add an isPostTypeLegalization flag to makeLibCall(), because this
expansion relies on the legalized form using MERGE_VALUES. Drop
the corresponding variant of ExpandLibCall, which is no longer used.
Differential Revision: https://reviews.llvm.org/D58006
llvm-svn: 354226
`CallBase` class rather than `CallSite` wrappers.
I pushed this change down through most of the statepoint infrastructure,
completely removing the use of CallSite where I could reasonably do so.
I ended up making a couple of cut-points: generic call handling
(instcombine, TLI, SDAG). As soon as it hit truly generic handling with
users outside the immediate code, I simply transitioned into or out of
a `CallSite` to make this a reasonable sized chunk.
Differential Revision: https://reviews.llvm.org/D56122
llvm-svn: 353660
Now that we have vector support for [US](ADD|SUB)O we no longer
need to scalarize when expanding [US](ADD|SUB)SAT.
This matches what the cost model already does.
Differential Revision: https://reviews.llvm.org/D57348
llvm-svn: 353651
SimplifySetCC still has much room for improvement, but this should
fix the remaining problem examples from:
https://bugs.llvm.org/show_bug.cgi?id=40657
The initial fix for this problem was rL353615.
llvm-svn: 353639
There's effectively no difference for the cases with variables.
We just trade a sub for an add on those. But the case with a
subtract from constant would require an extra move instruction
on x86, so this looks like a reasonable generic combine.
llvm-svn: 353619
In preparation for supporting vector expansion.
Also drop a variant of ExpandLibCall, of which the MULO expansions
were the only user.
llvm-svn: 353611
This patch accompanies the RFC posted here:
http://lists.llvm.org/pipermail/llvm-dev/2018-October/127239.html
This patch adds a new CallBr IR instruction to support asm-goto
inline assembly like gcc as used by the linux kernel. This
instruction is both a call instruction and a terminator
instruction with multiple successors. Only inline assembly
usage is supported today.
This also adds a new INLINEASM_BR opcode to SelectionDAG and
MachineIR to represent an INLINEASM block that is also
considered a terminator instruction.
There will likely be more bug fixes and optimizations to follow
this, but we felt it had reached a point where we would like to
switch to an incremental development model.
Patch by Craig Topper, Alexander Ivchenko, Mikhail Dvoretckii
Differential Revision: https://reviews.llvm.org/D53765
llvm-svn: 353563
Replace OR(SHL,SRL) pattern with ISD::FSHR (legalization expands this later if necessary) - this helps with the scale == 0 'undefined' drop-through case that was discussed on D55720.
llvm-svn: 353546
Add an intrinsic that takes 2 unsigned integers with the scale of them
provided as the third argument and performs fixed point multiplication on
them.
This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.
Differential Revision: https://reviews.llvm.org/D55625
llvm-svn: 353059
This might be the start of tracking all vector element constants generally if we take it to its
logical conclusion, but let's stop here and make sure this is correct/beneficial so far.
The affected tests require a convoluted path before they get simplified currently because we
don't call SimplifyDemandedVectorElts() from binops directly and don't modify the binop operands
directly in SimplifyDemandedVectorElts().
That's why the tests all have a trailing shuffle to induce a chain reaction of transforms. So
something like this is happening:
1. Improve the knowledge of undefs in the binop via a SimplifyDemandedVectorElts() call that
originates from a shuffle.
2. Transfer that undef knowledge back to the shuffle mask user as more undef lanes.
3. Combine the modified shuffle by calling SimplifyDemandedVectorElts() again.
4. Translate the improved shuffle mask as undemanded lanes of build vector constants causing
those to become full undef constants.
5. Simplify the binop now that it has a full undef operand.
As we can see from the unchanged 'and' and 'or' tests, tracking undefs alone isn't a full solution.
We would need to track zero and all-ones constants to improve those opcodes. We'd probably need to
track NaN for FP ops too (assuming we don't have fast-math-flags set).
Differential Revision: https://reviews.llvm.org/D57066
llvm-svn: 352880
r zero scale SMULFIX, expand into MUL which produces better code for X86.
