Currently, if the assembler encounters an error after parsing (such as an
out-of-range fixup), it reports this as a fatal error, and so stops after the
first error. However, for most of these there is an obvious way to recover
after emitting the error, such as emitting the fixup with a value of zero. This
means that we can report on all of the errors in a file, not just the first
one. MCContext::reportError records the fact that an error was encountered, so
we won't actually emit an object file with the incorrect contents.
Differential Revision: http://reviews.llvm.org/D14717
llvm-svn: 253328
In this mode it just tries to tail merge the strings without imposing any other
format constrains. It will not, for example, add a null byte between them.
Also add support for keeping a tentative size and offset if we decide to
not optimize after all.
This will be used shortly in lld for merging SHF_STRINGS sections.
llvm-svn: 251153
Casting to unsigned long can cause the time to get truncated to 32-bits,
making it appear to be a valid timestamp. Just use isUInt<32> instead.
llvm-svn: 246840
The MS incremental linker seems to inspect the timestamp written into
the object file to determine whether or not it's contents need to be
considered. Failing to set the timestamp to a date newer than the
executable will result in the object file not participating in
subsequent links. To ameliorate this, write the current time into the
object file's TimeDateStamp field.
llvm-svn: 246607
COFF sections are accompanied with an auxiliary symbol which includes a
checksum. This checksum used to be filled with just zero but this seems
to upset LINK.exe when it is processing a /INCREMENTAL link job.
Instead, fill the CheckSum field with the JamCRC of the section
contents. This matches MSVC's behavior.
This fixes PR19666.
N.B. A rather simple implementation of JamCRC is given. It implements
a byte-wise calculation using the method given by Sarwate. There are
implementations with higher throughput like slice-by-eight and making
use of PCLMULQDQ. We can switch to one of those techniques if it turns
out to be a significant use of time.
llvm-svn: 246590
There are occasions where it is useful to consider the entirety of the
contents of a section. For example, compressed debug info needs the
entire section available before it can compress it and write it out.
The compressed debug info scenario was previously implemented by
mirroring the implementation of writeSectionData in the ELFObjectWriter.
Instead, allow the output stream to be swapped on demand. This lets
callers redirect the output stream to a more convenient location before
it hits the object file.
No functionality change is intended.
Differential Revision: http://reviews.llvm.org/D12509
llvm-svn: 246554
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
This intrinsic is like framerecover plus a load. It recovers the EH
registration stack allocation from the parent frame and loads the
exception information field out of it, giving back a pointer to an
EXCEPTION_POINTERS struct. It's designed for clang to use in SEH filter
expressions instead of accessing the EXCEPTION_POINTERS parameter that
is available on x64.
This required a minor change to MC to allow defining a label variable to
another absolute framerecover label variable.
llvm-svn: 239567
All flags setting/getting is now done in the class with helper methods instead
of users having to get the bits in the correct order.
Reviewed by Rafael Espíndola.
llvm-svn: 239314
There is no MCSectionData, so the old name is now meaningless.
Also remove some asserts/checks that were there just because the information
they used was in MCSectionData.
llvm-svn: 238708
.safeseh adds an entry to the .sxdata section to register all the
appropriate functions which may handle an exception. This entry is not
a relocation to the symbol but instead the symbol table index of the
function.
llvm-svn: 238641
Transition one API from `MCSymbolData` to `MCSymbol`. The function
needs both, and the backpointer from `MCSymbolData` to `MCSymbol` is
going away.
llvm-svn: 237498
Instead of storing a list of the `MCSymbolData` in use, store the
`MCSymbol`s. Churning in the direction of removing the back pointer
from `MCSymbolData`.
llvm-svn: 237496
Similar to r235222, but for the weak symbol case.
In an "ideal" assembler/object format an expression would always refer to the
final value and A-B would only be computed from a section in the same
comdat as A and B with A and B strong.
Unfortunately that is not the case with debug info on ELF, so we need an
heuristic. Since we need an heuristic, we may as well use the same one as
gas:
* call weak_sym : produces a relocation, even if in the same section.
* A - weak_sym and weak_sym -A: don't produce a relocation if we can
compute it.
This fixes pr23272 and changes the fix of pr22815 to match what gas does.
llvm-svn: 235227
Using this instead of
namespace llvm {
func...
