Commit Graph

6 Commits

Author SHA1 Message Date
Mikael Holmen 6d06976e74 [LSR] Don't force bases of foldable formulae to the final type.
Summary:
Before emitting code for scaled registers, we prevent
SCEVExpander from hoisting any scaled addressing mode
by emitting all the bases first. However, these bases
are being forced to the final type, resulting in some
odd code.

For example, if the type of the base is an integer and
the final type is a pointer, we will emit an inttoptr
for the base, a ptrtoint for the scale, and then a
'reverse' GEP where the GEP pointer is actually the base
integer and the index is the pointer. It's more intuitive
to use the pointer as a pointer and the integer as index.

Patch by: Bevin Hansson

Reviewers: atrick, qcolombet, sanjoy

Reviewed By: qcolombet

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D42103

llvm-svn: 323946
2018-02-01 06:38:34 +00:00
Sanjay Patel 5bce08ddff [x86] auto-generate complete checks; NFC
llvm-svn: 323571
2018-01-26 22:06:07 +00:00
Evgeny Stupachenko c675290680 Reapply fix PR23384 (part 3 of 3) r304824 (was reverted in r305720).
The root cause of reverting was fixed - PR33514.

Summary:
The patch makes instruction count the highest priority for
 LSR solution for X86 (previously registers had highest priority).

Reviewers: qcolombet

Differential Revision: http://reviews.llvm.org/D30562

From: Evgeny Stupachenko <evstupac@gmail.com>
                         <evgeny.v.stupachenko@intel.com>
llvm-svn: 310289
2017-08-07 19:56:34 +00:00
Hans Wennborg ca69fc1cb7 Revert r304824 "Fix PR23384 (part 3 of 3)"
This seems to be interacting badly with ASan somehow, causing false reports of
heap-buffer overflows: PR33514.

> Summary:
> The patch makes instruction count the highest priority for
> LSR solution for X86 (previously registers had highest priority).
>
> Reviewers: qcolombet
>
> Differential Revision: http://reviews.llvm.org/D30562
>
> From: Evgeny Stupachenko <evstupac@gmail.com>

llvm-svn: 305720
2017-06-19 17:57:15 +00:00
Evgeny Stupachenko 3b88291581 Fix PR23384 (part 3 of 3)
Summary:
The patch makes instruction count the highest priority for
 LSR solution for X86 (previously registers had highest priority).

Reviewers: qcolombet

Differential Revision: http://reviews.llvm.org/D30562

From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 304824
2017-06-06 20:04:16 +00:00
Wei Mi 8f20e63a20 [LSR] Recommit: Allow formula containing Reg for SCEVAddRecExpr related with outerloop.
The recommit includes some changes of testcases. No functional change to the patch.

In RateRegister of existing LSR, if a formula contains a Reg which is a SCEVAddRecExpr,
and this SCEVAddRecExpr's loop is an outerloop, the formula will be marked as Loser
and dropped.

Suppose we have an IR that %for.body is outerloop and %for.body2 is innerloop. LSR only
handle inner loop now so only %for.body2 will be handled.

Using the logic above, formula like
reg(%array) + reg({1,+, %size}<%for.body>) + 1*reg({0,+,1}<%for.body2>) will be dropped
no matter what because reg({1,+, %size}<%for.body>) is a SCEVAddRecExpr type reg related
with outerloop. Only formula like
reg(%array) + 1*reg({{1,+, %size}<%for.body>,+,1}<nuw><nsw><%for.body2>) will be kept
because the SCEVAddRecExpr related with outerloop is folded into the initial value of the
SCEVAddRecExpr related with current loop.

But in some cases, we do need to share the basic induction variable
reg{0 ,+, 1}<%for.body2> among LSR Uses to reduce the final total number of induction
variables used by LSR, so we don't want to drop the formula like
reg(%array) + reg({1,+, %size}<%for.body>) + 1*reg({0,+,1}<%for.body2>) unconditionally.

From the existing comment, it tries to avoid considering multiple level loops at the same time.
However, existing LSR only handles innermost loop, so for any SCEVAddRecExpr with a loop other
than current loop, it is an invariant and will be simple to handle, and the formula doesn't have
to be dropped.

Differential Revision: https://reviews.llvm.org/D26429

llvm-svn: 294814
2017-02-11 00:50:23 +00:00