For vector arguments, expand into MUL if SMULFIX is provided with a zero scale.
Otherwise, expand into MULH[US] or [US]MUL_LOHI.
Differential Revision: https://reviews.llvm.org/D56987
llvm-svn: 352783
This fixes most references to the paths:
llvm.org/svn/
llvm.org/git/
llvm.org/viewvc/
github.com/llvm-mirror/
github.com/llvm-project/
reviews.llvm.org/diffusion/
to instead point to https://github.com/llvm/llvm-project.
This is *not* a trivial substitution, because additionally, all the
checkout instructions had to be migrated to instruct users on how to
use the monorepo layout, setting LLVM_ENABLE_PROJECTS instead of
checking out various projects into various subdirectories.
I've attempted to not change any scripts here, only documentation. The
scripts will have to be addressed separately.
Additionally, I've deleted one document which appeared to be outdated
and unneeded:
lldb/docs/building-with-debug-llvm.txt
Differential Revision: https://reviews.llvm.org/D57330
llvm-svn: 352514
Followup to D56636, this time handling the UADDSAT case by expanding
uadd.sat(a, b) to umin(a, ~b) + b.
Differential Revision: https://reviews.llvm.org/D56869
llvm-svn: 352409
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This patch takes some of the code from D49837 to allow us to enable ISD::ABS support for all SSE vector types.
Differential Revision: https://reviews.llvm.org/D56544
llvm-svn: 350998
This removes check for single use from general ShrinkDemandedConstant
to the BE because of the AArch64 regression after D56289/rL350475.
After several hours of experiments I did not come up with a testcase
failing on any other targets if check is not performed.
Moreover, direct call to ShrinkDemandedConstant is not really needed
and superceed by SimplifyDemandedBits.
Differential Revision: https://reviews.llvm.org/D56406
llvm-svn: 350684
As we saw in D56057 when we tried to use this function on X86, it's unsafe. It allows the operand node to have multiple users, but doesn't prevent recursing past the first node when it does have multiple users. This can cause other simplifications earlier in the graph without regard to what bits are needed by the other users of the first node. Ideally all we should do to the first node if it has multiple uses is bypass it when its not needed by the user we started from. Doing any other transformation that SimplifyDemandedBits can do like turning ZEXT/SEXT into AEXT would result in an increase in instructions.
Fortunately, we already have a function that can do just that, GetDemandedBits. It will only make transformations that involve bypassing a node.
This patch changes AMDGPU's simplifyI24, to use a combination of GetDemandedBits to handle the multiple use simplifications. And then uses the regular SimplifyDemandedBits on each operand to handle simplifications allowed when the operand only has a single use. Unfortunately, GetDemandedBits simplifies constants more aggressively than SimplifyDemandedBits. This caused the -7 constant in the changed test to be simplified to remove the upper bits. I had to modify computeKnownBits to account for this by ignoring the upper 8 bits of the input.
Differential Revision: https://reviews.llvm.org/D56087
llvm-svn: 350560
Fixes cvt_f32_ubyte combine. performCvtF32UByteNCombine() could shrink
source node to demanded bits only even if there are other uses.
Differential Revision: https://reviews.llvm.org/D56289
llvm-svn: 350475
As described on PR40091, we have several places where zext (and zext_vector_inreg) fold an undef input into an undef output. For zero extensions this is incorrect as the output should guarantee to least have the new upper bits set to zero.
SimplifyDemandedVectorElts is the worst offender (and its the most likely to cause new undefs to appear) but DAGCombiner's tryToFoldExtendOfConstant has a similar issue.
Thanks to @dmgreen for catching this.
Differential Revision: https://reviews.llvm.org/D55883
llvm-svn: 349625
For opcodes not covered by SimplifyDemandedVectorElts, SimplifyDemandedBits might be able to help now that it supports demanded elts as well.
llvm-svn: 349466
This is an initial patch to add the necessary support for a DemandedElts argument to SimplifyDemandedBits, more closely matching computeKnownBits and to help improve vector codegen.