}
Has the advantage that the build fails with a compiler error if it gets out
of sync with the .h file.
llvm-svn: 234515
Before when deciding if we needed a relocation in A-B, we wore only checking
if A was weak.
This fixes the asymmetry.
The "InSet" argument should probably be renamed to "ForValue", since InSet is
very MachO specific, but doing so in this patch would make it hard to read.
This fixes PR22815.
llvm-svn: 234165
There is something in link.exe that requires a relocation to use a
global symbol. Not doing so breaks the chrome build on windows.
This patch sets isWeak for that to work. To compensate,
we then need to look past those symbols when not creating relocations.
This patch includes an ELF test that matches GNU as behaviour.
I am still reducing the chrome build issue and will add a test
once that is done.
llvm-svn: 233318
Windows supports a restricted set of relocations (compared to ARM ELF). In some
cases, we may end up generating an unsupported relocation. This can occur with
bad input to the assembler in particular (the frontend should never generate
code that cannot be compiled). Generate an error rather than just aborting.
The change in the API is driven by the desire to provide a slightly more helpful
message for debugging purposes.
llvm-svn: 226779
The fixes are to note that AArch64 has additional restrictions on when local
relocations can be used. In particular, ld64 requires that relocations to
cstring/cfstrings use linker visible symbols.
Original message:
In an assembly expression like
bar:
.long L0 + 1
the intended semantics is that bar will contain a pointer one byte past L0.
In sections that are merged by content (strings, 4 byte constants, etc), a
single position in the section doesn't give the linker enough information.
For example, it would not be able to tell a relocation must point to the
end of a string, since that would look just like the start of the next.
The solution used in ELF to use relocation with symbols if there is a non-zero
addend.
In MachO before this patch we would just keep all symbols in some sections.
This would miss some cases (only cstrings on x86_64 were implemented) and was
inefficient since most relocations have an addend of 0 and can be represented
without the symbol.
This patch implements the non-zero addend logic for MachO too.
llvm-svn: 226503
utils/sort_includes.py.
I clearly haven't done this in a while, so more changed than usual. This
even uncovered a missing include from the InstrProf library that I've
added. No functionality changed here, just mechanical cleanup of the
include order.
llvm-svn: 225974
One is that AArch64 has additional restrictions on when local relocations can
be used. We have to take those into consideration when deciding to put a L
symbol in the symbol table or not.
The other is that ld64 requires the relocations to cstring to use linker
visible symbols on AArch64.
Thanks to Michael Zolotukhin for testing this!
Remove doesSectionRequireSymbols.
In an assembly expression like
bar:
.long L0 + 1
the intended semantics is that bar will contain a pointer one byte past L0.
In sections that are merged by content (strings, 4 byte constants, etc), a
single position in the section doesn't give the linker enough information.
For example, it would not be able to tell a relocation must point to the
end of a string, since that would look just like the start of the next.
The solution used in ELF to use relocation with symbols if there is a non-zero
addend.
In MachO before this patch we would just keep all symbols in some sections.
This would miss some cases (only cstrings on x86_64 were implemented) and was
inefficient since most relocations have an addend of 0 and can be represented
without the symbol.
This patch implements the non-zero addend logic for MachO too.
llvm-svn: 225644
The issues was that AArch64 has additional restrictions on when local
relocations can be used. We have to take those into consideration when
deciding to put a L symbol in the symbol table or not.
Original message:
Remove doesSectionRequireSymbols.
In an assembly expression like
bar:
.long L0 + 1
the intended semantics is that bar will contain a pointer one byte past L0.
In sections that are merged by content (strings, 4 byte constants, etc), a
single position in the section doesn't give the linker enough information.
For example, it would not be able to tell a relocation must point to the
end of a string, since that would look just like the start of the next.
The solution used in ELF to use relocation with symbols if there is a non-zero
addend.
In MachO before this patch we would just keep all symbols in some sections.
This would miss some cases (only cstrings on x86_64 were implemented) and was
inefficient since most relocations have an addend of 0 and can be represented
without the symbol.
This patch implements the non-zero addend logic for MachO too.
llvm-svn: 225048
In an assembly expression like
bar:
.long L0 + 1
the intended semantics is that bar will contain a pointer one byte past L0.
In sections that are merged by content (strings, 4 byte constants, etc), a
single position in the section doesn't give the linker enough information.
For example, it would not be able to tell a relocation must point to the
end of a string, since that would look just like the start of the next.
The solution used in ELF to use relocation with symbols if there is a non-zero
addend.
In MachO before this patch we would just keep all symbols in some sections.
This would miss some cases (only cstrings on x86_64 were implemented) and was
inefficient since most relocations have an addend of 0 and can be represented
without the symbol.
This patch implements the non-zero addend logic for MachO too.
llvm-svn: 224985
Referencing one symbol from another in the same section does not
generally require a relocation. However, the MS linker has a feature
called /INCREMENTAL which enables incremental links. It achieves this
by creating thunks to the actual function and redirecting all
relocations to point to the thunk.
This breaks down with the old scheme if you have a function which
references, say, itself. On x86_64, we would use %rip relative
addressing to reference the start of the function from out current
position. This would lead to miscompiles because other references might
reference the thunk instead, breaking function pointer equality.
This fixes PR21520.
llvm-svn: 221678
On x86_64 this brings it from 80 bytes to 64 bytes. Also make any member
variables private and clean up uses to go through the existing accessors.
NFC.
llvm-svn: 219573
Teach WinCOFFObjectWriter how to write -mbig-obj style object files;
these object files allow for more sections inside an object file.
Our support for BigObj is notably different from binutils and cl: we
implicitly upgrade object files to BigObj instead of asking the user to
compile the same file *again* but with another flag. This matches up
with how LLVM treats ELF variants.
This was tested by forcing LLVM to always emit BigObj files and running
the entire test suite. A specific test has also been added.
I've lowered the maximum number of sections in a normal COFF file,
VS "14" CTP 3 supports no more than 65279 sections. This is important
otherwise we might not switch to BigObj quickly enough, leaving us with
a COFF file that we couldn't link.
yaml2obj support is all that remains to implement.
Differential Revision: http://reviews.llvm.org/D5349
llvm-svn: 217812
This adds support for reading the "bigobj" variant of COFF produced by
cl's /bigobj and mingw's -mbig-obj.
The most significant difference that bigobj brings is more than 2**16
sections to COFF.
bigobj brings a few interesting differences with it:
- It doesn't have a Characteristics field in the file header.
- It doesn't have a SizeOfOptionalHeader field in the file header (it's
only used in executable files).
- Auxiliary symbol records have the same width as a symbol table entry.
Since symbol table entries are bigger, so are auxiliary symbol
records.
Write support will come soon.
Differential Revision: http://reviews.llvm.org/D5259
llvm-svn: 217496
MC was aping a binutils bug where aliases would default their linkage to
private instead of internal.
I've sent a patch to the binutils maintainers and they've recently
applied it to the GNU assembler sources.
This fixes PR20152.
Differential Revision: http://reviews.llvm.org/D4395
llvm-svn: 212899
Prevent the early elimination of sections in the object writer. There may be
references to the section itself by other symbols, which may potentially not be
possible to resolve. ML (Visual Studio's Macro Assembler) also seems to retain
empty sections.
The elimination of symbols and sections which are unused should really occur at
the link phase. This will not cause any change in the resulting binary, simply
in the generated object files.
The adjustments to the other unit tests account for the fluctuating section
index caused by the appearance of sections which were previously discarded.
llvm-svn: 210373
* Section association cannot use just the section name as many
sections can have the same name. With this patch, the comdat symbol in
an assoc section is interpreted to mean a symbol in the associated
section and the mapping is discovered from it.
* Comdat symbols were not being set correctly. Instead we were getting
whatever was output first for that section.
A consequence is that associative sections now must use .section to
set the association. Using .linkonce would not work since it is not
possible to change a sections comdat symbol (it is used to decide if
we should create a new section or reuse an existing one).
This includes r210298, which was reverted because it was asserting
on an associated section having the same comdat as the associated
section.
llvm-svn: 210367
We extended the .section syntax to allow multiple sections with the
same name but different comdats, but currently we don't make sure that
the output section has that comdat symbol.
That happens to work with the code llc produces currently because it looks like
.section secName, "dr", one_only, "COMDATSym"
.globl COMDATSym
COMDATSym:
....
but that is not very friendly to anyone coding in assembly or even to
llc once we get comdat support in the IR.