I've added only a small amount of the changes necessary to get at least one test to update - a lot more can be done but I'd like to add these methodically with proper test coverage, at the same time the hope is to slowly move some/all of SimplifyDemandedVectorElts into SimplifyDemandedBits as well.
Differential Revision: https://reviews.llvm.org/D55768
llvm-svn: 349374
Move existing rotation expansion code into TargetLowering and set it up for vectors as well.
Ideally this would share more of the funnel shift expansion, but we handle the shift amount modulo quite differently at the moment.
Begun removing x86 vector rotate custom lowering to use the expansion.
llvm-svn: 349025
If either of the operand elements are zero then we know the result element is going to be zero (even if the other element is undef).
Differential Revision: https://reviews.llvm.org/D55558
llvm-svn: 348926
Add an intrinsic that takes 2 signed integers with the scale of them provided
as the third argument and performs fixed point multiplication on them.
This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.
Differential Revision: https://reviews.llvm.org/D54719
llvm-svn: 348912
If all the demanded elements of the SimplifyDemandedVectorElts are known to be UNDEF, we can simplify to an ISD::UNDEF node.
Zero constant folding will be handled in a future patch - its a little trickier as we often have bitcasted zero values.
Differential Revision: https://reviews.llvm.org/D55511
llvm-svn: 348784
This is an initial patch to add a minimum level of support for funnel shifts to the SelectionDAG and to begin wiring it up to the X86 SHLD/SHRD instructions.
Some partial legalization code has been added to handle the case for 'SlowSHLD' where we want to expand instead and I've added a few DAG combines so we don't get regressions from the existing DAG builder expansion code.
Differential Revision: https://reviews.llvm.org/D54698
llvm-svn: 348353
Fix potential issue with the ISD::INSERT_VECTOR_ELT case tweaking the DemandedElts mask instead of using a local copy - so later uses of the mask use the tweaked version.....
Noticed while investigating adding zero/undef folding to SimplifyDemandedVectorElts and the altered DemandedElts mask was causing mismatches.
llvm-svn: 348348
PR17686 demonstrates that for some targets FP exceptions can fire in cases where the FP_TO_UINT is expanded using a FP_TO_SINT instruction.
The existing code converts both the inrange and outofrange cases using FP_TO_SINT and then selects the result, this patch changes this for 'strict' cases to pre-select the FP_TO_SINT input and the offset adjustment.
The X87 cases don't need the strict flag but generates much nicer code with it....
Differential Revision: https://reviews.llvm.org/D53794
llvm-svn: 348251
Add support for ISD::*_EXTEND and ISD::*_EXTEND_VECTOR_INREG opcodes.
The extra broadcast in trunc-subvector.ll will be fixed in an upcoming patch.
llvm-svn: 348246
D52935 introduced the ability for SimplifyDemandedBits to call SimplifyDemandedVectorElts through BITCASTs if the demanded bit mask entirely covered the sub element.
This patch relaxes this to demanding an element if we need any bit from it.
Differential Revision: https://reviews.llvm.org/D54761
llvm-svn: 348073
This uncovered an off-by-one typo in SimplifyDemandedVectorElts's INSERT_SUBVECTOR handling as its bounds check was bailing on safe indices.
llvm-svn: 347313
For bitcast nodes from larger element types, add the ability for SimplifyDemandedVectorElts to call SimplifyDemandedBits by merging the elts mask to a bits mask.
I've raised https://bugs.llvm.org/show_bug.cgi?id=39689 to deal with the few places where SimplifyDemandedBits's lack of vector handling is a problem.
Differential Revision: https://reviews.llvm.org/D54679
llvm-svn: 347301
As discussed on D53794, for float types with ranges smaller than the destination integer type, then we should be able to just use a regular FP_TO_SINT opcode.
I thought we'd need to provide MSA test cases for very small integer types as well (fp16 -> i8 etc.), but it turns out that promotion will kick in so they're unnecessary.
Differential Revision: https://reviews.llvm.org/D54703
llvm-svn: 347251
This patch adds support for expanding vector CTPOP instructions and removes the x86 'bitmath' lowering which replicates the same expansion.
Differential Revision: https://reviews.llvm.org/D53258
llvm-svn: 345869