This patch changes the coff object writer to make sure the comdat symbol is
output just after the section symbol, as required by the coff spec.
llvm-svn: 210298
Add support to allow a target specific COFF object writer to restrict the
recorded resolutions in the emitted object files. This is motivated by the need
in Windows on ARM, where an intermediate relocation needs to be prevented from
being emitted in the object file.
llvm-svn: 209336
.file records are supposed to have a section identifier of 65534
(IMAGE_SCN_DEBUG) rather than 0. This is spelt out clearly within the PE/COFF
specification. Fix this minor oversight with the implementation for support for
.file records.
llvm-svn: 207851
This makes the coff writer compute the correct symbol value for the test in
pr19147. The section is still incorrect, that will be fixed in a followup patch.
llvm-svn: 207728
Introduce support for WoA PE/COFF object file emission from LLVM. Add the new
target specific PE/COFF Streamer (ARMWinCOFFStreamer) that handles the ARM
specific behaviour of PE/COFF object emission. ARM exception information is not
yet emitted and is a TODO item.
The ARM specific object writer (ARMWinCOFFObjectWriter) handles the ARM specific
relocation handling in conjunction with the WinCOFFObjectWriter in the MC layer.
The MC layer needs to be updated to deal with the relocation adjustments.
Branch relocations are adjusted by 4 bytes (unlikely their ELF counterparts).
Minor tweaks to switch multiple conditional checks into equivalent switch
statements. The ObjectFileInfo is updated to relax the object file setup for
Windows COFF. Move the architecture checks into an assertion. Windows COFF is
currently only supported on x86, x86_64, and ARM (thumb). Rather than
defaulting to ELF, we will refuse to generate an object file. This is better
though as you do not get an (arbitrary) object file which is different from the
request.
llvm-svn: 207345
I discovered this const-hole while attempting to coalesnce the Symbol
and SymbolMap data structures. There's some pending issues with that,
but I figured this change was easy to flush early.
llvm-svn: 207124
Visual Studio does not permit referencing a structure member as a static field
for sizeof calculations. Resort to a pointer cast which is compatible across
Visual Studio and other compilers.
llvm-svn: 206445
Adjust the tests to validate the number of auxiliary entries used to store the
filename.
Thanks to majnemer's sharp eye for catching the missing - 1 in the round up
calculation.
llvm-svn: 206359
Add support for emitting .file records. This is mostly a quality of
implementation change (more complete support for COFF file emission) that was
noticed while working on COFF file emission for Windows on ARM.
A .file record is emitted as a symbol with storage class FILE (103) and the name
".file". A series of auxiliary format 4 records follow which contain the file
name. The filename is stored as an ANSI string and is padded with NULL if the
length is not a multiple of COFF::SymbolSize (18).
llvm-svn: 206355
The values for the relocation type can (and do) overlap across various
architectures. When performing an adjustment of the emitted relocation in the
final object file, check that the file magic matches the target for which the
relocation type is valid (e.g. a I386 relocation is only applied to an X86
object file, and an AMD64 relocation is only applied to an X86_64 object file).
This was noticed while adding support for ARM WinCOFF object file emission.
A test case for this is not really possible as the values for REL32 do not
overlap on I386 and AMD64, which is why this was never noticed in practice. The
ARM WinCOFF emission is not yet ready to merge into the tree.
llvm-svn: 206138
Summary:
Local common symbols were properly inserted into the .bss section.
However, putting external common symbols in the .bss section would give
them a strong definition.
Instead, encode them as undefined, external symbols who's symbol value
is equivalent to their size.
Reviewers: Bigcheese, rafael, rnk
CC: llvm-commits
Differential Revision: http://reviews.llvm.org/D3324
llvm-svn: 205811
I started trying to fix a small issue, but this code has seen a small fix too
many.
The old code was fairly convoluted. Some of the issues it had:
* It failed to check if a symbol difference was in the some section when
converting a relocation to pcrel.
* It failed to check if the relocation was already pcrel.
* The pcrel value computation was wrong in some cases (relocation-pc.s)
* It was missing quiet a few cases where it should not convert symbol
relocations to section relocations, leaving the backends to patch it up.
* It would not propagate the fact that it had changed a relocation to pcrel,
requiring a quiet nasty work around in ARM.
* It was missing comments.
llvm-svn: 205076